xenia-canary/src/xenia/apu/xma_decoder.cc

381 lines
12 KiB
C++

/**
******************************************************************************
* Xenia : Xbox 360 Emulator Research Project *
******************************************************************************
* Copyright 2022 Ben Vanik. All rights reserved. *
* Released under the BSD license - see LICENSE in the root for more details. *
******************************************************************************
*/
#include "xenia/apu/xma_decoder.h"
#include "xenia/apu/xma_context.h"
#include "xenia/base/cvar.h"
#include "xenia/base/logging.h"
#include "xenia/base/math.h"
#include "xenia/base/profiling.h"
#include "xenia/base/ring_buffer.h"
#include "xenia/base/string_buffer.h"
#include "xenia/cpu/processor.h"
#include "xenia/cpu/thread_state.h"
#include "xenia/kernel/xthread.h"
extern "C" {
#include "third_party/FFmpeg/libavutil/log.h"
} // extern "C"
// As with normal Microsoft, there are like twelve different ways to access
// the audio APIs. Early games use XMA*() methods almost exclusively to touch
// decoders. Later games use XAudio*() and direct memory writes to the XMA
// structures (as opposed to the XMA* calls), meaning that we have to support
// both.
//
// The XMA*() functions just manipulate the audio system in the guest context
// and let the normal XmaDecoder handling take it, to prevent duplicate
// implementations. They can be found in xboxkrnl_audio_xma.cc
//
// XMA details:
// https://devel.nuclex.org/external/svn/directx/trunk/include/xma2defs.h
// https://github.com/gdawg/fsbext/blob/master/src/xma_header.h
//
// XAudio2 uses XMA under the covers, and seems to map with the same
// restrictions of frame/subframe/etc:
// https://msdn.microsoft.com/en-us/library/windows/desktop/microsoft.directx_sdk.xaudio2.xaudio2_buffer(v=vs.85).aspx
//
// XMA contexts are 64b in size and tight bitfields. They are in physical
// memory not usually available to games. Games will use MmMapIoSpace to get
// the 64b pointer in user memory so they can party on it. If the game doesn't
// do this, it's likely they are either passing the context to XAudio or
// using the XMA* functions.
DEFINE_bool(ffmpeg_verbose, false, "Verbose FFmpeg output (debug and above)",
"APU");
namespace xe {
namespace apu {
XmaDecoder::XmaDecoder(cpu::Processor* processor)
: memory_(processor->memory()), processor_(processor) {}
XmaDecoder::~XmaDecoder() = default;
void av_log_callback(void* avcl, int level, const char* fmt, va_list va) {
if (!cvars::ffmpeg_verbose && level > AV_LOG_WARNING) {
return;
}
char level_char = '?';
LogLevel log_level;
switch (level) {
case AV_LOG_ERROR: {
level_char = '!';
log_level = xe::LogLevel::Error;
break;
}
case AV_LOG_WARNING: {
level_char = 'w';
log_level = xe::LogLevel::Warning;
break;
}
case AV_LOG_INFO: {
level_char = 'i';
log_level = xe::LogLevel::Info;
break;
}
case AV_LOG_VERBOSE: {
level_char = 'v';
log_level = xe::LogLevel::Debug;
break;
}
case AV_LOG_DEBUG: {
level_char = 'd';
log_level = xe::LogLevel::Debug;
break;
}
default: {
level_char = '?';
log_level = xe::LogLevel::Debug;
break;
}
}
StringBuffer buff;
buff.AppendVarargs(fmt, va);
xe::logging::AppendLogLineFormat(LogSrc::Apu, log_level, level_char,
"ffmpeg: {}",
buff.to_string_view());
}
X_STATUS XmaDecoder::Setup(kernel::KernelState* kernel_state) {
// Setup ffmpeg logging callback
av_log_set_callback(av_log_callback);
// Let the processor know we want register access callbacks.
memory_->AddVirtualMappedRange(
0x7FEA0000, 0xFFFF0000, 0x0000FFFF, this,
reinterpret_cast<cpu::MMIOReadCallback>(MMIOReadRegisterThunk),
reinterpret_cast<cpu::MMIOWriteCallback>(MMIOWriteRegisterThunk));
// Setup XMA context data.
// The Xbox 360 kernel allocates the contexts with X_PAGE_NOCACHE |
// X_PAGE_READWRITE and writes MmGetPhysicalAddress for the address to the
// register.
context_data_first_ptr_ = memory()->SystemHeapAlloc(
sizeof(XMA_CONTEXT_DATA) * kContextCount, 256, kSystemHeapPhysical);
context_data_last_ptr_ =
context_data_first_ptr_ + (sizeof(XMA_CONTEXT_DATA) * kContextCount - 1);
register_file_[XmaRegister::ContextArrayAddress] =
memory()->GetPhysicalAddress(context_data_first_ptr_);
// Setup XMA contexts.
for (int i = 0; i < kContextCount; ++i) {
uint32_t guest_ptr = context_data_first_ptr_ + i * sizeof(XMA_CONTEXT_DATA);
XmaContext& context = contexts_[i];
if (context.Setup(i, memory(), guest_ptr)) {
assert_always();
}
}
register_file_[XmaRegister::NextContextIndex] = 1;
context_bitmap_.Resize(kContextCount);
worker_running_ = true;
work_event_ = xe::threading::Event::CreateAutoResetEvent(false);
assert_not_null(work_event_);
worker_thread_ = kernel::object_ref<kernel::XHostThread>(
new kernel::XHostThread(kernel_state, 128 * 1024, 0, [this]() {
WorkerThreadMain();
return 0;
}));
worker_thread_->set_name("XMA Decoder");
worker_thread_->set_can_debugger_suspend(true);
worker_thread_->Create();
return X_STATUS_SUCCESS;
}
void XmaDecoder::WorkerThreadMain() {
uint32_t idle_loop_count = 0;
while (worker_running_) {
// Okay, let's loop through XMA contexts to find ones we need to decode!
bool did_work = false;
for (uint32_t n = 0; n < kContextCount; n++) {
XmaContext& context = contexts_[n];
did_work = context.Work() || did_work;
// TODO: Need thread safety to do this.
// Probably not too important though.
// registers_.current_context = n;
// registers_.next_context = (n + 1) % kContextCount;
}
if (paused_) {
pause_fence_.Signal();
resume_fence_.Wait();
}
if (!did_work) {
idle_loop_count++;
} else {
idle_loop_count = 0;
}
xe::threading::Wait(work_event_.get(), false);
}
}
void XmaDecoder::Shutdown() {
worker_running_ = false;
if (work_event_) {
work_event_->Set();
}
if (paused_) {
Resume();
}
if (worker_thread_) {
// Wait for work thread.
xe::threading::Wait(worker_thread_->thread(), false);
worker_thread_.reset();
}
if (context_data_first_ptr_) {
memory()->SystemHeapFree(context_data_first_ptr_);
}
context_data_first_ptr_ = 0;
context_data_last_ptr_ = 0;
}
int XmaDecoder::GetContextId(uint32_t guest_ptr) {
static_assert_size(XMA_CONTEXT_DATA, 64);
if (guest_ptr < context_data_first_ptr_ ||
guest_ptr > context_data_last_ptr_) {
return -1;
}
assert_zero(guest_ptr & 0x3F);
return (guest_ptr - context_data_first_ptr_) >> 6;
}
uint32_t XmaDecoder::AllocateContext() {
size_t index = context_bitmap_.Acquire();
if (index == -1) {
// Out of contexts.
return 0;
}
XmaContext& context = contexts_[index];
assert_false(context.is_allocated());
context.set_is_allocated(true);
return context.guest_ptr();
}
void XmaDecoder::ReleaseContext(uint32_t guest_ptr) {
auto context_id = GetContextId(guest_ptr);
assert_true(context_id >= 0);
XmaContext& context = contexts_[context_id];
assert_true(context.is_allocated());
context.Release();
context_bitmap_.Release(context_id);
}
bool XmaDecoder::BlockOnContext(uint32_t guest_ptr, bool poll) {
auto context_id = GetContextId(guest_ptr);
assert_true(context_id >= 0);
XmaContext& context = contexts_[context_id];
return context.Block(poll);
}
uint32_t XmaDecoder::ReadRegister(uint32_t addr) {
auto r = (addr & 0xFFFF) / 4;
assert_true(r < XmaRegisterFile::kRegisterCount);
switch (r) {
case XmaRegister::ContextArrayAddress:
break;
case XmaRegister::CurrentContextIndex: {
// 0606h (1818h) is rotating context processing # set to hardware ID of
// context being processed.
// If bit 200h is set, the locking code will possibly collide on hardware
// IDs and error out, so we should never set it (I think?).
uint32_t& current_context_index =
register_file_[XmaRegister::CurrentContextIndex];
uint32_t& next_context_index =
register_file_[XmaRegister::NextContextIndex];
// To prevent games from seeing a stuck XMA context, return a rotating
// number.
current_context_index = next_context_index;
next_context_index = (next_context_index + 1) % kContextCount;
break;
}
default:
const auto register_info = register_file_.GetRegisterInfo(r);
if (register_info) {
XELOGW("XMA: Read from unhandled register ({:04X}, {})", r,
register_info->name);
} else {
XELOGW("XMA: Read from unknown register ({:04X})", r);
}
break;
}
return xe::byte_swap(register_file_[r]);
}
void XmaDecoder::WriteRegister(uint32_t addr, uint32_t value) {
SCOPE_profile_cpu_f("apu");
uint32_t r = (addr & 0xFFFF) / 4;
value = xe::byte_swap(value);
assert_true(r < XmaRegisterFile::kRegisterCount);
register_file_[r] = value;
if (r >= XmaRegister::Context0Kick && r <= XmaRegister::Context9Kick) {
// Context kick command.
// This will kick off the given hardware contexts.
// Basically, this kicks the SPU and says "hey, decode that audio!"
// XMAEnableContext
// The context ID is a bit in the range of the entire context array.
uint32_t base_context_id = (r - XmaRegister::Context0Kick) * 32;
for (int i = 0; value && i < 32; ++i, value >>= 1) {
if (value & 1) {
uint32_t context_id = base_context_id + i;
auto& context = contexts_[context_id];
context.Enable();
}
}
// Signal the decoder thread to start processing.
work_event_->SetBoostPriority();
} else if (r >= XmaRegister::Context0Lock && r <= XmaRegister::Context9Lock) {
// Context lock command.
// This requests a lock by flagging the context.
// XMADisableContext
uint32_t base_context_id = (r - XmaRegister::Context0Lock) * 32;
for (int i = 0; value && i < 32; ++i, value >>= 1) {
if (value & 1) {
uint32_t context_id = base_context_id + i;
auto& context = contexts_[context_id];
context.Disable();
}
}
// Signal the decoder thread to start processing.
// work_event_->Set();
} else if (r >= XmaRegister::Context0Clear &&
r <= XmaRegister::Context9Clear) {
// Context clear command.
// This will reset the given hardware contexts.
uint32_t base_context_id = (r - XmaRegister::Context0Clear) * 32;
for (int i = 0; value && i < 32; ++i, value >>= 1) {
if (value & 1) {
uint32_t context_id = base_context_id + i;
XmaContext& context = contexts_[context_id];
context.Clear();
}
}
} else {
// 0601h (1804h) is written to with 0x02000000 and 0x03000000 around a lock
// operation
switch (r) {
case 0x601:
break;
default: {
const auto register_info = register_file_.GetRegisterInfo(r);
if (register_info) {
XELOGW("XMA: Write to unhandled register ({:04X}, {}): {:08X}", r,
register_info->name, value);
} else {
XELOGW("XMA: Write to unknown register ({:04X}): {:08X}", r, value);
}
break;
}
#pragma warning(suppress : 4065)
}
}
}
void XmaDecoder::Pause() {
if (paused_) {
return;
}
paused_ = true;
pause_fence_.Wait();
}
void XmaDecoder::Resume() {
if (!paused_) {
return;
}
paused_ = false;
resume_fence_.Signal();
}
} // namespace apu
} // namespace xe