xenia-canary/third_party/microprofile/microprofile.h

4923 lines
144 KiB
C++

#pragma once
// This is free and unencumbered software released into the public domain.
// Anyone is free to copy, modify, publish, use, compile, sell, or
// distribute this software, either in source code form or as a compiled
// binary, for any purpose, commercial or non-commercial, and by any
// means.
// In jurisdictions that recognize copyright laws, the author or authors
// of this software dedicate any and all copyright interest in the
// software to the public domain. We make this dedication for the benefit
// of the public at large and to the detriment of our heirs and
// successors. We intend this dedication to be an overt act of
// relinquishment in perpetuity of all present and future rights to this
// software under copyright law.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
// OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
// For more information, please refer to <http://unlicense.org/>
//
// ***********************************************************************
//
//
//
//
// Howto:
// Call these functions from your code:
// MicroProfileOnThreadCreate
// MicroProfileMouseButton
// MicroProfileMousePosition
// MicroProfileModKey
// MicroProfileFlip <-- Call this once per frame
// MicroProfileDraw <-- Call this once per frame
// MicroProfileToggleDisplayMode <-- Bind to a key to toggle profiling
// MicroProfileTogglePause <-- Bind to a key to toggle pause
//
// Use these macros in your code in blocks you want to time:
//
// MICROPROFILE_DECLARE
// MICROPROFILE_DEFINE
// MICROPROFILE_DECLARE_GPU
// MICROPROFILE_DEFINE_GPU
// MICROPROFILE_SCOPE
// MICROPROFILE_SCOPEI
// MICROPROFILE_SCOPEGPU
// MICROPROFILE_SCOPEGPUI
// MICROPROFILE_META
// MICROPROFILE_LABEL
// MICROPROFILE_LABELF
//
// Usage:
//
// {
// MICROPROFILE_SCOPEI("GroupName", "TimerName", nColorRgb):
// ..Code to be timed..
// }
//
// MICROPROFILE_DECLARE / MICROPROFILE_DEFINE allows defining groups in a shared place, to ensure sorting of the timers
//
// (in global scope)
// MICROPROFILE_DEFINE(g_ProfileFisk, "Fisk", "Skalle", nSomeColorRgb);
//
// (in some other file)
// MICROPROFILE_DECLARE(g_ProfileFisk);
//
// void foo(){
// MICROPROFILE_SCOPE(g_ProfileFisk);
// }
//
// Once code is instrumented the gui is activeted by calling MicroProfileToggleDisplayMode or by clicking in the upper left corner of
// the screen
//
// The following functions must be implemented before the profiler is usable
// debug render:
// void MicroProfileDrawText(int nX, int nY, uint32_t nColor, const char* pText, uint32_t nNumCharacters);
// void MicroProfileDrawBox(int nX, int nY, int nX1, int nY1, uint32_t nColor, MicroProfileBoxType = MicroProfileBoxTypeFlat);
// void MicroProfileDrawLine2D(uint32_t nVertices, float* pVertices, uint32_t nColor);
// Gpu time stamps: (See below for d3d/opengl helper)
// uint32_t MicroProfileGpuInsertTimer(void* pContext);
// uint64_t MicroProfileGpuGetTimeStamp(uint32_t nKey);
// uint64_t MicroProfileTicksPerSecondGpu();
// threading:
// const char* MicroProfileGetThreadName(); Threadnames in detailed view
//
// Default implementations of Gpu timestamp functions:
// OpenGL:
// in .c file where MICROPROFILE_IMPL is defined:
// #define MICROPROFILE_GPU_TIMERS_GL 1
// call MicroProfileGpuInitGL() on startup
// D3D11:
// in .c file where MICROPROFILE_IMPL is defined:
// #define MICROPROFILE_GPU_TIMERS_D3D11 1
// call MicroProfileGpuInitD3D11(Device) on startup
// D3D12:
// in .c file where MICROPROFILE_IMPL is defined:
// #define MICROPROFILE_GPU_TIMERS_D3D12 1
// call MicroProfileGpuInitD3D12(Device, CommandQueue) on startup
// single-threaded: call MicroProfileGpuSetContext(CommandList) every frame before issuing GPU markers
// multi-threaded:
// #define MICROPROFILE_GPU_TIMERS_MULTITHREADED 1
// on recording thread before using command list, call MicroProfileGpuBegin(CommandList)
// on recording thread after you're done with command list, call work = MicroProfileGpuEnd()
// when replaying, call MicroProfileGpuSubmit(work) in the same order as ExecuteCommandLists
// Vulkan:
// in .c file where MICROPROFILE_IMPL is defined:
// #define MICROPROFILE_GPU_TIMERS_VK 1
// call MicroProfileGpuInitVK(Device, PhysicalDevice, Queue) on startup
// the rest is the same as for D3D12
//
// Limitations:
// GPU timestamps can only be inserted from one thread.
#ifndef MICROPROFILE_ENABLED
#define MICROPROFILE_ENABLED 1
#endif
#include <stdint.h>
typedef uint64_t MicroProfileToken;
typedef uint16_t MicroProfileGroupId;
#if 0 == MICROPROFILE_ENABLED
#define MICROPROFILE_DECLARE(var)
#define MICROPROFILE_DEFINE(var, group, name, color)
#define MICROPROFILE_DECLARE_GPU(var)
#define MICROPROFILE_DEFINE_GPU(var, name, color)
#define MICROPROFILE_SCOPE(var) do{}while(0)
#define MICROPROFILE_SCOPE_TOKEN(token) do{} while(0)
#define MICROPROFILE_SCOPEI(group, name, color) do{}while(0)
#define MICROPROFILE_SCOPEGPU(var) do{}while(0)
#define MICROPROFILE_SCOPEGPUI(name, color) do{}while(0)
#define MICROPROFILE_META_CPU(name, count)
#define MICROPROFILE_META_GPU(name, count)
#define MICROPROFILE_LABEL(group, name) do{}while(0)
#define MICROPROFILE_LABELF(group, name, ...) do{}while(0)
#define MICROPROFILE_COUNTER_ADD(name, count) do{} while(0)
#define MICROPROFILE_COUNTER_SUB(name, count) do{} while(0)
#define MICROPROFILE_COUNTER_SET(name, count) do{} while(0)
#define MICROPROFILE_COUNTER_SET_LIMIT(name, count) do{} while(0)
#define MICROPROFILE_COUNTER_CONFIG(name, type, limit, flags) do{} while(0)
#define MICROPROFILE_FORCEENABLECPUGROUP(s) do{} while(0)
#define MICROPROFILE_FORCEDISABLECPUGROUP(s) do{} while(0)
#define MICROPROFILE_FORCEENABLEGPUGROUP(s) do{} while(0)
#define MICROPROFILE_FORCEDISABLEGPUGROUP(s) do{} while(0)
#define MicroProfileGetTime(group, name) 0.f
#define MicroProfileOnThreadCreate(foo) do{}while(0)
#define MicroProfileFlip() do{}while(0)
#define MicroProfileSetAggregateFrames(a) do{}while(0)
#define MicroProfileGetAggregateFrames() 0
#define MicroProfileGetCurrentAggregateFrames() 0
#define MicroProfileTogglePause() do{}while(0)
#define MicroProfileShutdown() do{}while(0)
#define MicroProfileSetForceEnable(a) do{} while(0)
#define MicroProfileGetForceEnable() false
#define MicroProfileSetEnableAllGroups(a) do{} while(0)
#define MicroProfileEnableCategory(a) do{} while(0)
#define MicroProfileDisableCategory(a) do{} while(0)
#define MicroProfileGetEnableAllGroups() false
#define MicroProfileSetForceMetaCounters(a)
#define MicroProfileGetForceMetaCounters() 0
#define MicroProfileEnableMetaCounter(c) do{} while(0)
#define MicroProfileDisableMetaCounter(c) do{} while(0)
#define MicroProfileContextSwitchTraceStart() do{} while(0)
#define MicroProfileContextSwitchTraceStop() do{} while(0)
#define MicroProfileDumpFile(path,type,frames) do{} while(0)
#define MicroProfileWebServerStart() do{} while(0)
#define MicroProfileWebServerStop() do{} while(0)
#define MicroProfileWebServerPort() 0
#define MicroProfileGpuSetContext(c) do{} while(0)
#define MicroProfileGpuBegin(c) do{} while(0)
#define MicroProfileGpuEnd() 0
#define MicroProfileGpuSubmit(w) do{} while(0)
#else
#include <stdint.h>
#include <string.h>
#ifndef MICROPROFILE_NOCXX11
#include <thread>
#include <mutex>
#include <atomic>
#endif
#ifndef MICROPROFILE_API
#define MICROPROFILE_API
#endif
MICROPROFILE_API int64_t MicroProfileTicksPerSecondCpu();
#if defined(__APPLE__)
#include <mach/mach.h>
#include <mach/mach_time.h>
#include <unistd.h>
#include <libkern/OSAtomic.h>
#include <TargetConditionals.h>
#define MP_TICK() mach_absolute_time()
inline int64_t MicroProfileTicksPerSecondCpu()
{
static int64_t nTicksPerSecond = 0;
if(nTicksPerSecond == 0)
{
mach_timebase_info_data_t sTimebaseInfo;
mach_timebase_info(&sTimebaseInfo);
nTicksPerSecond = 1000000000ll * sTimebaseInfo.denom / sTimebaseInfo.numer;
}
return nTicksPerSecond;
}
inline uint64_t MicroProfileGetCurrentThreadId()
{
uint64_t tid;
pthread_threadid_np(nullptr, &tid);
return tid;
}
#define MP_BREAK() __builtin_trap()
#if __has_feature(tls)
#define MP_THREAD_LOCAL __thread
#endif
#define MP_STRCASECMP strcasecmp
#define MP_GETCURRENTTHREADID() MicroProfileGetCurrentThreadId()
typedef uint64_t MicroProfileThreadIdType;
#define MP_GETCURRENTPROCESSID() getpid()
typedef uint32_t MicroProfileProcessIdType;
#elif defined(_WIN32)
int64_t MicroProfileGetTick();
#define MP_TICK() MicroProfileGetTick()
#define MP_BREAK() __debugbreak()
#define MP_THREAD_LOCAL __declspec(thread)
#define MP_STRCASECMP _stricmp
#define MP_GETCURRENTTHREADID() GetCurrentThreadId()
typedef uint32_t MicroProfileThreadIdType;
#define MP_GETCURRENTPROCESSID() GetCurrentProcessId()
typedef uint32_t MicroProfileProcessIdType;
#elif defined(__linux__)
#include <unistd.h>
#include <time.h>
inline int64_t MicroProfileTicksPerSecondCpu()
{
return 1000000000ll;
}
inline int64_t MicroProfileGetTick()
{
timespec ts;
clock_gettime(CLOCK_REALTIME, &ts);
return 1000000000ll * ts.tv_sec + ts.tv_nsec;
}
#define MP_TICK() MicroProfileGetTick()
#define MP_BREAK() __builtin_trap()
#ifndef __ANDROID__ // __thread is incompatible with ffunction-sections/fdata-sections
#define MP_THREAD_LOCAL __thread
#endif
#define MP_STRCASECMP strcasecmp
#define MP_GETCURRENTTHREADID() (uint64_t)pthread_self()
typedef uint64_t MicroProfileThreadIdType;
#define MP_GETCURRENTPROCESSID() getpid()
typedef uint32_t MicroProfileProcessIdType;
#endif
#ifndef MP_GETCURRENTTHREADID
#define MP_GETCURRENTTHREADID() 0
typedef uint32_t MicroProfileThreadIdType;
#endif
#ifndef MP_GETCURRENTPROCESSID
#define MP_GETCURRENTPROCESSID() 0
typedef uint32_t MicroProfileProcessIdType;
#endif
#ifndef MP_ASSERT
#define MP_ASSERT(a) do{if(!(a)){MP_BREAK();} }while(0)
#endif
#define MICROPROFILE_DECLARE(var) extern MicroProfileToken g_mp_##var
#define MICROPROFILE_DEFINE(var, group, name, color) MicroProfileToken g_mp_##var = MicroProfileGetToken(group, name, color, MicroProfileTokenTypeCpu)
#define MICROPROFILE_DECLARE_GPU(var) extern MicroProfileToken g_mp_##var
#define MICROPROFILE_DEFINE_GPU(var, name, color) MicroProfileToken g_mp_##var = MicroProfileGetToken("GPU", name, color, MicroProfileTokenTypeGpu)
#define MICROPROFILE_TOKEN_PASTE0(a, b) a ## b
#define MICROPROFILE_TOKEN_PASTE(a, b) MICROPROFILE_TOKEN_PASTE0(a,b)
#define MICROPROFILE_SCOPE(var) MicroProfileScopeHandler MICROPROFILE_TOKEN_PASTE(foo, __LINE__)(g_mp_##var)
#define MICROPROFILE_SCOPE_TOKEN(token) MicroProfileScopeHandler MICROPROFILE_TOKEN_PASTE(foo, __LINE__)(token)
#define MICROPROFILE_SCOPEI(group, name, color) static MicroProfileToken MICROPROFILE_TOKEN_PASTE(g_mp,__LINE__) = MicroProfileGetToken(group, name, color, MicroProfileTokenTypeCpu); MicroProfileScopeHandler MICROPROFILE_TOKEN_PASTE(foo,__LINE__)( MICROPROFILE_TOKEN_PASTE(g_mp,__LINE__))
#define MICROPROFILE_SCOPEGPU(var) MicroProfileScopeHandler MICROPROFILE_TOKEN_PASTE(foo, __LINE__)(g_mp_##var)
#define MICROPROFILE_SCOPEGPUI(name, color) static MicroProfileToken MICROPROFILE_TOKEN_PASTE(g_mp,__LINE__) = MicroProfileGetToken("GPU", name, color, MicroProfileTokenTypeGpu); MicroProfileScopeHandler MICROPROFILE_TOKEN_PASTE(foo,__LINE__)( MICROPROFILE_TOKEN_PASTE(g_mp,__LINE__))
#define MICROPROFILE_META_CPU(name, count) static MicroProfileToken MICROPROFILE_TOKEN_PASTE(g_mp_meta,__LINE__) = MicroProfileGetMetaToken(name); MicroProfileMetaUpdate(MICROPROFILE_TOKEN_PASTE(g_mp_meta,__LINE__), count, MicroProfileTokenTypeCpu)
#define MICROPROFILE_META_GPU(name, count) static MicroProfileToken MICROPROFILE_TOKEN_PASTE(g_mp_meta,__LINE__) = MicroProfileGetMetaToken(name); MicroProfileMetaUpdate(MICROPROFILE_TOKEN_PASTE(g_mp_meta,__LINE__), count, MicroProfileTokenTypeGpu)
#define MICROPROFILE_LABEL(group, name) static MicroProfileToken MICROPROFILE_TOKEN_PASTE(g_mp,__LINE__) = MicroProfileGetLabelToken(group); MicroProfileLabel(MICROPROFILE_TOKEN_PASTE(g_mp,__LINE__), name)
#define MICROPROFILE_LABELF(group, name, ...) static MicroProfileToken MICROPROFILE_TOKEN_PASTE(g_mp,__LINE__) = MicroProfileGetLabelToken(group); MicroProfileLabelFormat(MICROPROFILE_TOKEN_PASTE(g_mp,__LINE__), name, ## __VA_ARGS__)
#define MICROPROFILE_COUNTER_ADD(name, count) static MicroProfileToken MICROPROFILE_TOKEN_PASTE(g_mp_counter,__LINE__) = MicroProfileGetCounterToken(name); MicroProfileCounterAdd(MICROPROFILE_TOKEN_PASTE(g_mp_counter,__LINE__), count)
#define MICROPROFILE_COUNTER_SUB(name, count) static MicroProfileToken MICROPROFILE_TOKEN_PASTE(g_mp_counter,__LINE__) = MicroProfileGetCounterToken(name); MicroProfileCounterAdd(MICROPROFILE_TOKEN_PASTE(g_mp_counter,__LINE__), -(int64_t)count)
#define MICROPROFILE_COUNTER_SET(name, count) static MicroProfileToken MICROPROFILE_TOKEN_PASTE(g_mp_counter,__LINE__) = MicroProfileGetCounterToken(name); MicroProfileCounterSet(MICROPROFILE_TOKEN_PASTE(g_mp_counter,__LINE__), count)
#define MICROPROFILE_COUNTER_SET_LIMIT(name, count) static MicroProfileToken MICROPROFILE_TOKEN_PASTE(g_mp_counter,__LINE__) = MicroProfileGetCounterToken(name); MicroProfileCounterSetLimit(MICROPROFILE_TOKEN_PASTE(g_mp_counter,__LINE__), count)
#define MICROPROFILE_COUNTER_CONFIG(name, type, limit, flags) MicroProfileCounterConfig(name, type, limit, flags
#ifndef MICROPROFILE_USE_THREAD_NAME_CALLBACK
#define MICROPROFILE_USE_THREAD_NAME_CALLBACK 0
#endif
#ifndef MICROPROFILE_PER_THREAD_BUFFER_SIZE
#define MICROPROFILE_PER_THREAD_BUFFER_SIZE (2048<<10)
#endif
#ifndef MICROPROFILE_PER_THREAD_GPU_BUFFER_SIZE
#define MICROPROFILE_PER_THREAD_GPU_BUFFER_SIZE (1024<<10)
#endif
#ifndef MICROPROFILE_MAX_FRAME_HISTORY
#define MICROPROFILE_MAX_FRAME_HISTORY 512
#endif
#ifndef MICROPROFILE_PRINTF
#define MICROPROFILE_PRINTF printf
#endif
#ifndef MICROPROFILE_META_MAX
#define MICROPROFILE_META_MAX 8
#endif
#ifndef MICROPROFILE_WEBSERVER_PORT
#define MICROPROFILE_WEBSERVER_PORT 1338
#endif
#ifndef MICROPROFILE_WEBSERVER
#define MICROPROFILE_WEBSERVER 1
#endif
#ifndef MICROPROFILE_WEBSERVER_FRAMES
#define MICROPROFILE_WEBSERVER_FRAMES 30
#endif
#ifndef MICROPROFILE_WEBSERVER_SOCKET_BUFFER_SIZE
#define MICROPROFILE_WEBSERVER_SOCKET_BUFFER_SIZE (16<<10)
#endif
#ifndef MICROPROFILE_LABEL_BUFFER_SIZE
#define MICROPROFILE_LABEL_BUFFER_SIZE (1024<<10)
#endif
#ifndef MICROPROFILE_GPU_MAX_QUERIES
#define MICROPROFILE_GPU_MAX_QUERIES (8<<10)
#endif
#ifndef MICROPROFILE_GPU_FRAME_DELAY
#define MICROPROFILE_GPU_FRAME_DELAY 3
#endif
#ifndef MICROPROFILE_NAME_MAX_LEN
#define MICROPROFILE_NAME_MAX_LEN 64
#endif
#ifndef MICROPROFILE_LABEL_MAX_LEN
#define MICROPROFILE_LABEL_MAX_LEN 256
#endif
#ifndef MICROPROFILE_EMBED_HTML
#define MICROPROFILE_EMBED_HTML 1
#endif
#ifndef MICROPROFILE_GPU_TIMERS_MULTITHREADED
#define MICROPROFILE_GPU_TIMERS_MULTITHREADED 0
#endif
#define MICROPROFILE_FORCEENABLECPUGROUP(s) MicroProfileForceEnableGroup(s, MicroProfileTokenTypeCpu)
#define MICROPROFILE_FORCEDISABLECPUGROUP(s) MicroProfileForceDisableGroup(s, MicroProfileTokenTypeCpu)
#define MICROPROFILE_FORCEENABLEGPUGROUP(s) MicroProfileForceEnableGroup(s, MicroProfileTokenTypeGpu)
#define MICROPROFILE_FORCEDISABLEGPUGROUP(s) MicroProfileForceDisableGroup(s, MicroProfileTokenTypeGpu)
#define MICROPROFILE_INVALID_TICK ((uint64_t)-1)
#define MICROPROFILE_GROUP_MASK_ALL 0xffffffffffff
#define MICROPROFILE_INVALID_TOKEN (uint64_t)0
enum MicroProfileTokenType
{
MicroProfileTokenTypeCpu,
MicroProfileTokenTypeGpu,
};
enum MicroProfileBoxType
{
MicroProfileBoxTypeBar,
MicroProfileBoxTypeFlat,
};
enum MicroProfileDumpType
{
MicroProfileDumpTypeHtml,
MicroProfileDumpTypeCsv
};
#ifdef __GNUC__
#define MICROPROFILE_FORMAT(a, b) __attribute__((format(printf, a, b)))
#else
#define MICROPROFILE_FORMAT(a, b)
#endif
struct MicroProfile;
MICROPROFILE_API void MicroProfileInit();
MICROPROFILE_API void MicroProfileShutdown();
MICROPROFILE_API MicroProfileToken MicroProfileFindToken(const char* sGroup, const char* sName);
MICROPROFILE_API MicroProfileToken MicroProfileGetToken(const char* sGroup, const char* sName, uint32_t nColor, MicroProfileTokenType Token = MicroProfileTokenTypeCpu);
MICROPROFILE_API MicroProfileToken MicroProfileGetLabelToken(const char* sGroup, MicroProfileTokenType Token = MicroProfileTokenTypeCpu);
MICROPROFILE_API MicroProfileToken MicroProfileGetMetaToken(const char* pName);
MICROPROFILE_API MicroProfileToken MicroProfileGetCounterToken(const char* pName);
MICROPROFILE_API void MicroProfileMetaUpdate(MicroProfileToken, int nCount, MicroProfileTokenType eTokenType);
MICROPROFILE_API void MicroProfileCounterAdd(MicroProfileToken nToken, int64_t nCount);
MICROPROFILE_API void MicroProfileCounterSet(MicroProfileToken nToken, int64_t nCount);
MICROPROFILE_API void MicroProfileCounterSetLimit(MicroProfileToken nToken, int64_t nCount);
MICROPROFILE_API void MicroProfileCounterConfig(const char* pCounterName, uint32_t nFormat, int64_t nLimit, uint32_t nFlags);
MICROPROFILE_API uint64_t MicroProfileEnter(MicroProfileToken nToken);
MICROPROFILE_API void MicroProfileLeave(MicroProfileToken nToken, uint64_t nTick);
MICROPROFILE_API void MicroProfileLabel(MicroProfileToken nToken, const char* pName);
MICROPROFILE_FORMAT(2, 3) MICROPROFILE_API void MicroProfileLabelFormat(MicroProfileToken nToken, const char* pName, ...);
MICROPROFILE_API void MicroProfileLabelFormatV(MicroProfileToken nToken, const char* pName, va_list args);
inline uint16_t MicroProfileGetTimerIndex(MicroProfileToken t){ return (t&0xffff); }
inline uint64_t MicroProfileGetGroupMask(MicroProfileToken t){ return ((t>>16)&MICROPROFILE_GROUP_MASK_ALL);}
inline MicroProfileToken MicroProfileMakeToken(uint64_t nGroupMask, uint16_t nTimer){ return (nGroupMask<<16) | nTimer;}
MICROPROFILE_API void MicroProfileFlip(); //! call once per frame.
MICROPROFILE_API void MicroProfileTogglePause();
MICROPROFILE_API void MicroProfileForceEnableGroup(const char* pGroup, MicroProfileTokenType Type);
MICROPROFILE_API void MicroProfileForceDisableGroup(const char* pGroup, MicroProfileTokenType Type);
MICROPROFILE_API float MicroProfileGetTime(const char* pGroup, const char* pName);
MICROPROFILE_API void MicroProfileOnThreadCreate(const char* pThreadName); //should be called from newly created threads
MICROPROFILE_API void MicroProfileOnThreadExit(); //call on exit to reuse log
MICROPROFILE_API void MicroProfileSetForceEnable(bool bForceEnable);
MICROPROFILE_API bool MicroProfileGetForceEnable();
MICROPROFILE_API void MicroProfileSetEnableAllGroups(bool bEnable);
MICROPROFILE_API void MicroProfileEnableCategory(const char* pCategory);
MICROPROFILE_API void MicroProfileDisableCategory(const char* pCategory);
MICROPROFILE_API bool MicroProfileGetEnableAllGroups();
MICROPROFILE_API void MicroProfileSetForceMetaCounters(bool bEnable);
MICROPROFILE_API bool MicroProfileGetForceMetaCounters();
MICROPROFILE_API void MicroProfileEnableMetaCounter(const char* pMet);
MICROPROFILE_API void MicroProfileDisableMetaCounter(const char* pMet);
MICROPROFILE_API void MicroProfileSetAggregateFrames(int frames);
MICROPROFILE_API int MicroProfileGetAggregateFrames();
MICROPROFILE_API int MicroProfileGetCurrentAggregateFrames();
MICROPROFILE_API MicroProfile* MicroProfileGet();
MICROPROFILE_API void MicroProfileGetRange(uint32_t nPut, uint32_t nGet, uint32_t nRange[2][2]);
MICROPROFILE_API std::recursive_mutex& MicroProfileGetMutex();
MICROPROFILE_API void MicroProfileContextSwitchTraceStart();
MICROPROFILE_API void MicroProfileContextSwitchTraceStop();
struct MicroProfileThreadInfo
{
MicroProfileProcessIdType nProcessId;
MicroProfileThreadIdType nThreadId;
};
MICROPROFILE_API void MicroProfileContextSwitchSearch(uint32_t* pContextSwitchStart, uint32_t* pContextSwitchEnd, uint64_t nBaseTicksCpu, uint64_t nBaseTicksEndCpu);
MICROPROFILE_API uint32_t MicroProfileContextSwitchGatherThreads(uint32_t nContextSwitchStart, uint32_t nContextSwitchEnd, MicroProfileThreadInfo* Threads, uint32_t* nNumThreadsBase);
MICROPROFILE_API const char* MicroProfileGetProcessName(MicroProfileProcessIdType nId, char* Buffer, uint32_t nSize);
MICROPROFILE_API void MicroProfileDumpFile(const char* pPath, MicroProfileDumpType eType, uint32_t nFrames);
MICROPROFILE_API int MicroProfileFormatCounter(int eFormat, int64_t nCounter, char* pOut, uint32_t nBufferSize);
MICROPROFILE_API void MicroProfileWebServerStart();
MICROPROFILE_API void MicroProfileWebServerStop();
MICROPROFILE_API uint32_t MicroProfileWebServerPort();
MICROPROFILE_API void MicroProfileGpuInitGL();
MICROPROFILE_API void MicroProfileGpuInitD3D11(struct ID3D11Device* pDevice);
MICROPROFILE_API void MicroProfileGpuInitD3D12(struct ID3D12Device* pDevice, struct ID3D12CommandQueue* pCommandQueue);
MICROPROFILE_API void MicroProfileGpuInitVK(struct VkDevice_T* pDevice, struct VkPhysicalDevice_T* pPhysicalDevice, struct VkQueue_T* pQueue);
MICROPROFILE_API void MicroProfileGpuShutdown();
MICROPROFILE_API void MicroProfileGpuSetContext(void* pContext);
MICROPROFILE_API void MicroProfileGpuBegin(void* pContext);
MICROPROFILE_API uint64_t MicroProfileGpuEnd();
MICROPROFILE_API void MicroProfileGpuSubmit(uint64_t nWork);
MICROPROFILE_API uint32_t MicroProfileGpuInsertTimer(void* pContext);
MICROPROFILE_API uint64_t MicroProfileGpuGetTimeStamp(uint32_t nKey);
MICROPROFILE_API uint64_t MicroProfileTicksPerSecondGpu();
MICROPROFILE_API uint32_t MicroProfileGpuFlip();
MICROPROFILE_API bool MicroProfileGetGpuTickReference(int64_t* pOutCpu, int64_t* pOutGpu);
#if MICROPROFILE_USE_THREAD_NAME_CALLBACK
MICROPROFILE_API const char* MicroProfileGetThreadName();
#else
#define MicroProfileGetThreadName() "<Unknown>"
#endif
#if !defined(MICROPROFILE_THREAD_NAME_FROM_ID)
#define MICROPROFILE_THREAD_NAME_FROM_ID(a) ""
#endif
struct MicroProfileScopeHandler
{
MicroProfileToken nToken;
uint64_t nTick;
MicroProfileScopeHandler(MicroProfileToken Token):nToken(Token)
{
nTick = MicroProfileEnter(nToken);
}
~MicroProfileScopeHandler()
{
MicroProfileLeave(nToken, nTick);
}
};
#define MICROPROFILE_MAX_COUNTERS 512
#define MICROPROFILE_MAX_COUNTER_NAME_CHARS (MICROPROFILE_MAX_COUNTERS*16)
#define MICROPROFILE_MAX_GROUPS 48 //dont bump! no. of bits used it bitmask
#define MICROPROFILE_MAX_CATEGORIES 16
#define MICROPROFILE_MAX_GRAPHS 5
#define MICROPROFILE_GRAPH_HISTORY 128
#define MICROPROFILE_BUFFER_SIZE ((MICROPROFILE_PER_THREAD_BUFFER_SIZE)/sizeof(MicroProfileLogEntry))
#define MICROPROFILE_GPU_BUFFER_SIZE ((MICROPROFILE_PER_THREAD_GPU_BUFFER_SIZE)/sizeof(MicroProfileLogEntry))
#define MICROPROFILE_GPU_FRAMES ((MICROPROFILE_GPU_FRAME_DELAY)+1)
#define MICROPROFILE_MAX_CONTEXT_SWITCH_THREADS 256
#define MICROPROFILE_STACK_MAX 32
//#define MICROPROFILE_MAX_PRESETS 5
#define MICROPROFILE_ANIM_DELAY_PRC 0.5f
#define MICROPROFILE_GAP_TIME 50 //extra ms to fetch to close timers from earlier frames
#ifndef MICROPROFILE_MAX_TIMERS
#define MICROPROFILE_MAX_TIMERS 1024
#endif
#ifndef MICROPROFILE_MAX_THREADS
#define MICROPROFILE_MAX_THREADS 32
#endif
#ifndef MICROPROFILE_UNPACK_RED
#define MICROPROFILE_UNPACK_RED(c) ((c)>>16)
#endif
#ifndef MICROPROFILE_UNPACK_GREEN
#define MICROPROFILE_UNPACK_GREEN(c) ((c)>>8)
#endif
#ifndef MICROPROFILE_UNPACK_BLUE
#define MICROPROFILE_UNPACK_BLUE(c) ((c))
#endif
#ifndef MICROPROFILE_DEFAULT_PRESET
#define MICROPROFILE_DEFAULT_PRESET "Default"
#endif
#ifndef MICROPROFILE_CONTEXT_SWITCH_TRACE
#if defined(_WIN32)
#define MICROPROFILE_CONTEXT_SWITCH_TRACE 1
#elif defined(__APPLE__) && !TARGET_OS_IPHONE
#define MICROPROFILE_CONTEXT_SWITCH_TRACE 1
#else
#define MICROPROFILE_CONTEXT_SWITCH_TRACE 0
#endif
#endif
#if MICROPROFILE_CONTEXT_SWITCH_TRACE
#define MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE (128*1024) //2mb with 16 byte entry size
#else
#define MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE (1)
#endif
#ifndef MICROPROFILE_MINIZ
#define MICROPROFILE_MINIZ 0
#endif
#ifndef MICROPROFILE_COUNTER_HISTORY
#define MICROPROFILE_COUNTER_HISTORY 1
#endif
#ifdef _WIN32
#include <basetsd.h>
typedef UINT_PTR MpSocket;
#else
typedef int MpSocket;
#endif
typedef std::thread* MicroProfileThread;
enum MicroProfileDrawMask
{
MP_DRAW_OFF = 0x0,
MP_DRAW_BARS = 0x1,
MP_DRAW_DETAILED = 0x2,
MP_DRAW_COUNTERS = 0x3,
MP_DRAW_FRAME = 0x4,
MP_DRAW_HIDDEN = 0x5,
MP_DRAW_SIZE = 0x6,
};
enum MicroProfileDrawBarsMask
{
MP_DRAW_TIMERS = 0x1,
MP_DRAW_AVERAGE = 0x2,
MP_DRAW_MAX = 0x4,
MP_DRAW_MIN = 0x8,
MP_DRAW_CALL_COUNT = 0x10,
MP_DRAW_TIMERS_EXCLUSIVE = 0x20,
MP_DRAW_AVERAGE_EXCLUSIVE = 0x40,
MP_DRAW_MAX_EXCLUSIVE = 0x80,
MP_DRAW_META_FIRST = 0x100,
MP_DRAW_ALL = 0xffffffff,
};
enum MicroProfileCounterFormat
{
MICROPROFILE_COUNTER_FORMAT_DEFAULT,
MICROPROFILE_COUNTER_FORMAT_BYTES,
};
enum MicroProfileCounterFlags
{
MICROPROFILE_COUNTER_FLAG_NONE = 0,
MICROPROFILE_COUNTER_FLAG_DETAILED = 0x1,
MICROPROFILE_COUNTER_FLAG_DETAILED_GRAPH= 0x2,
//internal:
MICROPROFILE_COUNTER_FLAG_INTERNAL_MASK = ~0x3,
MICROPROFILE_COUNTER_FLAG_HAS_LIMIT = 0x4,
MICROPROFILE_COUNTER_FLAG_CLOSED = 0x8,
MICROPROFILE_COUNTER_FLAG_MANUAL_SWAP = 0x10,
MICROPROFILE_COUNTER_FLAG_LEAF = 0x20,
};
typedef uint64_t MicroProfileLogEntry;
struct MicroProfileTimer
{
uint64_t nTicks;
uint32_t nCount;
};
struct MicroProfileCategory
{
char pName[MICROPROFILE_NAME_MAX_LEN];
uint64_t nGroupMask;
};
struct MicroProfileGroupInfo
{
char pName[MICROPROFILE_NAME_MAX_LEN];
uint32_t nNameLen;
uint32_t nGroupIndex;
uint32_t nNumTimers;
uint32_t nMaxTimerNameLen;
uint32_t nColor;
uint32_t nCategory;
MicroProfileTokenType Type;
};
struct MicroProfileTimerInfo
{
MicroProfileToken nToken;
uint32_t nTimerIndex;
uint32_t nGroupIndex;
char pName[MICROPROFILE_NAME_MAX_LEN];
uint32_t nNameLen;
uint32_t nColor;
bool bGraph;
};
struct MicroProfileCounterInfo
{
int nParent;
int nSibling;
int nFirstChild;
uint16_t nNameLen;
uint8_t nLevel;
char* pName;
uint32_t nFlags;
int64_t nLimit;
MicroProfileCounterFormat eFormat;
};
struct MicroProfileCounterHistory
{
uint32_t nPut;
uint64_t nHistory[MICROPROFILE_GRAPH_HISTORY];
};
struct MicroProfileGraphState
{
int64_t nHistory[MICROPROFILE_GRAPH_HISTORY];
MicroProfileToken nToken;
int32_t nKey;
};
struct MicroProfileContextSwitch
{
MicroProfileThreadIdType nThreadOut;
MicroProfileThreadIdType nThreadIn;
MicroProfileProcessIdType nProcessIn;
int64_t nCpu : 8;
int64_t nTicks : 56;
};
struct MicroProfileFrameState
{
int64_t nFrameStartCpu;
int64_t nFrameStartGpu;
uint32_t nFrameStartGpuTimer;
uint32_t nLogStart[MICROPROFILE_MAX_THREADS];
};
struct MicroProfileThreadLog
{
MicroProfileLogEntry* Log;
std::atomic<uint32_t> nPut;
std::atomic<uint32_t> nGet;
MicroProfileLogEntry* LogGpu;
std::atomic<uint32_t> nPutGpu;
uint32_t nStartGpu;
uint32_t bActiveGpu;
void* pContextGpu;
uint32_t nActive;
uint32_t nGpu;
MicroProfileThreadIdType nThreadId;
uint32_t nLogIndex;
uint32_t nStack[MICROPROFILE_STACK_MAX];
int64_t nChildTickStack[MICROPROFILE_STACK_MAX];
uint32_t nStackPos;
uint8_t nGroupStackPos[MICROPROFILE_MAX_GROUPS];
int64_t nGroupTicks[MICROPROFILE_MAX_GROUPS];
int64_t nAggregateGroupTicks[MICROPROFILE_MAX_GROUPS];
enum
{
THREAD_MAX_LEN = 64,
};
char ThreadName[64];
int nFreeListNext;
};
struct MicroProfileGpu
{
void (*Shutdown)();
uint32_t (*Flip)();
uint32_t (*InsertTimer)(void* pContext);
uint64_t (*GetTimeStamp)(uint32_t nIndex);
uint64_t (*GetTicksPerSecond)();
bool (*GetTickReference)(int64_t* pOutCpu, int64_t* pOutGpu);
};
struct MicroProfile
{
uint32_t nTotalTimers;
uint32_t nGroupCount;
uint32_t nCategoryCount;
uint32_t nAggregateClear;
uint32_t nAggregateFlip;
uint32_t nAggregateFlipCount;
uint32_t nAggregateFrames;
uint64_t nAggregateFlipTick;
uint32_t nDisplay;
uint32_t nBars;
uint64_t nActiveGroup;
uint32_t nActiveBars;
uint64_t nForceGroup;
uint32_t nForceEnable;
uint32_t nForceMetaCounters;
uint64_t nForceGroupUI;
uint64_t nActiveGroupWanted;
uint32_t nAllGroupsWanted;
uint32_t nAllThreadsWanted;
uint32_t nOverflow;
uint64_t nGroupMask;
uint64_t nGroupMaskGpu;
uint32_t nRunning;
uint32_t nToggleRunning;
uint32_t nMaxGroupSize;
uint32_t nDumpFileNextFrame;
uint32_t nAutoClearFrames;
MicroProfileDumpType eDumpType;
uint32_t nDumpFrames;
char DumpPath[512];
int64_t nPauseTicks;
float fReferenceTime;
float fRcpReferenceTime;
MicroProfileCategory CategoryInfo[MICROPROFILE_MAX_CATEGORIES];
MicroProfileGroupInfo GroupInfo[MICROPROFILE_MAX_GROUPS];
MicroProfileTimerInfo TimerInfo[MICROPROFILE_MAX_TIMERS];
uint8_t TimerToGroup[MICROPROFILE_MAX_TIMERS];
MicroProfileTimer AccumTimers[MICROPROFILE_MAX_TIMERS];
uint64_t AccumMaxTimers[MICROPROFILE_MAX_TIMERS];
uint64_t AccumMinTimers[MICROPROFILE_MAX_TIMERS];
uint64_t AccumTimersExclusive[MICROPROFILE_MAX_TIMERS];
uint64_t AccumMaxTimersExclusive[MICROPROFILE_MAX_TIMERS];
MicroProfileTimer Frame[MICROPROFILE_MAX_TIMERS];
uint64_t FrameExclusive[MICROPROFILE_MAX_TIMERS];
MicroProfileTimer Aggregate[MICROPROFILE_MAX_TIMERS];
uint64_t AggregateMax[MICROPROFILE_MAX_TIMERS];
uint64_t AggregateMin[MICROPROFILE_MAX_TIMERS];
uint64_t AggregateExclusive[MICROPROFILE_MAX_TIMERS];
uint64_t AggregateMaxExclusive[MICROPROFILE_MAX_TIMERS];
uint64_t FrameGroup[MICROPROFILE_MAX_GROUPS];
uint64_t AccumGroup[MICROPROFILE_MAX_GROUPS];
uint64_t AccumGroupMax[MICROPROFILE_MAX_GROUPS];
uint64_t AggregateGroup[MICROPROFILE_MAX_GROUPS];
uint64_t AggregateGroupMax[MICROPROFILE_MAX_GROUPS];
struct
{
uint64_t nCounters[MICROPROFILE_MAX_TIMERS];
uint64_t nAccum[MICROPROFILE_MAX_TIMERS];
uint64_t nAccumMax[MICROPROFILE_MAX_TIMERS];
uint64_t nAggregate[MICROPROFILE_MAX_TIMERS];
uint64_t nAggregateMax[MICROPROFILE_MAX_TIMERS];
uint64_t nSum;
uint64_t nSumAccum;
uint64_t nSumAccumMax;
uint64_t nSumAggregate;
uint64_t nSumAggregateMax;
const char* pName;
} MetaCounters[MICROPROFILE_META_MAX];
MicroProfileGraphState Graph[MICROPROFILE_MAX_GRAPHS];
uint32_t nGraphPut;
uint32_t nThreadActive[MICROPROFILE_MAX_THREADS];
MicroProfileThreadLog* Pool[MICROPROFILE_MAX_THREADS];
uint32_t nNumLogs;
uint32_t nMemUsage;
int nFreeListHead;
uint32_t nFrameCurrent;
uint32_t nFrameCurrentIndex;
uint32_t nFramePut;
uint64_t nFramePutIndex;
MicroProfileFrameState Frames[MICROPROFILE_MAX_FRAME_HISTORY];
uint64_t nFlipTicks;
uint64_t nFlipAggregate;
uint64_t nFlipMax;
uint64_t nFlipAggregateDisplay;
uint64_t nFlipMaxDisplay;
MicroProfileThread ContextSwitchThread;
bool bContextSwitchRunning;
bool bContextSwitchStart;
bool bContextSwitchStop;
bool bContextSwitchAllThreads;
bool bContextSwitchNoBars;
uint32_t nContextSwitchUsage;
uint32_t nContextSwitchLastPut;
int64_t nContextSwitchHoverTickIn;
int64_t nContextSwitchHoverTickOut;
uint32_t nContextSwitchHoverThread;
uint32_t nContextSwitchHoverThreadBefore;
uint32_t nContextSwitchHoverThreadAfter;
uint8_t nContextSwitchHoverCpu;
uint8_t nContextSwitchHoverCpuNext;
uint32_t nContextSwitchPut;
MicroProfileContextSwitch ContextSwitch[MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE];
MicroProfileThread WebServerThread;
MpSocket WebServerSocket;
uint32_t nWebServerPort;
char WebServerBuffer[MICROPROFILE_WEBSERVER_SOCKET_BUFFER_SIZE];
uint32_t nWebServerPut;
uint64_t nWebServerDataSent;
std::atomic<char*> LabelBuffer;
std::atomic<uint64_t> nLabelPut;
char CounterNames[MICROPROFILE_MAX_COUNTER_NAME_CHARS];
MicroProfileCounterInfo CounterInfo[MICROPROFILE_MAX_COUNTERS];
uint32_t nNumCounters;
uint32_t nCounterNamePos;
std::atomic<int64_t> Counters[MICROPROFILE_MAX_COUNTERS];
#if MICROPROFILE_COUNTER_HISTORY // uses 1kb per allocated counter. 512kb for default counter count
uint32_t nCounterHistoryPut;
int64_t nCounterHistory[MICROPROFILE_GRAPH_HISTORY][MICROPROFILE_MAX_COUNTERS]; //flipped to make swapping cheap, drawing more expensive.
int64_t nCounterMax[MICROPROFILE_MAX_COUNTERS];
int64_t nCounterMin[MICROPROFILE_MAX_COUNTERS];
#endif
uint32_t nGpuFrameTimer;
MicroProfileGpu GPU;
};
#define MP_LOG_TICK_MASK 0x0000ffffffffffff
#define MP_LOG_INDEX_MASK 0x1fff000000000000
#define MP_LOG_BEGIN_MASK 0xe000000000000000
#define MP_LOG_GPU_EXTRA 0x4
#define MP_LOG_LABEL 0x3
#define MP_LOG_META 0x2
#define MP_LOG_ENTER 0x1
#define MP_LOG_LEAVE 0x0
inline uint64_t MicroProfileLogType(MicroProfileLogEntry Index)
{
return ((MP_LOG_BEGIN_MASK & Index)>>61) & 0x7;
}
inline uint64_t MicroProfileLogTimerIndex(MicroProfileLogEntry Index)
{
return (MP_LOG_INDEX_MASK & Index)>>48;
}
inline MicroProfileLogEntry MicroProfileMakeLogIndex(uint64_t nBegin, MicroProfileToken nToken, int64_t nTick)
{
return (nBegin<<61) | (MP_LOG_INDEX_MASK&(nToken<<48)) | (MP_LOG_TICK_MASK&nTick);
}
inline int64_t MicroProfileLogTickDifference(MicroProfileLogEntry Start, MicroProfileLogEntry End)
{
uint64_t nStart = Start;
uint64_t nEnd = End;
int64_t nDifference = ((nEnd<<16) - (nStart<<16));
return nDifference >> 16;
}
inline int64_t MicroProfileLogGetTick(MicroProfileLogEntry e)
{
return MP_LOG_TICK_MASK & e;
}
inline int64_t MicroProfileLogSetTick(MicroProfileLogEntry e, int64_t nTick)
{
return (MP_LOG_TICK_MASK & nTick) | (e & ~MP_LOG_TICK_MASK);
}
template<typename T>
T MicroProfileMin(T a, T b)
{ return a < b ? a : b; }
template<typename T>
T MicroProfileMax(T a, T b)
{ return a > b ? a : b; }
template<typename T>
T MicroProfileClamp(T a, T min_, T max_)
{ return MicroProfileMin(max_, MicroProfileMax(min_, a)); }
inline int64_t MicroProfileMsToTick(float fMs, int64_t nTicksPerSecond)
{
return (int64_t)(fMs*0.001f*nTicksPerSecond);
}
inline float MicroProfileTickToMsMultiplier(int64_t nTicksPerSecond)
{
return 1000.f / nTicksPerSecond;
}
inline uint16_t MicroProfileGetGroupIndex(MicroProfileToken t)
{
return (uint16_t)MicroProfileGet()->TimerToGroup[MicroProfileGetTimerIndex(t)];
}
#ifdef MICROPROFILE_IMPL
#ifdef _WIN32
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#define snprintf _snprintf
#pragma warning(push)
#pragma warning(disable: 4244)
int64_t MicroProfileTicksPerSecondCpu()
{
static int64_t nTicksPerSecond = 0;
if(nTicksPerSecond == 0)
{
QueryPerformanceFrequency((LARGE_INTEGER*)&nTicksPerSecond);
}
return nTicksPerSecond;
}
int64_t MicroProfileGetTick()
{
int64_t ticks;
QueryPerformanceCounter((LARGE_INTEGER*)&ticks);
return ticks;
}
#endif
#if MICROPROFILE_WEBSERVER || MICROPROFILE_CONTEXT_SWITCH_TRACE
typedef void* (*MicroProfileThreadFunc)(void*);
inline void MicroProfileThreadStart(MicroProfileThread* pThread, MicroProfileThreadFunc Func)
{
*pThread = new std::thread(Func, nullptr);
}
inline void MicroProfileThreadJoin(MicroProfileThread* pThread)
{
(*pThread)->join();
delete *pThread;
*pThread = nullptr;
}
#endif
#if MICROPROFILE_WEBSERVER
#ifdef _WIN32
#if defined(_WINSOCKAPI_) && !defined(_WINSOCK2API_)
#error WinSock.h has already been included; microprofile requires WinSock2
#endif
#include <WinSock2.h>
#pragma comment(lib, "ws2_32.lib")
#define MP_INVALID_SOCKET(f) (f == INVALID_SOCKET)
#endif
#if defined(__APPLE__) || defined(__linux__)
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <ifaddrs.h>
#include <fcntl.h>
#define MP_INVALID_SOCKET(f) (f < 0)
#endif
#endif
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <math.h>
#include <algorithm>
#ifndef MICROPROFILE_DEBUG
#define MICROPROFILE_DEBUG 0
#endif
#define S g_MicroProfile
MicroProfile g_MicroProfile;
MicroProfileThreadLog* g_MicroProfileGpuLog = 0;
#ifndef MP_THREAD_LOCAL
static pthread_key_t g_MicroProfileThreadLogKey;
static pthread_once_t g_MicroProfileThreadLogKeyOnce = PTHREAD_ONCE_INIT;
static void MicroProfileCreateThreadLogKey()
{
pthread_key_create(&g_MicroProfileThreadLogKey, NULL);
}
#else
MP_THREAD_LOCAL MicroProfileThreadLog* g_MicroProfileThreadLog = 0;
#endif
static bool g_bUseLock = false; /// This is used because windows does not support using mutexes under dll init(which is where global initialization is handled)
MICROPROFILE_DEFINE(g_MicroProfileFlip, "MicroProfile", "MicroProfileFlip", 0x3355ee);
MICROPROFILE_DEFINE(g_MicroProfileThreadLoop, "MicroProfile", "ThreadLoop", 0x3355ee);
MICROPROFILE_DEFINE(g_MicroProfileClear, "MicroProfile", "Clear", 0x3355ee);
MICROPROFILE_DEFINE(g_MicroProfileAccumulate, "MicroProfile", "Accumulate", 0x3355ee);
MICROPROFILE_DEFINE(g_MicroProfileContextSwitchSearch,"MicroProfile", "ContextSwitchSearch", 0xDD7300);
MICROPROFILE_DEFINE(g_MicroProfileWebServerUpdate,"MicroProfile", "WebServerUpdate", 0xDD7300);
inline std::recursive_mutex& MicroProfileMutex()
{
static std::recursive_mutex Mutex;
return Mutex;
}
std::recursive_mutex& MicroProfileGetMutex()
{
return MicroProfileMutex();
}
MICROPROFILE_API MicroProfile* MicroProfileGet()
{
return &g_MicroProfile;
}
MicroProfileThreadLog* MicroProfileCreateThreadLog(const char* pName);
void MicroProfileInit()
{
std::recursive_mutex& mutex = MicroProfileMutex();
bool bUseLock = g_bUseLock;
if(bUseLock)
mutex.lock();
static bool bOnce = true;
if(bOnce)
{
bOnce = false;
memset(&S, 0, sizeof(S));
S.nMemUsage = sizeof(S);
for(int i = 0; i < MICROPROFILE_MAX_GROUPS; ++i)
{
S.GroupInfo[i].pName[0] = '\0';
}
for(int i = 0; i < MICROPROFILE_MAX_CATEGORIES; ++i)
{
S.CategoryInfo[i].pName[0] = '\0';
S.CategoryInfo[i].nGroupMask = 0;
}
strcpy(&S.CategoryInfo[0].pName[0], "default");
S.nCategoryCount = 1;
for(int i = 0; i < MICROPROFILE_MAX_TIMERS; ++i)
{
S.TimerInfo[i].pName[0] = '\0';
}
S.nGroupCount = 0;
S.nAggregateFlipTick = MP_TICK();
S.nBars = MP_DRAW_AVERAGE | MP_DRAW_MAX | MP_DRAW_CALL_COUNT;
S.nActiveGroup = 0;
S.nActiveBars = 0;
S.nForceGroup = 0;
S.nAllGroupsWanted = 0;
S.nActiveGroupWanted = 0;
S.nAllThreadsWanted = 1;
S.nAggregateFlip = 60;
S.nTotalTimers = 0;
for(uint32_t i = 0; i < MICROPROFILE_MAX_GRAPHS; ++i)
{
S.Graph[i].nToken = MICROPROFILE_INVALID_TOKEN;
}
S.nRunning = 1;
S.fReferenceTime = 33.33f;
S.fRcpReferenceTime = 1.f / S.fReferenceTime;
S.nFreeListHead = -1;
int64_t nTick = MP_TICK();
for(int i = 0; i < MICROPROFILE_MAX_FRAME_HISTORY; ++i)
{
S.Frames[i].nFrameStartCpu = nTick;
S.Frames[i].nFrameStartGpu = 0;
S.Frames[i].nFrameStartGpuTimer = (uint32_t)-1;
}
#if MICROPROFILE_COUNTER_HISTORY
S.nCounterHistoryPut = 0;
for(uint32_t i = 0; i < MICROPROFILE_MAX_COUNTERS; ++i)
{
S.nCounterMin[i] = 0x7fffffffffffffff;
S.nCounterMax[i] = 0x8000000000000000;
}
#endif
S.nGpuFrameTimer = (uint32_t)-1;
MicroProfileThreadLog* pGpu = MicroProfileCreateThreadLog("GPU");
g_MicroProfileGpuLog = pGpu;
MP_ASSERT(S.Pool[0] == pGpu);
pGpu->nGpu = 1;
pGpu->nThreadId = 0;
}
if(bUseLock)
mutex.unlock();
}
void MicroProfileShutdown()
{
std::lock_guard<std::recursive_mutex> Lock(MicroProfileMutex());
MicroProfileWebServerStop();
MicroProfileContextSwitchTraceStop();
MicroProfileGpuShutdown();
}
#ifndef MP_THREAD_LOCAL
inline MicroProfileThreadLog* MicroProfileGetThreadLog()
{
pthread_once(&g_MicroProfileThreadLogKeyOnce, MicroProfileCreateThreadLogKey);
return (MicroProfileThreadLog*)pthread_getspecific(g_MicroProfileThreadLogKey);
}
inline void MicroProfileSetThreadLog(MicroProfileThreadLog* pLog)
{
pthread_once(&g_MicroProfileThreadLogKeyOnce, MicroProfileCreateThreadLogKey);
pthread_setspecific(g_MicroProfileThreadLogKey, pLog);
}
#else
MicroProfileThreadLog* MicroProfileGetThreadLog()
{
return g_MicroProfileThreadLog;
}
inline void MicroProfileSetThreadLog(MicroProfileThreadLog* pLog)
{
g_MicroProfileThreadLog = pLog;
}
#endif
MicroProfileThreadLog* MicroProfileCreateThreadLog(const char* pName)
{
MicroProfileThreadLog* pLog = 0;
uint32_t nLogIndex = 0;
if(S.nFreeListHead != -1)
{
nLogIndex = S.nFreeListHead;
pLog = S.Pool[nLogIndex];
MP_ASSERT(pLog->nPut.load() == 0);
MP_ASSERT(pLog->nGet.load() == 0);
S.nFreeListHead = S.Pool[S.nFreeListHead]->nFreeListNext;
}
else if(S.nNumLogs == MICROPROFILE_MAX_THREADS)
{
return nullptr;
}
else
{
nLogIndex = S.nNumLogs;
pLog = new MicroProfileThreadLog;
S.nMemUsage += sizeof(MicroProfileThreadLog);
S.Pool[S.nNumLogs++] = pLog;
}
memset(pLog, 0, sizeof(*pLog));
pLog->nLogIndex = nLogIndex;
int len = (int)strlen(pName);
int maxlen = sizeof(pLog->ThreadName)-1;
len = len < maxlen ? len : maxlen;
memcpy(&pLog->ThreadName[0], pName, len);
pLog->ThreadName[len] = '\0';
pLog->nThreadId = MP_GETCURRENTTHREADID();
pLog->nFreeListNext = -1;
pLog->nActive = 1;
return pLog;
}
void MicroProfileOnThreadCreate(const char* pThreadName)
{
g_bUseLock = true;
MicroProfileInit();
std::lock_guard<std::recursive_mutex> Lock(MicroProfileMutex());
if(MicroProfileGetThreadLog() == 0)
{
MicroProfileThreadLog* pLog = MicroProfileCreateThreadLog(pThreadName ? pThreadName : MicroProfileGetThreadName());
MP_ASSERT(pLog);
MicroProfileSetThreadLog(pLog);
}
}
void MicroProfileOnThreadExit()
{
std::lock_guard<std::recursive_mutex> Lock(MicroProfileMutex());
MicroProfileThreadLog* pLog = MicroProfileGetThreadLog();
if(pLog)
{
int32_t nLogIndex = -1;
for(int i = 0; i < MICROPROFILE_MAX_THREADS; ++i)
{
if(pLog == S.Pool[i])
{
nLogIndex = i;
break;
}
}
MP_ASSERT(nLogIndex < MICROPROFILE_MAX_THREADS && nLogIndex > 0);
pLog->nFreeListNext = S.nFreeListHead;
pLog->nActive = 0;
pLog->nPut.store(0);
pLog->nGet.store(0);
pLog->nPutGpu.store(0);
S.nFreeListHead = nLogIndex;
for(int i = 0; i < MICROPROFILE_MAX_FRAME_HISTORY; ++i)
{
S.Frames[i].nLogStart[nLogIndex] = 0;
}
memset(pLog->nGroupStackPos, 0, sizeof(pLog->nGroupStackPos));
memset(pLog->nGroupTicks, 0, sizeof(pLog->nGroupTicks));
if(pLog->Log)
{
delete[] pLog->Log;
pLog->Log = 0;
S.nMemUsage -= sizeof(MicroProfileLogEntry) * MICROPROFILE_BUFFER_SIZE;
}
if(pLog->LogGpu)
{
delete[] pLog->LogGpu;
pLog->LogGpu = 0;
S.nMemUsage -= sizeof(MicroProfileLogEntry) * MICROPROFILE_GPU_BUFFER_SIZE;
}
MicroProfileSetThreadLog(0);
}
}
MicroProfileThreadLog* MicroProfileGetOrCreateThreadLog()
{
MicroProfileThreadLog* pLog = MicroProfileGetThreadLog();
if (!pLog)
{
MicroProfileOnThreadCreate(nullptr);
pLog = MicroProfileGetThreadLog();
}
return pLog;
}
struct MicroProfileScopeLock
{
bool bUseLock;
std::recursive_mutex& m;
MicroProfileScopeLock(std::recursive_mutex& m) : bUseLock(g_bUseLock), m(m)
{
if(bUseLock)
m.lock();
}
~MicroProfileScopeLock()
{
if(bUseLock)
m.unlock();
}
};
MicroProfileToken MicroProfileFindToken(const char* pGroup, const char* pName)
{
MicroProfileInit();
MicroProfileScopeLock L(MicroProfileMutex());
for(uint32_t i = 0; i < S.nTotalTimers; ++i)
{
if(!MP_STRCASECMP(pName, S.TimerInfo[i].pName) && !MP_STRCASECMP(pGroup, S.GroupInfo[S.TimerToGroup[i]].pName))
{
return S.TimerInfo[i].nToken;
}
}
return MICROPROFILE_INVALID_TOKEN;
}
uint16_t MicroProfileGetGroup(const char* pGroup, MicroProfileTokenType Type)
{
for(uint32_t i = 0; i < S.nGroupCount; ++i)
{
if(!MP_STRCASECMP(pGroup, S.GroupInfo[i].pName))
{
return i;
}
}
uint16_t nGroupIndex = S.nGroupCount++;
MP_ASSERT(nGroupIndex < MICROPROFILE_MAX_GROUPS);
size_t nLen = strlen(pGroup);
if(nLen > MICROPROFILE_NAME_MAX_LEN-1)
nLen = MICROPROFILE_NAME_MAX_LEN-1;
memcpy(&S.GroupInfo[nGroupIndex].pName[0], pGroup, nLen);
S.GroupInfo[nGroupIndex].pName[nLen] = '\0';
S.GroupInfo[nGroupIndex].nNameLen = (uint32_t)nLen;
S.GroupInfo[nGroupIndex].nNumTimers = 0;
S.GroupInfo[nGroupIndex].nGroupIndex = nGroupIndex;
S.GroupInfo[nGroupIndex].Type = Type;
S.GroupInfo[nGroupIndex].nMaxTimerNameLen = 0;
S.GroupInfo[nGroupIndex].nColor = 0x88888888;
S.GroupInfo[nGroupIndex].nCategory = 0;
S.CategoryInfo[0].nGroupMask |= 1ll << nGroupIndex;
S.nGroupMask |= 1ll << nGroupIndex;
S.nGroupMaskGpu |= uint64_t(Type == MicroProfileTokenTypeGpu) << nGroupIndex;
if ((S.nRunning || S.nForceEnable) && S.nAllGroupsWanted)
S.nActiveGroup |= 1ll << nGroupIndex;
return nGroupIndex;
}
MicroProfileToken MicroProfileGetToken(const char* pGroup, const char* pName, uint32_t nColor, MicroProfileTokenType Type)
{
MicroProfileInit();
MicroProfileScopeLock L(MicroProfileMutex());
MicroProfileToken ret = MicroProfileFindToken(pGroup, pName);
if(ret != MICROPROFILE_INVALID_TOKEN)
return ret;
if(S.nTotalTimers == MICROPROFILE_MAX_TIMERS)
return MICROPROFILE_INVALID_TOKEN;
uint16_t nGroupIndex = MicroProfileGetGroup(pGroup, Type);
uint16_t nTimerIndex = (uint16_t)(S.nTotalTimers++);
uint64_t nGroupMask = 1ll << nGroupIndex;
MicroProfileToken nToken = MicroProfileMakeToken(nGroupMask, nTimerIndex);
S.GroupInfo[nGroupIndex].nNumTimers++;
S.GroupInfo[nGroupIndex].nMaxTimerNameLen = MicroProfileMax(S.GroupInfo[nGroupIndex].nMaxTimerNameLen, (uint32_t)strlen(pName));
MP_ASSERT(S.GroupInfo[nGroupIndex].Type == Type); //dont mix cpu & gpu timers in the same group
S.nMaxGroupSize = MicroProfileMax(S.nMaxGroupSize, S.GroupInfo[nGroupIndex].nNumTimers);
S.TimerInfo[nTimerIndex].nToken = nToken;
uint32_t nLen = (uint32_t)strlen(pName);
if(nLen > MICROPROFILE_NAME_MAX_LEN-1)
nLen = MICROPROFILE_NAME_MAX_LEN-1;
memcpy(&S.TimerInfo[nTimerIndex].pName, pName, nLen);
if(nColor == 0xffffffff)
{
// http://www.two4u.com/color/small-txt.html with some omissions
static const int kDebugColors[] =
{
0x70DB93, 0xB5A642, 0x5F9F9F, 0xB87333, 0x4F6F4F, 0x9932CD,
0x871F78, 0x855E42, 0x545454, 0x8E2323, 0x238E23, 0xCD7F32,
0xDBDB70, 0x527F76, 0x9F9F5F, 0x8E236B, 0xFF2F4F, 0xCFB53B,
0xFF7F00, 0xDB70DB, 0x5959AB, 0x8C1717, 0x238E68, 0x6B4226,
0x8E6B23, 0x007FFF, 0x00FF7F, 0x236B8E, 0x38B0DE, 0xDB9370,
0xCC3299, 0x99CC32,
};
// djb2
unsigned int result = 5381;
for (const char* i = pGroup; *i; ++i)
result = result * 33 ^ *i;
for (const char* i = pName; *i; ++i)
result = result * 33 ^ *i;
nColor = kDebugColors[result % (sizeof(kDebugColors) / sizeof(kDebugColors[0]))];
}
S.TimerInfo[nTimerIndex].pName[nLen] = '\0';
S.TimerInfo[nTimerIndex].nNameLen = nLen;
S.TimerInfo[nTimerIndex].nColor = nColor&0xffffff;
S.TimerInfo[nTimerIndex].nGroupIndex = nGroupIndex;
S.TimerInfo[nTimerIndex].nTimerIndex = nTimerIndex;
S.TimerToGroup[nTimerIndex] = nGroupIndex;
return nToken;
}
MicroProfileToken MicroProfileGetLabelToken(const char* pGroup, MicroProfileTokenType Type)
{
MicroProfileInit();
MicroProfileScopeLock L(MicroProfileMutex());
uint16_t nGroupIndex = MicroProfileGetGroup(pGroup, Type);
uint64_t nGroupMask = 1ll << nGroupIndex;
MicroProfileToken nToken = MicroProfileMakeToken(nGroupMask, 0);
return nToken;
}
MicroProfileToken MicroProfileGetMetaToken(const char* pName)
{
MicroProfileInit();
MicroProfileScopeLock L(MicroProfileMutex());
for(uint32_t i = 0; i < MICROPROFILE_META_MAX; ++i)
{
if(!S.MetaCounters[i].pName)
{
S.MetaCounters[i].pName = pName;
return i;
}
else if(!MP_STRCASECMP(pName, S.MetaCounters[i].pName))
{
return i;
}
}
MP_ASSERT(0);//out of slots, increase MICROPROFILE_META_MAX
return (MicroProfileToken)-1;
}
const char* MicroProfileNextName(const char* pName, char* pNameOut, uint32_t* nSubNameLen)
{
uint32_t nMaxLen = MICROPROFILE_NAME_MAX_LEN-1;
const char* pRet = 0;
bool bDone = false;
uint32_t nChars = 0;
for(uint32_t i = 0; i < nMaxLen && !bDone; ++i)
{
char c = *pName++;
switch(c)
{
case 0:
bDone = true;
break;
case '\\':
case '/':
if(nChars)
{
bDone = true;
pRet = pName;
}
break;
default:
nChars++;
*pNameOut++ = c;
}
}
*nSubNameLen = nChars;
*pNameOut = '\0';
return pRet;
}
const char* MicroProfileCounterFullName(int nCounter)
{
static char Buffer[1024];
int nNodes[32];
int nIndex = 0;
do
{
nNodes[nIndex++] = nCounter;
nCounter = S.CounterInfo[nCounter].nParent;
}while(nCounter >= 0);
int nOffset = 0;
while(nIndex >= 0 && nOffset < (int)sizeof(Buffer)-2)
{
uint32_t nLen = S.CounterInfo[nNodes[nIndex]].nNameLen + nOffset;// < sizeof(Buffer)-1
nLen = MicroProfileMin((uint32_t)(sizeof(Buffer) - 2 - nOffset), nLen);
memcpy(&Buffer[nOffset], S.CounterInfo[nNodes[nIndex]].pName, nLen);
nOffset += S.CounterInfo[nNodes[nIndex]].nNameLen+1;
if(nIndex)
{
Buffer[nOffset++] = '/';
}
nIndex--;
}
return &Buffer[0];
}
int MicroProfileGetCounterTokenByParent(int nParent, const char* pName)
{
for(uint32_t i = 0; i < S.nNumCounters; ++i)
{
if(nParent == S.CounterInfo[i].nParent && !MP_STRCASECMP(S.CounterInfo[i].pName, pName))
{
return i;
}
}
MicroProfileToken nResult = S.nNumCounters++;
S.CounterInfo[nResult].nParent = nParent;
S.CounterInfo[nResult].nSibling = -1;
S.CounterInfo[nResult].nFirstChild = -1;
S.CounterInfo[nResult].nFlags = 0;
S.CounterInfo[nResult].eFormat = MICROPROFILE_COUNTER_FORMAT_DEFAULT;
S.CounterInfo[nResult].nLimit = 0;
int nLen = (int)strlen(pName)+1;
MP_ASSERT(nLen + S.nCounterNamePos <= MICROPROFILE_MAX_COUNTER_NAME_CHARS);
uint32_t nPos = S.nCounterNamePos;
S.nCounterNamePos += nLen;
memcpy(&S.CounterNames[nPos], pName, nLen);
S.CounterInfo[nResult].nNameLen = nLen-1;
S.CounterInfo[nResult].pName = &S.CounterNames[nPos];
if(nParent >= 0)
{
S.CounterInfo[nResult].nSibling = S.CounterInfo[nParent].nFirstChild;
S.CounterInfo[nResult].nLevel = S.CounterInfo[nParent].nLevel + 1;
S.CounterInfo[nParent].nFirstChild = nResult;
}
else
{
S.CounterInfo[nResult].nLevel = 0;
}
return nResult;
}
MicroProfileToken MicroProfileGetCounterToken(const char* pName)
{
MicroProfileInit();
MicroProfileScopeLock L(MicroProfileMutex());
char SubName[MICROPROFILE_NAME_MAX_LEN];
int nResult = -1;
do
{
uint32_t nLen = 0;
pName = MicroProfileNextName(pName, &SubName[0], &nLen);
if(0 == nLen)
{
break;
}
nResult = MicroProfileGetCounterTokenByParent(nResult, SubName);
}while(pName != 0);
S.CounterInfo[nResult].nFlags |= MICROPROFILE_COUNTER_FLAG_LEAF;
MP_ASSERT(nResult >= 0);
return nResult;
}
inline void MicroProfileLogPut(MicroProfileToken nToken_, uint64_t nTick, uint64_t nBegin, MicroProfileThreadLog* pLog)
{
MP_ASSERT(pLog != 0); //this assert is hit if MicroProfileOnCreateThread is not called
MP_ASSERT(pLog->nActive);
uint32_t nPos = pLog->nPut.load(std::memory_order_relaxed);
uint32_t nNextPos = (nPos+1) % MICROPROFILE_BUFFER_SIZE;
if(nNextPos == pLog->nGet.load(std::memory_order_relaxed))
{
S.nOverflow = 100;
}
else
{
if(!pLog->Log)
{
pLog->Log = new MicroProfileLogEntry[MICROPROFILE_BUFFER_SIZE];
memset(pLog->Log, 0, sizeof(MicroProfileLogEntry) * MICROPROFILE_BUFFER_SIZE);
S.nMemUsage += sizeof(MicroProfileLogEntry) * MICROPROFILE_BUFFER_SIZE;
}
pLog->Log[nPos] = MicroProfileMakeLogIndex(nBegin, nToken_, nTick);
pLog->nPut.store(nNextPos, std::memory_order_release);
}
}
inline void MicroProfileLogPutGpu(MicroProfileToken nToken_, uint64_t nTick, uint64_t nBegin, MicroProfileThreadLog* pLog)
{
#if MICROPROFILE_GPU_TIMERS_MULTITHREADED
MP_ASSERT(pLog != 0); //this assert is hit if MicroProfileOnCreateThread is not called
MP_ASSERT(pLog->nActive);
uint32_t nPos = pLog->nPutGpu.load(std::memory_order_relaxed);
if(nPos >= MICROPROFILE_GPU_BUFFER_SIZE)
{
S.nOverflow = 100;
}
else
{
if(!pLog->LogGpu)
{
pLog->LogGpu = new MicroProfileLogEntry[MICROPROFILE_GPU_BUFFER_SIZE];
memset(pLog->LogGpu, 0, sizeof(MicroProfileLogEntry) * MICROPROFILE_GPU_BUFFER_SIZE);
S.nMemUsage += sizeof(MicroProfileLogEntry) * MICROPROFILE_GPU_BUFFER_SIZE;
}
pLog->LogGpu[nPos] = MicroProfileMakeLogIndex(nBegin, nToken_, nTick);
pLog->nPutGpu.store(nPos + 1, std::memory_order_release);
}
#else
(void)pLog;
MicroProfileLogPut(nToken_, nTick, nBegin, g_MicroProfileGpuLog);
#endif
}
uint64_t MicroProfileEnter(MicroProfileToken nToken_)
{
uint64_t nGroupMask = MicroProfileGetGroupMask(nToken_);
if(nGroupMask & S.nActiveGroup)
{
if (MicroProfileThreadLog* pLog = MicroProfileGetOrCreateThreadLog())
{
if (nGroupMask & S.nGroupMaskGpu)
{
uint32_t nTimer = MicroProfileGpuInsertTimer(pLog->pContextGpu);
if (nTimer != (uint32_t)-1)
{
MicroProfileLogPutGpu(nToken_, nTimer, MP_LOG_ENTER, pLog);
MicroProfileLogPutGpu(pLog->nLogIndex, MP_TICK(), MP_LOG_GPU_EXTRA, pLog);
return 0;
}
}
else
{
uint64_t nTick = MP_TICK();
MicroProfileLogPut(nToken_, nTick, MP_LOG_ENTER, pLog);
return nTick;
}
}
}
return MICROPROFILE_INVALID_TICK;
}
uint64_t MicroProfileAllocateLabel(const char* pName)
{
char* pLabelBuffer = S.LabelBuffer.load(std::memory_order_consume);
if(!pLabelBuffer)
{
MicroProfileScopeLock L(MicroProfileMutex());
pLabelBuffer = S.LabelBuffer.load(std::memory_order_consume);
if(!pLabelBuffer)
{
pLabelBuffer = new char[MICROPROFILE_LABEL_BUFFER_SIZE + MICROPROFILE_LABEL_MAX_LEN];
memset(pLabelBuffer, 0, MICROPROFILE_LABEL_BUFFER_SIZE + MICROPROFILE_LABEL_MAX_LEN);
S.nMemUsage += MICROPROFILE_LABEL_BUFFER_SIZE + MICROPROFILE_LABEL_MAX_LEN;
S.LabelBuffer.store(pLabelBuffer, std::memory_order_release);
}
}
size_t nLen = strlen(pName);
if(nLen > MICROPROFILE_LABEL_MAX_LEN - 1)
nLen = MICROPROFILE_LABEL_MAX_LEN - 1;
uint64_t nLabel = S.nLabelPut.fetch_add(nLen + 1, std::memory_order_relaxed);
char* pLabel = &pLabelBuffer[nLabel % MICROPROFILE_LABEL_BUFFER_SIZE];
memcpy(pLabel, pName, nLen);
pLabel[nLen] = 0;
return nLabel;
}
void MicroProfilePutLabel(MicroProfileToken nToken_, const char* pName)
{
if (MicroProfileThreadLog* pLog = MicroProfileGetThreadLog())
{
uint64_t nLabel = MicroProfileAllocateLabel(pName);
uint64_t nGroupMask = MicroProfileGetGroupMask(nToken_);
if (nGroupMask & S.nGroupMaskGpu)
MicroProfileLogPutGpu(nToken_, nLabel, MP_LOG_LABEL, pLog);
else
MicroProfileLogPut(nToken_, nLabel, MP_LOG_LABEL, pLog);
}
}
void MicroProfileCounterAdd(MicroProfileToken nToken, int64_t nCount)
{
MP_ASSERT(nToken < S.nNumCounters);
S.Counters[nToken].fetch_add(nCount);
}
void MicroProfileCounterSet(MicroProfileToken nToken, int64_t nCount)
{
MP_ASSERT(nToken < S.nNumCounters);
S.Counters[nToken].store(nCount);
}
void MicroProfileCounterSetLimit(MicroProfileToken nToken, int64_t nCount)
{
MP_ASSERT(nToken < S.nNumCounters);
S.CounterInfo[nToken].nLimit = nCount;
}
void MicroProfileCounterConfig(const char* pName, uint32_t eFormat, int64_t nLimit, uint32_t nFlags)
{
MicroProfileToken nToken = MicroProfileGetCounterToken(pName);
S.CounterInfo[nToken].eFormat = (MicroProfileCounterFormat)eFormat;
S.CounterInfo[nToken].nLimit = nLimit;
S.CounterInfo[nToken].nFlags |= (nFlags & ~MICROPROFILE_COUNTER_FLAG_INTERNAL_MASK);
}
const char* MicroProfileGetLabel(uint64_t nLabel)
{
char* pLabelBuffer = S.LabelBuffer.load(std::memory_order_relaxed);
uint64_t nLabelPut = S.nLabelPut.load(std::memory_order_relaxed);
MP_ASSERT(pLabelBuffer && nLabel < nLabelPut);
if (nLabelPut - nLabel > MICROPROFILE_LABEL_BUFFER_SIZE)
return 0;
else
return &pLabelBuffer[nLabel % MICROPROFILE_LABEL_BUFFER_SIZE];
}
void MicroProfileLabel(MicroProfileToken nToken_, const char* pName)
{
if(MicroProfileGetGroupMask(nToken_) & S.nActiveGroup)
{
MicroProfilePutLabel(nToken_, pName);
}
}
void MicroProfileLabelFormat(MicroProfileToken nToken_, const char* pName, ...)
{
va_list args;
va_start(args, pName);
MicroProfileLabelFormatV(nToken_, pName, args);
va_end(args);
}
void MicroProfileLabelFormatV(MicroProfileToken nToken_, const char* pName, va_list args)
{
if(MicroProfileGetGroupMask(nToken_) & S.nActiveGroup)
{
char buffer[MICROPROFILE_LABEL_MAX_LEN];
vsnprintf(buffer, sizeof(buffer)-1, pName, args);
buffer[sizeof(buffer)-1] = 0;
MicroProfilePutLabel(nToken_, buffer);
}
}
void MicroProfileMetaUpdate(MicroProfileToken nToken, int nCount, MicroProfileTokenType eTokenType)
{
if((MP_DRAW_META_FIRST<<nToken) & S.nActiveBars)
{
if (MicroProfileThreadLog* pLog = MicroProfileGetThreadLog())
{
MP_ASSERT(nToken < MICROPROFILE_META_MAX);
if (MicroProfileTokenTypeGpu == eTokenType)
MicroProfileLogPutGpu(nToken, nCount, MP_LOG_META, pLog);
else
MicroProfileLogPut(nToken, nCount, MP_LOG_META, pLog);
}
}
}
void MicroProfileLeave(MicroProfileToken nToken_, uint64_t nTickStart)
{
if(MICROPROFILE_INVALID_TICK != nTickStart)
{
if (MicroProfileThreadLog* pLog = MicroProfileGetOrCreateThreadLog())
{
uint64_t nGroupMask = MicroProfileGetGroupMask(nToken_);
if (nGroupMask & S.nGroupMaskGpu)
{
uint32_t nTimer = MicroProfileGpuInsertTimer(pLog->pContextGpu);
MicroProfileLogPutGpu(nToken_, nTimer, MP_LOG_LEAVE, pLog);
MicroProfileLogPutGpu(pLog->nLogIndex, MP_TICK(), MP_LOG_GPU_EXTRA, pLog);
}
else
{
uint64_t nTick = MP_TICK();
MicroProfileLogPut(nToken_, nTick, MP_LOG_LEAVE, pLog);
}
}
}
}
void MicroProfileContextSwitchPut(MicroProfileContextSwitch* pContextSwitch)
{
if(S.nRunning || pContextSwitch->nTicks <= S.nPauseTicks)
{
uint32_t nPut = S.nContextSwitchPut;
S.ContextSwitch[nPut] = *pContextSwitch;
S.nContextSwitchPut = (S.nContextSwitchPut+1) % MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE;
}
}
void MicroProfileGetRange(uint32_t nPut, uint32_t nGet, uint32_t nRange[2][2])
{
if(nPut > nGet)
{
nRange[0][0] = nGet;
nRange[0][1] = nPut;
nRange[1][0] = nRange[1][1] = 0;
}
else if(nPut != nGet)
{
MP_ASSERT(nGet != MICROPROFILE_BUFFER_SIZE);
uint32_t nCountEnd = MICROPROFILE_BUFFER_SIZE - nGet;
nRange[0][0] = nGet;
nRange[0][1] = nGet + nCountEnd;
nRange[1][0] = 0;
nRange[1][1] = nPut;
}
}
void MicroProfileDumpToFile();
void MicroProfileFlipGpu()
{
std::lock_guard<std::recursive_mutex> Lock(MicroProfileMutex());
for (uint32_t i = 0; i < MICROPROFILE_MAX_THREADS; ++i)
{
if (S.Pool[i])
{
MP_ASSERT(!S.Pool[i]->bActiveGpu);
S.Pool[i]->nPutGpu.store(0);
}
}
S.nGpuFrameTimer = MicroProfileGpuFlip();
}
void MicroProfileFlipCpu()
{
std::lock_guard<std::recursive_mutex> Lock(MicroProfileMutex());
if(S.nToggleRunning)
{
S.nRunning = !S.nRunning;
if(!S.nRunning)
S.nPauseTicks = MP_TICK();
S.nToggleRunning = 0;
for(uint32_t i = 0; i < MICROPROFILE_MAX_THREADS; ++i)
{
MicroProfileThreadLog* pLog = S.Pool[i];
if(pLog)
{
pLog->nStackPos = 0;
}
}
}
uint32_t nAggregateClear = S.nAggregateClear || S.nAutoClearFrames, nAggregateFlip = 0;
if(S.nDumpFileNextFrame)
{
MicroProfileDumpToFile();
S.nDumpFileNextFrame = 0;
S.nAutoClearFrames = MICROPROFILE_GPU_FRAME_DELAY + 3; //hide spike from dumping webpage
}
if(S.nAutoClearFrames)
{
nAggregateClear = 1;
nAggregateFlip = 1;
S.nAutoClearFrames -= 1;
}
if(S.nRunning || S.nForceEnable)
{
S.nFramePutIndex++;
S.nFramePut = (S.nFramePut+1) % MICROPROFILE_MAX_FRAME_HISTORY;
MP_ASSERT((S.nFramePutIndex % MICROPROFILE_MAX_FRAME_HISTORY) == S.nFramePut);
S.nFrameCurrent = (S.nFramePut + MICROPROFILE_MAX_FRAME_HISTORY - MICROPROFILE_GPU_FRAME_DELAY - 1) % MICROPROFILE_MAX_FRAME_HISTORY;
S.nFrameCurrentIndex++;
uint32_t nFrameNext = (S.nFrameCurrent+1) % MICROPROFILE_MAX_FRAME_HISTORY;
uint32_t nContextSwitchPut = S.nContextSwitchPut;
if(S.nContextSwitchLastPut < nContextSwitchPut)
{
S.nContextSwitchUsage = (nContextSwitchPut - S.nContextSwitchLastPut);
}
else
{
S.nContextSwitchUsage = MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE - S.nContextSwitchLastPut + nContextSwitchPut;
}
S.nContextSwitchLastPut = nContextSwitchPut;
MicroProfileFrameState* pFramePut = &S.Frames[S.nFramePut];
MicroProfileFrameState* pFrameCurrent = &S.Frames[S.nFrameCurrent];
MicroProfileFrameState* pFrameNext = &S.Frames[nFrameNext];
pFramePut->nFrameStartCpu = MP_TICK();
pFramePut->nFrameStartGpuTimer = S.nGpuFrameTimer;
if(pFrameCurrent->nFrameStartGpuTimer != (uint32_t)-1)
{
uint64_t nTick = MicroProfileGpuGetTimeStamp(pFrameCurrent->nFrameStartGpuTimer);
pFrameCurrent->nFrameStartGpu = (nTick == MICROPROFILE_INVALID_TICK) ? 0 : nTick;
}
uint64_t nFrameStartCpu = pFrameCurrent->nFrameStartCpu;
uint64_t nFrameEndCpu = pFrameNext->nFrameStartCpu;
{
uint64_t nTick = nFrameEndCpu - nFrameStartCpu;
S.nFlipTicks = nTick;
S.nFlipAggregate += nTick;
S.nFlipMax = MicroProfileMax(S.nFlipMax, nTick);
}
uint8_t* pTimerToGroup = &S.TimerToGroup[0];
for(uint32_t i = 0; i < MICROPROFILE_MAX_THREADS; ++i)
{
MicroProfileThreadLog* pLog = S.Pool[i];
if(!pLog)
{
pFramePut->nLogStart[i] = 0;
}
else
{
uint32_t nPut = pLog->nPut.load(std::memory_order_acquire);
pFramePut->nLogStart[i] = nPut;
MP_ASSERT(nPut< MICROPROFILE_BUFFER_SIZE);
//need to keep last frame around to close timers. timers more than 1 frame old is ditched.
pLog->nGet.store(nPut, std::memory_order_relaxed);
}
}
if(S.nRunning)
{
uint64_t* pFrameGroup = &S.FrameGroup[0];
{
MICROPROFILE_SCOPE(g_MicroProfileClear);
for(uint32_t i = 0; i < S.nTotalTimers; ++i)
{
S.Frame[i].nTicks = 0;
S.Frame[i].nCount = 0;
S.FrameExclusive[i] = 0;
}
for(uint32_t i = 0; i < MICROPROFILE_MAX_GROUPS; ++i)
{
pFrameGroup[i] = 0;
}
for(uint32_t j = 0; j < MICROPROFILE_META_MAX; ++j)
{
if(S.MetaCounters[j].pName && 0 != (S.nActiveBars & (MP_DRAW_META_FIRST<<j)))
{
auto& Meta = S.MetaCounters[j];
for(uint32_t i = 0; i < S.nTotalTimers; ++i)
{
Meta.nCounters[i] = 0;
}
}
}
}
{
MICROPROFILE_SCOPE(g_MicroProfileThreadLoop);
for(uint32_t i = 0; i < MICROPROFILE_MAX_THREADS; ++i)
{
MicroProfileThreadLog* pLog = S.Pool[i];
if(!pLog)
continue;
uint8_t* pGroupStackPos = &pLog->nGroupStackPos[0];
int64_t nGroupTicks[MICROPROFILE_MAX_GROUPS] = {0};
uint32_t nPut = pFrameNext->nLogStart[i];
uint32_t nGet = pFrameCurrent->nLogStart[i];
uint32_t nRange[2][2] = { {0, 0}, {0, 0}, };
MicroProfileGetRange(nPut, nGet, nRange);
//fetch gpu results.
if(pLog->nGpu)
{
uint64_t nLastTick = pFrameCurrent->nFrameStartGpu;
for(uint32_t j = 0; j < 2; ++j)
{
uint32_t nStart = nRange[j][0];
uint32_t nEnd = nRange[j][1];
for(uint32_t k = nStart; k < nEnd; ++k)
{
MicroProfileLogEntry L = pLog->Log[k];
int Type = MicroProfileLogType(L);
if(Type == MP_LOG_ENTER || Type == MP_LOG_LEAVE)
{
uint32_t nTimer = MicroProfileLogGetTick(L);
uint64_t nTick = MicroProfileGpuGetTimeStamp(nTimer);
if(nTick != MICROPROFILE_INVALID_TICK)
nLastTick = nTick;
pLog->Log[k] = MicroProfileLogSetTick(L, nLastTick);
}
}
}
}
uint32_t* pStack = &pLog->nStack[0];
int64_t* pChildTickStack = &pLog->nChildTickStack[0];
uint32_t nStackPos = pLog->nStackPos;
for(uint32_t j = 0; j < 2; ++j)
{
uint32_t nStart = nRange[j][0];
uint32_t nEnd = nRange[j][1];
for(uint32_t k = nStart; k < nEnd; ++k)
{
MicroProfileLogEntry LE = pLog->Log[k];
uint64_t nType = MicroProfileLogType(LE);
if(MP_LOG_ENTER == nType)
{
int nTimer = MicroProfileLogTimerIndex(LE);
uint8_t nGroup = pTimerToGroup[nTimer];
MP_ASSERT(nStackPos < MICROPROFILE_STACK_MAX);
MP_ASSERT(nGroup < MICROPROFILE_MAX_GROUPS);
pGroupStackPos[nGroup]++;
pStack[nStackPos++] = k;
pChildTickStack[nStackPos] = 0;
}
else if(MP_LOG_META == nType)
{
if(nStackPos)
{
int64_t nMetaIndex = MicroProfileLogTimerIndex(LE);
int64_t nMetaCount = MicroProfileLogGetTick(LE);
MP_ASSERT(nMetaIndex < MICROPROFILE_META_MAX);
int64_t nCounter = MicroProfileLogTimerIndex(pLog->Log[pStack[nStackPos-1]]);
S.MetaCounters[nMetaIndex].nCounters[nCounter] += nMetaCount;
}
}
else if(MP_LOG_LEAVE == nType)
{
int nTimer = MicroProfileLogTimerIndex(LE);
uint8_t nGroup = pTimerToGroup[nTimer];
MP_ASSERT(nGroup < MICROPROFILE_MAX_GROUPS);
if(nStackPos)
{
int64_t nTickStart = pLog->Log[pStack[nStackPos-1]];
int64_t nTicks = MicroProfileLogTickDifference(nTickStart, LE);
int64_t nChildTicks = pChildTickStack[nStackPos];
nStackPos--;
pChildTickStack[nStackPos] += nTicks;
uint32_t nTimerIndex = MicroProfileLogTimerIndex(LE);
S.Frame[nTimerIndex].nTicks += nTicks;
S.FrameExclusive[nTimerIndex] += (nTicks-nChildTicks);
S.Frame[nTimerIndex].nCount += 1;
MP_ASSERT(nGroup < MICROPROFILE_MAX_GROUPS);
uint8_t nGroupStackPos = pGroupStackPos[nGroup];
if(nGroupStackPos)
{
nGroupStackPos--;
if(0 == nGroupStackPos)
{
nGroupTicks[nGroup] += nTicks;
}
pGroupStackPos[nGroup] = nGroupStackPos;
}
}
}
}
}
for(uint32_t i = 0; i < MICROPROFILE_MAX_GROUPS; ++i)
{
pLog->nGroupTicks[i] += nGroupTicks[i];
pFrameGroup[i] += nGroupTicks[i];
}
pLog->nStackPos = nStackPos;
}
}
{
MICROPROFILE_SCOPE(g_MicroProfileAccumulate);
for(uint32_t i = 0; i < S.nTotalTimers; ++i)
{
S.AccumTimers[i].nTicks += S.Frame[i].nTicks;
S.AccumTimers[i].nCount += S.Frame[i].nCount;
S.AccumMaxTimers[i] = MicroProfileMax(S.AccumMaxTimers[i], S.Frame[i].nTicks);
S.AccumMinTimers[i] = MicroProfileMin(S.AccumMinTimers[i], S.Frame[i].nTicks);
S.AccumTimersExclusive[i] += S.FrameExclusive[i];
S.AccumMaxTimersExclusive[i] = MicroProfileMax(S.AccumMaxTimersExclusive[i], S.FrameExclusive[i]);
}
for(uint32_t i = 0; i < MICROPROFILE_MAX_GROUPS; ++i)
{
S.AccumGroup[i] += pFrameGroup[i];
S.AccumGroupMax[i] = MicroProfileMax(S.AccumGroupMax[i], pFrameGroup[i]);
}
for(uint32_t j = 0; j < MICROPROFILE_META_MAX; ++j)
{
if(S.MetaCounters[j].pName && 0 != (S.nActiveBars & (MP_DRAW_META_FIRST<<j)))
{
auto& Meta = S.MetaCounters[j];
uint64_t nSum = 0;;
for(uint32_t i = 0; i < S.nTotalTimers; ++i)
{
uint64_t nCounter = Meta.nCounters[i];
Meta.nAccumMax[i] = MicroProfileMax(Meta.nAccumMax[i], nCounter);
Meta.nAccum[i] += nCounter;
nSum += nCounter;
}
Meta.nSumAccum += nSum;
Meta.nSumAccumMax = MicroProfileMax(Meta.nSumAccumMax, nSum);
}
}
}
for(uint32_t i = 0; i < MICROPROFILE_MAX_GRAPHS; ++i)
{
if(S.Graph[i].nToken != MICROPROFILE_INVALID_TOKEN)
{
MicroProfileToken nToken = S.Graph[i].nToken;
S.Graph[i].nHistory[S.nGraphPut] = S.Frame[MicroProfileGetTimerIndex(nToken)].nTicks;
}
}
S.nGraphPut = (S.nGraphPut+1) % MICROPROFILE_GRAPH_HISTORY;
}
if(S.nRunning && S.nAggregateFlip <= ++S.nAggregateFlipCount)
{
nAggregateFlip = 1;
if(S.nAggregateFlip) // if 0 accumulate indefinitely
{
nAggregateClear = 1;
}
}
}
if(nAggregateFlip)
{
memcpy(&S.Aggregate[0], &S.AccumTimers[0], sizeof(S.Aggregate[0]) * S.nTotalTimers);
memcpy(&S.AggregateMax[0], &S.AccumMaxTimers[0], sizeof(S.AggregateMax[0]) * S.nTotalTimers);
memcpy(&S.AggregateMin[0], &S.AccumMinTimers[0], sizeof(S.AggregateMin[0]) * S.nTotalTimers);
memcpy(&S.AggregateExclusive[0], &S.AccumTimersExclusive[0], sizeof(S.AggregateExclusive[0]) * S.nTotalTimers);
memcpy(&S.AggregateMaxExclusive[0], &S.AccumMaxTimersExclusive[0], sizeof(S.AggregateMaxExclusive[0]) * S.nTotalTimers);
memcpy(&S.AggregateGroup[0], &S.AccumGroup[0], sizeof(S.AggregateGroup));
memcpy(&S.AggregateGroupMax[0], &S.AccumGroupMax[0], sizeof(S.AggregateGroup));
for(uint32_t i = 0; i < MICROPROFILE_MAX_THREADS; ++i)
{
MicroProfileThreadLog* pLog = S.Pool[i];
if(!pLog)
continue;
memcpy(&pLog->nAggregateGroupTicks[0], &pLog->nGroupTicks[0], sizeof(pLog->nAggregateGroupTicks));
if(nAggregateClear)
{
memset(&pLog->nGroupTicks[0], 0, sizeof(pLog->nGroupTicks));
}
}
for(uint32_t j = 0; j < MICROPROFILE_META_MAX; ++j)
{
if(S.MetaCounters[j].pName && 0 != (S.nActiveBars & (MP_DRAW_META_FIRST<<j)))
{
auto& Meta = S.MetaCounters[j];
memcpy(&Meta.nAggregateMax[0], &Meta.nAccumMax[0], sizeof(Meta.nAggregateMax[0]) * S.nTotalTimers);
memcpy(&Meta.nAggregate[0], &Meta.nAccum[0], sizeof(Meta.nAggregate[0]) * S.nTotalTimers);
Meta.nSumAggregate = Meta.nSumAccum;
Meta.nSumAggregateMax = Meta.nSumAccumMax;
if(nAggregateClear)
{
memset(&Meta.nAccumMax[0], 0, sizeof(Meta.nAccumMax[0]) * S.nTotalTimers);
memset(&Meta.nAccum[0], 0, sizeof(Meta.nAccum[0]) * S.nTotalTimers);
Meta.nSumAccum = 0;
Meta.nSumAccumMax = 0;
}
}
}
S.nAggregateFrames = S.nAggregateFlipCount;
S.nFlipAggregateDisplay = S.nFlipAggregate;
S.nFlipMaxDisplay = S.nFlipMax;
if(nAggregateClear)
{
memset(&S.AccumTimers[0], 0, sizeof(S.Aggregate[0]) * S.nTotalTimers);
memset(&S.AccumMaxTimers[0], 0, sizeof(S.AccumMaxTimers[0]) * S.nTotalTimers);
memset(&S.AccumMinTimers[0], 0xFF, sizeof(S.AccumMinTimers[0]) * S.nTotalTimers);
memset(&S.AccumTimersExclusive[0], 0, sizeof(S.AggregateExclusive[0]) * S.nTotalTimers);
memset(&S.AccumMaxTimersExclusive[0], 0, sizeof(S.AccumMaxTimersExclusive[0]) * S.nTotalTimers);
memset(&S.AccumGroup[0], 0, sizeof(S.AggregateGroup));
memset(&S.AccumGroupMax[0], 0, sizeof(S.AggregateGroup));
S.nAggregateFlipCount = 0;
S.nFlipAggregate = 0;
S.nFlipMax = 0;
S.nAggregateFlipTick = MP_TICK();
}
#if MICROPROFILE_COUNTER_HISTORY
int64_t* pDest = &S.nCounterHistory[S.nCounterHistoryPut][0];
S.nCounterHistoryPut = (S.nCounterHistoryPut+1) % MICROPROFILE_GRAPH_HISTORY;
for(uint32_t i = 0; i < S.nNumCounters; ++i)
{
if(0 != (S.CounterInfo[i].nFlags & MICROPROFILE_COUNTER_FLAG_DETAILED))
{
uint64_t nValue = S.Counters[i].load(std::memory_order_relaxed);
pDest[i] = nValue;
S.nCounterMin[i] = MicroProfileMin(S.nCounterMin[i], (int64_t)nValue);
S.nCounterMax[i] = MicroProfileMax(S.nCounterMax[i], (int64_t)nValue);
}
}
#endif
}
S.nAggregateClear = 0;
uint64_t nNewActiveGroup = 0;
if (S.nRunning || S.nForceEnable)
nNewActiveGroup = S.nAllGroupsWanted ? S.nGroupMask : S.nActiveGroupWanted;
nNewActiveGroup |= S.nForceGroup;
nNewActiveGroup |= S.nForceGroupUI;
if(S.nActiveGroup != nNewActiveGroup)
S.nActiveGroup = nNewActiveGroup;
uint32_t nNewActiveBars = 0;
if (S.nRunning || S.nForceEnable)
nNewActiveBars = S.nBars;
if(S.nForceMetaCounters)
{
for(int i = 0; i < MICROPROFILE_META_MAX; ++i)
{
if(S.MetaCounters[i].pName)
{
nNewActiveBars |= (MP_DRAW_META_FIRST<<i);
}
}
}
if(nNewActiveBars != S.nActiveBars)
S.nActiveBars = nNewActiveBars;
}
void MicroProfileFlip()
{
MICROPROFILE_SCOPE(g_MicroProfileFlip);
MicroProfileFlipGpu();
MicroProfileFlipCpu();
}
void MicroProfileGpuSetContext(void* pContext)
{
if(MicroProfileThreadLog* pLog = MicroProfileGetOrCreateThreadLog())
{
pLog->pContextGpu = pContext;
}
}
void MicroProfileGpuBegin(void* pContext)
{
if(MicroProfileThreadLog* pLog = MicroProfileGetOrCreateThreadLog())
{
MP_ASSERT(!pLog->bActiveGpu);
pLog->pContextGpu = pContext;
pLog->nStartGpu = pLog->nPutGpu.load();
pLog->bActiveGpu = 1;
}
}
uint64_t MicroProfileGpuEnd()
{
if(MicroProfileThreadLog* pLog = MicroProfileGetThreadLog())
{
MP_ASSERT(pLog->bActiveGpu);
uint32_t nStartGpu = pLog->nStartGpu;
uint32_t nPutGpu = pLog->nPutGpu.load();
MP_ASSERT(nPutGpu >= nStartGpu);
pLog->pContextGpu = 0;
pLog->nStartGpu = nPutGpu;
pLog->bActiveGpu = 0;
MP_ASSERT(MICROPROFILE_GPU_BUFFER_SIZE <= 1 << 24);
return (uint64_t(pLog->nLogIndex) << 48) | (uint64_t(nStartGpu) << 24) | uint64_t(nPutGpu);
}
return 0;
}
void MicroProfileGpuSubmit(uint64_t nWork)
{
if (!nWork)
return;
uint32_t nLogIndex = (nWork >> 48) & 0xffff;
uint32_t nStart = (nWork >> 24) & 0xffffff;
uint32_t nEnd = nWork & 0xffffff;
MP_ASSERT(nLogIndex < MICROPROFILE_MAX_THREADS);
MP_ASSERT(nStart <= nEnd);
MicroProfileThreadLog* pLog = S.Pool[nLogIndex];
if (!pLog)
return;
MP_ASSERT(nEnd <= pLog->nStartGpu);
for (uint32_t i = nStart; i < nEnd; ++i)
{
MicroProfileLogEntry LE = pLog->LogGpu[i];
MicroProfileLogPut(MicroProfileLogTimerIndex(LE), MicroProfileLogGetTick(LE), MicroProfileLogType(LE), g_MicroProfileGpuLog);
}
}
void MicroProfileSetForceEnable(bool bEnable)
{
S.nForceEnable = bEnable ? 1 : 0;
}
bool MicroProfileGetForceEnable()
{
return S.nForceEnable != 0;
}
void MicroProfileSetEnableAllGroups(bool bEnableAllGroups)
{
S.nAllGroupsWanted = bEnableAllGroups ? 1 : 0;
}
void MicroProfileEnableCategory(const char* pCategory, bool bEnabled)
{
int nCategoryIndex = -1;
for(uint32_t i = 0; i < S.nCategoryCount; ++i)
{
if(!MP_STRCASECMP(pCategory, S.CategoryInfo[i].pName))
{
nCategoryIndex = (int)i;
break;
}
}
if(nCategoryIndex >= 0)
{
if(bEnabled)
{
S.nActiveGroupWanted |= S.CategoryInfo[nCategoryIndex].nGroupMask;
}
else
{
S.nActiveGroupWanted &= ~S.CategoryInfo[nCategoryIndex].nGroupMask;
}
}
}
void MicroProfileEnableCategory(const char* pCategory)
{
MicroProfileEnableCategory(pCategory, true);
}
void MicroProfileDisableCategory(const char* pCategory)
{
MicroProfileEnableCategory(pCategory, false);
}
bool MicroProfileGetEnableAllGroups()
{
return 0 != S.nAllGroupsWanted;
}
void MicroProfileSetForceMetaCounters(bool bForce)
{
S.nForceMetaCounters = bForce ? 1 : 0;
}
bool MicroProfileGetForceMetaCounters()
{
return 0 != S.nForceMetaCounters;
}
void MicroProfileEnableMetaCounter(const char* pMeta)
{
for(uint32_t i = 0; i < MICROPROFILE_META_MAX; ++i)
{
if(S.MetaCounters[i].pName && 0 == MP_STRCASECMP(S.MetaCounters[i].pName, pMeta))
{
S.nBars |= (MP_DRAW_META_FIRST<<i);
return;
}
}
}
void MicroProfileDisableMetaCounter(const char* pMeta)
{
for(uint32_t i = 0; i < MICROPROFILE_META_MAX; ++i)
{
if(S.MetaCounters[i].pName && 0 == MP_STRCASECMP(S.MetaCounters[i].pName, pMeta))
{
S.nBars &= ~(MP_DRAW_META_FIRST<<i);
return;
}
}
}
void MicroProfileSetAggregateFrames(int nFrames)
{
S.nAggregateFlip = (uint32_t)nFrames;
if(0 == nFrames)
{
S.nAggregateClear = 1;
}
}
int MicroProfileGetAggregateFrames()
{
return S.nAggregateFlip;
}
int MicroProfileGetCurrentAggregateFrames()
{
return int(S.nAggregateFlip ? S.nAggregateFlip : S.nAggregateFlipCount);
}
void MicroProfileForceEnableGroup(const char* pGroup, MicroProfileTokenType Type)
{
MicroProfileInit();
std::lock_guard<std::recursive_mutex> Lock(MicroProfileMutex());
uint16_t nGroup = MicroProfileGetGroup(pGroup, Type);
S.nForceGroup |= (1ll << nGroup);
}
void MicroProfileForceDisableGroup(const char* pGroup, MicroProfileTokenType Type)
{
MicroProfileInit();
std::lock_guard<std::recursive_mutex> Lock(MicroProfileMutex());
uint16_t nGroup = MicroProfileGetGroup(pGroup, Type);
S.nForceGroup &= ~(1ll << nGroup);
}
void MicroProfileCalcAllTimers(float* pTimers, float* pAverage, float* pMax, float* pMin, float* pCallAverage, float* pExclusive, float* pAverageExclusive, float* pMaxExclusive, float* pTotal, uint32_t nSize)
{
for(uint32_t i = 0; i < S.nTotalTimers && i < nSize; ++i)
{
const uint32_t nGroupId = S.TimerInfo[i].nGroupIndex;
const float fToMs = MicroProfileTickToMsMultiplier(S.GroupInfo[nGroupId].Type == MicroProfileTokenTypeGpu ? MicroProfileTicksPerSecondGpu() : MicroProfileTicksPerSecondCpu());
uint32_t nTimer = i;
uint32_t nIdx = i * 2;
uint32_t nAggregateFrames = S.nAggregateFrames ? S.nAggregateFrames : 1;
uint32_t nAggregateCount = S.Aggregate[nTimer].nCount ? S.Aggregate[nTimer].nCount : 1;
float fToPrc = S.fRcpReferenceTime;
float fMs = fToMs * (S.Frame[nTimer].nTicks);
float fPrc = MicroProfileMin(fMs * fToPrc, 1.f);
float fAverageMs = fToMs * (S.Aggregate[nTimer].nTicks / nAggregateFrames);
float fAveragePrc = MicroProfileMin(fAverageMs * fToPrc, 1.f);
float fMaxMs = fToMs * (S.AggregateMax[nTimer]);
float fMaxPrc = MicroProfileMin(fMaxMs * fToPrc, 1.f);
float fMinMs = fToMs * (S.AggregateMin[nTimer] != uint64_t(-1) ? S.AggregateMin[nTimer] : 0);
float fMinPrc = MicroProfileMin(fMinMs * fToPrc, 1.f);
float fCallAverageMs = fToMs * (S.Aggregate[nTimer].nTicks / nAggregateCount);
float fCallAveragePrc = MicroProfileMin(fCallAverageMs * fToPrc, 1.f);
float fMsExclusive = fToMs * (S.FrameExclusive[nTimer]);
float fPrcExclusive = MicroProfileMin(fMsExclusive * fToPrc, 1.f);
float fAverageMsExclusive = fToMs * (S.AggregateExclusive[nTimer] / nAggregateFrames);
float fAveragePrcExclusive = MicroProfileMin(fAverageMsExclusive * fToPrc, 1.f);
float fMaxMsExclusive = fToMs * (S.AggregateMaxExclusive[nTimer]);
float fMaxPrcExclusive = MicroProfileMin(fMaxMsExclusive * fToPrc, 1.f);
float fTotalMs = fToMs * S.Aggregate[nTimer].nTicks;
pTimers[nIdx] = fMs;
pTimers[nIdx+1] = fPrc;
pAverage[nIdx] = fAverageMs;
pAverage[nIdx+1] = fAveragePrc;
pMax[nIdx] = fMaxMs;
pMax[nIdx+1] = fMaxPrc;
pMin[nIdx] = fMinMs;
pMin[nIdx + 1] = fMinPrc;
pCallAverage[nIdx] = fCallAverageMs;
pCallAverage[nIdx+1] = fCallAveragePrc;
pExclusive[nIdx] = fMsExclusive;
pExclusive[nIdx+1] = fPrcExclusive;
pAverageExclusive[nIdx] = fAverageMsExclusive;
pAverageExclusive[nIdx+1] = fAveragePrcExclusive;
pMaxExclusive[nIdx] = fMaxMsExclusive;
pMaxExclusive[nIdx+1] = fMaxPrcExclusive;
pTotal[nIdx] = fTotalMs;
pTotal[nIdx+1] = 0.f;
}
}
void MicroProfileTogglePause()
{
S.nToggleRunning = 1;
}
float MicroProfileGetTime(const char* pGroup, const char* pName)
{
MicroProfileToken nToken = MicroProfileFindToken(pGroup, pName);
if(nToken == MICROPROFILE_INVALID_TOKEN)
{
return 0.f;
}
uint32_t nTimerIndex = MicroProfileGetTimerIndex(nToken);
uint32_t nGroupIndex = MicroProfileGetGroupIndex(nToken);
float fToMs = MicroProfileTickToMsMultiplier(S.GroupInfo[nGroupIndex].Type == MicroProfileTokenTypeGpu ? MicroProfileTicksPerSecondGpu() : MicroProfileTicksPerSecondCpu());
return S.Frame[nTimerIndex].nTicks * fToMs;
}
int MicroProfileFormatCounter(int eFormat, int64_t nCounter, char* pOut, uint32_t nBufferSize)
{
if (!nCounter)
{
pOut[0] = '0';
pOut[1] = '\0';
return 1;
}
int nLen = 0;
char* pBase = pOut;
char* pTmp = pOut;
char* pEnd = pOut + nBufferSize;
switch (eFormat)
{
case MICROPROFILE_COUNTER_FORMAT_DEFAULT:
{
int nNegative = 0;
if(nCounter < 0)
{
nCounter = -nCounter;
nNegative = 1;
}
int nSeperate = 0;
while (nCounter)
{
if (nSeperate)
{
*pTmp++ = ' ';
}
nSeperate = 1;
for (uint32_t i = 0; nCounter && i < 3; ++i)
{
int nDigit = nCounter % 10;
nCounter /= 10;
*pTmp++ = '0' + nDigit;
}
}
if(nNegative)
{
*pTmp++ = '-';
}
nLen = pTmp - pOut;
--pTmp;
MP_ASSERT(pTmp <= pEnd);
while (pTmp > pOut) //reverse string
{
char c = *pTmp;
*pTmp = *pOut;
*pOut = c;
pTmp--;
pOut++;
}
}
break;
case MICROPROFILE_COUNTER_FORMAT_BYTES:
{
const char* pExt[] = { "b","kb","mb","gb","tb","pb", "eb","zb", "yb" };
size_t nNumExt = sizeof(pExt) / sizeof(pExt[0]);
int64_t nShift = 0;
int64_t nDivisor = 1;
int64_t nCountShifted = nCounter >> 10;
while (nCountShifted)
{
nDivisor <<= 10;
nCountShifted >>= 10;
nShift++;
}
MP_ASSERT(nShift < (int64_t)nNumExt);
if (nShift)
{
nLen = snprintf(pOut, nBufferSize - 1, "%3.2f%s", (double)nCounter / nDivisor, pExt[nShift]);
}
else
{
nLen = snprintf(pOut, nBufferSize - 1, "%lld%s", (long long)nCounter, pExt[nShift]);
}
}
break;
}
pBase[nLen] = '\0';
return nLen;
}
typedef void MicroProfileWriteCallback(void* Handle, size_t size, const char* pData);
void MicroProfileDumpFile(const char* pPath, MicroProfileDumpType eType, uint32_t nFrames)
{
size_t nLen = strlen(pPath);
if(nLen > sizeof(S.DumpPath)-1)
{
return;
}
memcpy(S.DumpPath, pPath, nLen+1);
S.nDumpFileNextFrame = 1;
S.eDumpType = eType;
S.nDumpFrames = nFrames;
}
MICROPROFILE_FORMAT(3, 4) void MicroProfilePrintf(MicroProfileWriteCallback CB, void* Handle, const char* pFmt, ...)
{
char buffer[4096];
va_list args;
va_start (args, pFmt);
#ifdef _WIN32
size_t size = vsprintf_s(buffer, pFmt, args);
#else
size_t size = vsnprintf(buffer, sizeof(buffer)-1, pFmt, args);
#endif
CB(Handle, size, &buffer[0]);
va_end (args);
}
void MicroProfilePrintUIntComma(MicroProfileWriteCallback CB, void* Handle, uint64_t nData)
{
char Buffer[32];
uint32_t nOffset = sizeof(Buffer);
Buffer[--nOffset] = ',';
if(nData < 10)
{
Buffer[--nOffset] = '0' + nData;
}
else
{
do
{
Buffer[--nOffset] = "0123456789abcdef"[nData & 0xf];
nData >>= 4;
}
while(nData);
Buffer[--nOffset] = 'x';
Buffer[--nOffset] = '0';
}
CB(Handle, sizeof(Buffer) - nOffset, &Buffer[nOffset]);
}
void MicroProfilePrintString(MicroProfileWriteCallback CB, void* Handle, const char* pData)
{
CB(Handle, strlen(pData), pData);
}
void MicroProfileDumpCsv(MicroProfileWriteCallback CB, void* Handle, int nMaxFrames)
{
(void)nMaxFrames;
uint32_t nAggregateFrames = S.nAggregateFrames ? S.nAggregateFrames : 1;
float fToMsCPU = MicroProfileTickToMsMultiplier(MicroProfileTicksPerSecondCpu());
float fToMsGPU = MicroProfileTickToMsMultiplier(MicroProfileTicksPerSecondGpu());
MicroProfilePrintf(CB, Handle, "frames,%d\n", nAggregateFrames);
MicroProfilePrintf(CB, Handle, "group,name,average,max,callaverage\n");
uint32_t nNumTimers = S.nTotalTimers;
uint32_t nBlockSize = 2 * nNumTimers;
float* pTimers = (float*)alloca(nBlockSize * 9 * sizeof(float));
float* pAverage = pTimers + nBlockSize;
float* pMax = pTimers + 2 * nBlockSize;
float* pMin = pTimers + 3 * nBlockSize;
float* pCallAverage = pTimers + 4 * nBlockSize;
float* pTimersExclusive = pTimers + 5 * nBlockSize;
float* pAverageExclusive = pTimers + 6 * nBlockSize;
float* pMaxExclusive = pTimers + 7 * nBlockSize;
float* pTotal = pTimers + 8 * nBlockSize;
MicroProfileCalcAllTimers(pTimers, pAverage, pMax, pMin, pCallAverage, pTimersExclusive, pAverageExclusive, pMaxExclusive, pTotal, nNumTimers);
for(uint32_t i = 0; i < S.nTotalTimers; ++i)
{
uint32_t nIdx = i * 2;
MicroProfilePrintf(CB, Handle, "\"%s\",\"%s\",%f,%f,%f\n", S.TimerInfo[i].pName, S.GroupInfo[S.TimerInfo[i].nGroupIndex].pName, pAverage[nIdx], pMax[nIdx], pCallAverage[nIdx]);
}
MicroProfilePrintf(CB, Handle, "\n\n");
MicroProfilePrintf(CB, Handle, "group,average,max,total\n");
for(uint32_t j = 0; j < MICROPROFILE_MAX_GROUPS; ++j)
{
const char* pGroupName = S.GroupInfo[j].pName;
float fToMs = S.GroupInfo[j].Type == MicroProfileTokenTypeGpu ? fToMsGPU : fToMsCPU;
if(pGroupName[0] != '\0')
{
MicroProfilePrintf(CB, Handle, "\"%s\",%.3f,%.3f,%.3f\n", pGroupName, fToMs * S.AggregateGroup[j] / nAggregateFrames, fToMs * S.AggregateGroup[j] / nAggregateFrames, fToMs * S.AggregateGroup[j]);
}
}
MicroProfilePrintf(CB, Handle, "\n\n");
MicroProfilePrintf(CB, Handle, "group,thread,average,total\n");
for(uint32_t j = 0; j < MICROPROFILE_MAX_GROUPS; ++j)
{
for(uint32_t i = 0; i < S.nNumLogs; ++i)
{
if(S.Pool[i])
{
const char* pThreadName = &S.Pool[i]->ThreadName[0];
// MicroProfilePrintf(CB, Handle, "var ThreadGroupTime%d = [", i);
float fToMs = S.Pool[i]->nGpu ? fToMsGPU : fToMsCPU;
{
uint64_t nTicks = S.Pool[i]->nAggregateGroupTicks[j];
float fTime = nTicks / nAggregateFrames * fToMs;
float fTimeTotal = nTicks * fToMs;
if(fTimeTotal > 0.01f)
{
const char* pGroupName = S.GroupInfo[j].pName;
MicroProfilePrintf(CB, Handle, "\"%s\",\"%s\",%.3f,%.3f\n", pGroupName, pThreadName, fTime, fTimeTotal);
}
}
}
}
}
MicroProfilePrintf(CB, Handle, "\n\n");
MicroProfilePrintf(CB, Handle, "frametimecpu\n");
const uint32_t nCount = MICROPROFILE_MAX_FRAME_HISTORY - MICROPROFILE_GPU_FRAME_DELAY - 3;
const uint32_t nStart = S.nFrameCurrent;
for(uint32_t i = nCount; i > 0; i--)
{
uint32_t nFrame = (nStart + MICROPROFILE_MAX_FRAME_HISTORY - i) % MICROPROFILE_MAX_FRAME_HISTORY;
uint32_t nFrameNext = (nStart + MICROPROFILE_MAX_FRAME_HISTORY - i + 1) % MICROPROFILE_MAX_FRAME_HISTORY;
uint64_t nTicks = S.Frames[nFrameNext].nFrameStartCpu - S.Frames[nFrame].nFrameStartCpu;
MicroProfilePrintf(CB, Handle, "%f,", nTicks * fToMsCPU);
}
MicroProfilePrintf(CB, Handle, "\n");
MicroProfilePrintf(CB, Handle, "\n\n");
MicroProfilePrintf(CB, Handle, "frametimegpu\n");
for(uint32_t i = nCount; i > 0; i--)
{
uint32_t nFrame = (nStart + MICROPROFILE_MAX_FRAME_HISTORY - i) % MICROPROFILE_MAX_FRAME_HISTORY;
uint32_t nFrameNext = (nStart + MICROPROFILE_MAX_FRAME_HISTORY - i + 1) % MICROPROFILE_MAX_FRAME_HISTORY;
uint64_t nTicks = S.Frames[nFrameNext].nFrameStartGpu - S.Frames[nFrame].nFrameStartGpu;
MicroProfilePrintf(CB, Handle, "%f,", nTicks * fToMsGPU);
}
MicroProfilePrintf(CB, Handle, "\n\n");
MicroProfilePrintf(CB, Handle, "Meta\n");//only single frame snapshot
MicroProfilePrintf(CB, Handle, "name,average,max,total\n");
for(int j = 0; j < MICROPROFILE_META_MAX; ++j)
{
if(S.MetaCounters[j].pName)
{
MicroProfilePrintf(CB, Handle, "\"%s\",%f,%lld,%lld\n",S.MetaCounters[j].pName, S.MetaCounters[j].nSumAggregate / (float)nAggregateFrames, (long long)S.MetaCounters[j].nSumAggregateMax, (long long)S.MetaCounters[j].nSumAggregate);
}
}
}
#if MICROPROFILE_EMBED_HTML
extern const char* g_MicroProfileHtml_begin[];
extern size_t g_MicroProfileHtml_begin_sizes[];
extern size_t g_MicroProfileHtml_begin_count;
extern const char* g_MicroProfileHtml_end[];
extern size_t g_MicroProfileHtml_end_sizes[];
extern size_t g_MicroProfileHtml_end_count;
void MicroProfileDumpHtml(MicroProfileWriteCallback CB, void* Handle, int nMaxFrames, const char* pHost)
{
uint32_t nRunning = S.nRunning;
S.nRunning = 0;
//stall pushing of timers
uint64_t nActiveGroup = S.nActiveGroup;
S.nActiveGroup = 0;
S.nPauseTicks = MP_TICK();
for(size_t i = 0; i < g_MicroProfileHtml_begin_count; ++i)
{
CB(Handle, g_MicroProfileHtml_begin_sizes[i]-1, g_MicroProfileHtml_begin[i]);
}
//dump info
uint64_t nTicks = MP_TICK();
float fToMsCPU = MicroProfileTickToMsMultiplier(MicroProfileTicksPerSecondCpu());
float fToMsGPU = MicroProfileTickToMsMultiplier(MicroProfileTicksPerSecondGpu());
float fAggregateMs = fToMsCPU * (nTicks - S.nAggregateFlipTick);
MicroProfilePrintf(CB, Handle, "var DumpHost = '%s';\n", pHost ? pHost : "");
time_t CaptureTime;
time(&CaptureTime);
MicroProfilePrintf(CB, Handle, "var DumpUtcCaptureTime = %ld;\n", CaptureTime);
MicroProfilePrintf(CB, Handle, "var AggregateInfo = {'Frames':%d, 'Time':%f};\n", S.nAggregateFrames, fAggregateMs);
//categories
MicroProfilePrintf(CB, Handle, "var CategoryInfo = Array(%d);\n",S.nCategoryCount);
for(uint32_t i = 0; i < S.nCategoryCount; ++i)
{
MicroProfilePrintf(CB, Handle, "CategoryInfo[%d] = \"%s\";\n", i, S.CategoryInfo[i].pName);
}
//groups
MicroProfilePrintf(CB, Handle, "var GroupInfo = Array(%d);\n\n",S.nGroupCount);
uint32_t nAggregateFrames = S.nAggregateFrames ? S.nAggregateFrames : 1;
for(uint32_t i = 0; i < S.nGroupCount; ++i)
{
MP_ASSERT(i == S.GroupInfo[i].nGroupIndex);
float fToMs = S.GroupInfo[i].Type == MicroProfileTokenTypeCpu ? fToMsCPU : fToMsGPU;
uint32_t nColor = S.TimerInfo[i].nColor;
MicroProfilePrintf(CB, Handle, "GroupInfo[%d] = MakeGroup(%d, \"%s\", %d, %d, %d, %f, %f, %f, '#%06x');\n",
S.GroupInfo[i].nGroupIndex,
S.GroupInfo[i].nGroupIndex,
S.GroupInfo[i].pName,
S.GroupInfo[i].nCategory,
S.GroupInfo[i].nNumTimers,
S.GroupInfo[i].Type == MicroProfileTokenTypeGpu?1:0,
fToMs * S.AggregateGroup[i],
fToMs * S.AggregateGroup[i] / nAggregateFrames,
fToMs * S.AggregateGroupMax[i],
((MICROPROFILE_UNPACK_RED(nColor) & 0xff) << 16) | ((MICROPROFILE_UNPACK_GREEN(nColor) & 0xff) << 8) | (MICROPROFILE_UNPACK_BLUE(nColor) & 0xff));
}
//timers
uint32_t nNumTimers = S.nTotalTimers;
uint32_t nBlockSize = 2 * nNumTimers;
float* pTimers = (float*)alloca(nBlockSize * 9 * sizeof(float));
float* pAverage = pTimers + nBlockSize;
float* pMax = pTimers + 2 * nBlockSize;
float* pMin = pTimers + 3 * nBlockSize;
float* pCallAverage = pTimers + 4 * nBlockSize;
float* pTimersExclusive = pTimers + 5 * nBlockSize;
float* pAverageExclusive = pTimers + 6 * nBlockSize;
float* pMaxExclusive = pTimers + 7 * nBlockSize;
float* pTotal = pTimers + 8 * nBlockSize;
MicroProfileCalcAllTimers(pTimers, pAverage, pMax, pMin, pCallAverage, pTimersExclusive, pAverageExclusive, pMaxExclusive, pTotal, nNumTimers);
MicroProfilePrintf(CB, Handle, "\nvar TimerInfo = Array(%d);\n\n", S.nTotalTimers);
for(uint32_t i = 0; i < S.nTotalTimers; ++i)
{
uint32_t nIdx = i * 2;
MP_ASSERT(i == S.TimerInfo[i].nTimerIndex);
uint32_t nColor = S.TimerInfo[i].nColor;
uint32_t nColorDark = (nColor >> 1) & ~0x80808080;
MicroProfilePrintf(CB, Handle, "TimerInfo[%d] = MakeTimer(%d, \"%s\", %d, '#%06x','#%06x', %f, %f, %f, %f, %f, %f, %d, %f,\n",
S.TimerInfo[i].nTimerIndex, S.TimerInfo[i].nTimerIndex, S.TimerInfo[i].pName, S.TimerInfo[i].nGroupIndex,
((MICROPROFILE_UNPACK_RED(nColor) & 0xff) << 16) | ((MICROPROFILE_UNPACK_GREEN(nColor) & 0xff) << 8) | (MICROPROFILE_UNPACK_BLUE(nColor) & 0xff),
((MICROPROFILE_UNPACK_RED(nColorDark) & 0xff) << 16) | ((MICROPROFILE_UNPACK_GREEN(nColorDark) & 0xff) << 8) | (MICROPROFILE_UNPACK_BLUE(nColorDark) & 0xff),
pAverage[nIdx],
pMax[nIdx],
pMin[nIdx],
pAverageExclusive[nIdx],
pMaxExclusive[nIdx],
pCallAverage[nIdx],
S.Aggregate[i].nCount,
pTotal[nIdx]);
MicroProfilePrintString(CB, Handle, "\t[");
for(int j = 0; j < MICROPROFILE_META_MAX; ++j)
{
if(S.MetaCounters[j].pName)
{
MicroProfilePrintUIntComma(CB, Handle, S.MetaCounters[j].nCounters[i]);
}
}
MicroProfilePrintString(CB, Handle, "],[");
for(int j = 0; j < MICROPROFILE_META_MAX; ++j)
{
if(S.MetaCounters[j].pName)
{
MicroProfilePrintUIntComma(CB, Handle, S.MetaCounters[j].nAggregate[i]);
}
}
MicroProfilePrintString(CB, Handle, "],[");
for(int j = 0; j < MICROPROFILE_META_MAX; ++j)
{
if(S.MetaCounters[j].pName)
{
MicroProfilePrintUIntComma(CB, Handle, S.MetaCounters[j].nAggregateMax[i]);
}
}
MicroProfilePrintString(CB, Handle, "]);\n");
}
MicroProfilePrintString(CB, Handle, "\nvar ThreadNames = [");
for(uint32_t i = 0; i < S.nNumLogs; ++i)
{
if(S.Pool[i])
{
MicroProfilePrintf(CB, Handle, "'%s',", S.Pool[i]->ThreadName);
}
else
{
MicroProfilePrintf(CB, Handle, "'Thread %d',", i);
}
}
MicroProfilePrintString(CB, Handle, "];\n\n");
MicroProfilePrintString(CB, Handle, "\nvar ThreadIds = [");
for(uint32_t i = 0; i < S.nNumLogs; ++i)
{
MicroProfileThreadIdType nThreadId = S.Pool[i] ? S.Pool[i]->nThreadId : 0;
MicroProfilePrintUIntComma(CB, Handle, nThreadId);
}
MicroProfilePrintString(CB, Handle, "];\n\n");
MicroProfilePrintString(CB, Handle, "\nvar ThreadGpu = [");
for(uint32_t i = 0; i < S.nNumLogs; ++i)
{
uint32_t nGpu = S.Pool[i] ? S.Pool[i]->nGpu : 0;
MicroProfilePrintUIntComma(CB, Handle, nGpu);
}
MicroProfilePrintString(CB, Handle, "];\n\n");
MicroProfilePrintString(CB, Handle, "\nvar ThreadGroupTimeArray = [\n");
for(uint32_t i = 0; i < S.nNumLogs; ++i)
{
if(S.Pool[i])
{
float fToMs = S.Pool[i]->nGpu ? fToMsGPU : fToMsCPU;
MicroProfilePrintf(CB, Handle, "MakeTimes(%e,[", fToMs);
for(uint32_t j = 0; j < MICROPROFILE_MAX_GROUPS; ++j)
{
MicroProfilePrintUIntComma(CB, Handle, S.Pool[i]->nAggregateGroupTicks[j]);
}
MicroProfilePrintString(CB, Handle, "]),\n");
}
}
MicroProfilePrintString(CB, Handle, "];");
MicroProfilePrintString(CB, Handle, "\nvar MetaNames = [");
for(int i = 0; i < MICROPROFILE_META_MAX; ++i)
{
if(S.MetaCounters[i].pName)
{
MicroProfilePrintf(CB, Handle, "'%s',", S.MetaCounters[i].pName);
}
}
MicroProfilePrintString(CB, Handle, "];\n\n");
MicroProfilePrintString(CB, Handle, "\nvar CounterInfo = [");
for(uint32_t i = 0; i < S.nNumCounters; ++i)
{
int64_t nCounter = S.Counters[i].load();
int64_t nLimit = S.CounterInfo[i].nLimit;
float fCounterPrc = 0.f;
float fBoxPrc = 1.f;
if(nLimit)
{
fCounterPrc = (float)nCounter / nLimit;
if(fCounterPrc>1.f)
{
fBoxPrc = 1.f / fCounterPrc;
fCounterPrc = 1.f;
}
}
int64_t nCounterMin = 0, nCounterMax = 0;
#if MICROPROFILE_COUNTER_HISTORY
nCounterMin = S.nCounterMin[i];
nCounterMax = S.nCounterMax[i];
#endif
char Formatted[64];
char FormattedLimit[64];
MicroProfileFormatCounter(S.CounterInfo[i].eFormat, nCounter, Formatted, sizeof(Formatted)-1);
MicroProfileFormatCounter(S.CounterInfo[i].eFormat, S.CounterInfo[i].nLimit, FormattedLimit, sizeof(FormattedLimit)-1);
MicroProfilePrintf(CB, Handle, "MakeCounter(%d, %d, %d, %d, %d, '%s', %lld, %lld, %lld, '%s', %lld, '%s', %d, %f, %f, [",
i,
S.CounterInfo[i].nParent,
S.CounterInfo[i].nSibling,
S.CounterInfo[i].nFirstChild,
S.CounterInfo[i].nLevel,
S.CounterInfo[i].pName,
(long long)nCounter,
(long long)nCounterMin,
(long long)nCounterMax,
Formatted,
(long long)nLimit,
FormattedLimit,
S.CounterInfo[i].eFormat == MICROPROFILE_COUNTER_FORMAT_BYTES ? 1 : 0,
fCounterPrc,
fBoxPrc
);
#if MICROPROFILE_COUNTER_HISTORY
if(0 != (S.CounterInfo[i].nFlags & MICROPROFILE_COUNTER_FLAG_DETAILED))
{
uint32_t nBaseIndex = S.nCounterHistoryPut;
for(uint32_t j = 0; j < MICROPROFILE_GRAPH_HISTORY; ++j)
{
uint32_t nHistoryIndex = (nBaseIndex + j) % MICROPROFILE_GRAPH_HISTORY;
int64_t nValue = MicroProfileClamp(S.nCounterHistory[nHistoryIndex][i], nCounterMin, nCounterMax);
MicroProfilePrintUIntComma(CB, Handle, nValue - nCounterMin);
}
}
#endif
MicroProfilePrintString(CB, Handle, "]),\n");
}
MicroProfilePrintString(CB, Handle, "];\n\n");
uint32_t nNumFrames = (MICROPROFILE_MAX_FRAME_HISTORY - MICROPROFILE_GPU_FRAME_DELAY - 3); //leave a few to not overwrite
nNumFrames = MicroProfileMin(nNumFrames, (uint32_t)nMaxFrames);
uint32_t nFirstFrame = (S.nFrameCurrent + MICROPROFILE_MAX_FRAME_HISTORY - nNumFrames) % MICROPROFILE_MAX_FRAME_HISTORY;
uint32_t nLastFrame = (nFirstFrame + nNumFrames) % MICROPROFILE_MAX_FRAME_HISTORY;
MP_ASSERT(nLastFrame == (S.nFrameCurrent % MICROPROFILE_MAX_FRAME_HISTORY));
MP_ASSERT(nFirstFrame < MICROPROFILE_MAX_FRAME_HISTORY);
MP_ASSERT(nLastFrame < MICROPROFILE_MAX_FRAME_HISTORY);
const int64_t nTickStart = S.Frames[nFirstFrame].nFrameStartCpu;
const int64_t nTickEnd = S.Frames[nLastFrame].nFrameStartCpu;
int64_t nTickStartGpu = S.Frames[nFirstFrame].nFrameStartGpu;
int64_t nTicksPerSecondCpu = MicroProfileTicksPerSecondCpu();
int64_t nTicksPerSecondGpu = MicroProfileTicksPerSecondGpu();
int64_t nTickReferenceCpu = 0, nTickReferenceGpu = 0;
// Can't just call GetGpuTickReference off main thread...
if(0 && MicroProfileGetGpuTickReference(&nTickReferenceCpu, &nTickReferenceGpu))
{
nTickStartGpu = (nTickStart - nTickReferenceCpu) * (double(nTicksPerSecondGpu) / double(nTicksPerSecondCpu)) + nTickReferenceGpu;
}
#if MICROPROFILE_DEBUG
printf("dumping %d frames\n", nNumFrames);
printf("dumping frame %d to %d\n", nFirstFrame, nLastFrame);
#endif
uint32_t* nTimerCounter = (uint32_t*)alloca(sizeof(uint32_t)* S.nTotalTimers);
memset(nTimerCounter, 0, sizeof(uint32_t) * S.nTotalTimers);
MicroProfilePrintf(CB, Handle, "var Frames = Array(%d);\n", nNumFrames);
for(uint32_t i = 0; i < nNumFrames; ++i)
{
uint32_t nFrameIndex = (nFirstFrame + i) % MICROPROFILE_MAX_FRAME_HISTORY;
uint32_t nFrameIndexNext = (nFrameIndex + 1) % MICROPROFILE_MAX_FRAME_HISTORY;
MicroProfilePrintf(CB, Handle, "var tt%d = [\n", i);
for(uint32_t j = 0; j < S.nNumLogs; ++j)
{
MicroProfileThreadLog* pLog = S.Pool[j];
uint32_t nLogStart = S.Frames[nFrameIndex].nLogStart[j];
uint32_t nLogEnd = S.Frames[nFrameIndexNext].nLogStart[j];
MicroProfilePrintString(CB, Handle, "[");
for(uint32_t k = nLogStart; k != nLogEnd; k = (k+1) % MICROPROFILE_BUFFER_SIZE)
{
uint32_t nLogType = MicroProfileLogType(pLog->Log[k]);
if(nLogType == MP_LOG_META)
{
//for meta, store the count + 8, which is the tick part
nLogType = 8 + MicroProfileLogGetTick(pLog->Log[k]);
}
MicroProfilePrintUIntComma(CB, Handle, nLogType);
}
MicroProfilePrintString(CB, Handle, "],\n");
}
MicroProfilePrintString(CB, Handle, "];\n");
MicroProfilePrintf(CB, Handle, "var ts%d = [\n", i);
for(uint32_t j = 0; j < S.nNumLogs; ++j)
{
MicroProfileThreadLog* pLog = S.Pool[j];
uint32_t nLogStart = S.Frames[nFrameIndex].nLogStart[j];
uint32_t nLogEnd = S.Frames[nFrameIndexNext].nLogStart[j];
int64_t nStartTick = pLog->nGpu ? nTickStartGpu : nTickStart;
float fToMs = pLog->nGpu ? fToMsGPU : fToMsCPU;
if(pLog->nGpu)
MicroProfilePrintf(CB, Handle, "MakeTimesExtra(%e,%e,tt%d[%d],[", fToMs, fToMsCPU, i, j);
else
MicroProfilePrintf(CB, Handle, "MakeTimes(%e,[", fToMs);
for(uint32_t k = nLogStart; k != nLogEnd; k = (k+1) % MICROPROFILE_BUFFER_SIZE)
{
uint32_t nLogType = MicroProfileLogType(pLog->Log[k]);
uint64_t nTick =
(nLogType == MP_LOG_ENTER || nLogType == MP_LOG_LEAVE)
? MicroProfileLogTickDifference(nStartTick, pLog->Log[k])
: (nLogType == MP_LOG_GPU_EXTRA)
? MicroProfileLogTickDifference(nTickStart, pLog->Log[k])
: 0;
MicroProfilePrintUIntComma(CB, Handle, nTick);
}
MicroProfilePrintString(CB, Handle, "]),\n");
}
MicroProfilePrintString(CB, Handle, "];\n");
MicroProfilePrintf(CB, Handle, "var ti%d = [\n", i);
for(uint32_t j = 0; j < S.nNumLogs; ++j)
{
MicroProfileThreadLog* pLog = S.Pool[j];
uint32_t nLogStart = S.Frames[nFrameIndex].nLogStart[j];
uint32_t nLogEnd = S.Frames[nFrameIndexNext].nLogStart[j];
uint32_t nLabelIndex = 0;
MicroProfilePrintString(CB, Handle, "[");
for(uint32_t k = nLogStart; k != nLogEnd; k = (k+1) % MICROPROFILE_BUFFER_SIZE)
{
uint32_t nLogType = MicroProfileLogType(pLog->Log[k]);
uint32_t nTimerIndex = (uint32_t)MicroProfileLogTimerIndex(pLog->Log[k]);
uint32_t nIndex = (nLogType == MP_LOG_LABEL) ? nLabelIndex++ : nTimerIndex;
MicroProfilePrintUIntComma(CB, Handle, nIndex);
if(nLogType == MP_LOG_ENTER)
nTimerCounter[nTimerIndex]++;
}
MicroProfilePrintString(CB, Handle, "],\n");
}
MicroProfilePrintString(CB, Handle, "];\n");
MicroProfilePrintf(CB, Handle, "var tl%d = [\n", i);
for(uint32_t j = 0; j < S.nNumLogs; ++j)
{
MicroProfileThreadLog* pLog = S.Pool[j];
uint32_t nLogStart = S.Frames[nFrameIndex].nLogStart[j];
uint32_t nLogEnd = S.Frames[nFrameIndexNext].nLogStart[j];
MicroProfilePrintString(CB, Handle, "[");
for(uint32_t k = nLogStart; k != nLogEnd; k = (k+1) % MICROPROFILE_BUFFER_SIZE)
{
uint32_t nLogType = MicroProfileLogType(pLog->Log[k]);
if(nLogType == MP_LOG_LABEL)
{
uint64_t nLabel = MicroProfileLogGetTick(pLog->Log[k]);
const char* pLabelName = MicroProfileGetLabel(nLabel);
if(pLabelName)
{
MicroProfilePrintString(CB, Handle, "\"");
MicroProfilePrintString(CB, Handle, pLabelName);
MicroProfilePrintString(CB, Handle, "\",");
}
else
MicroProfilePrintString(CB, Handle, "null,");
}
}
MicroProfilePrintString(CB, Handle, "],\n");
}
MicroProfilePrintString(CB, Handle, "];\n");
int64_t nFrameStart = S.Frames[nFrameIndex].nFrameStartCpu;
int64_t nFrameEnd = S.Frames[nFrameIndexNext].nFrameStartCpu;
int64_t nFrameStartGpu = S.Frames[nFrameIndex].nFrameStartGpu;
int64_t nFrameEndGpu = S.Frames[nFrameIndexNext].nFrameStartGpu;
float fToMs = MicroProfileTickToMsMultiplier(nTicksPerSecondCpu);
float fFrameMs = MicroProfileLogTickDifference(nTickStart, nFrameStart) * fToMs;
float fFrameEndMs = MicroProfileLogTickDifference(nTickStart, nFrameEnd) * fToMs;
float fFrameGpuMs = MicroProfileLogTickDifference(nTickStartGpu, nFrameStartGpu) * fToMsGPU;
float fFrameGpuEndMs = MicroProfileLogTickDifference(nTickStartGpu, nFrameEndGpu) * fToMsGPU;
MicroProfilePrintf(CB, Handle, "Frames[%d] = MakeFrame(%d, %f, %f, %f, %f, ts%d, tt%d, ti%d, tl%d);\n", i, 0, fFrameMs, fFrameEndMs, fFrameGpuMs, fFrameGpuEndMs, i, i, i, i);
}
uint32_t nContextSwitchStart = 0;
uint32_t nContextSwitchEnd = 0;
MicroProfileContextSwitchSearch(&nContextSwitchStart, &nContextSwitchEnd, nTickStart, nTickEnd);
MicroProfilePrintString(CB, Handle, "var CSwitchThreadInOutCpu = [\n");
for(uint32_t j = nContextSwitchStart; j != nContextSwitchEnd; j = (j+1) % MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE)
{
MicroProfileContextSwitch CS = S.ContextSwitch[j];
int nCpu = CS.nCpu;
MicroProfilePrintUIntComma(CB, Handle, CS.nThreadIn);
MicroProfilePrintUIntComma(CB, Handle, CS.nThreadOut);
MicroProfilePrintUIntComma(CB, Handle, nCpu);
}
MicroProfilePrintString(CB, Handle, "];\n");
MicroProfilePrintString(CB, Handle, "var CSwitchTime = [\n");
float fToMsCpu = MicroProfileTickToMsMultiplier(MicroProfileTicksPerSecondCpu());
for(uint32_t j = nContextSwitchStart; j != nContextSwitchEnd; j = (j+1) % MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE)
{
MicroProfileContextSwitch CS = S.ContextSwitch[j];
float fTime = MicroProfileLogTickDifference(nTickStart, CS.nTicks) * fToMsCpu;
MicroProfilePrintf(CB, Handle, "%f,", fTime);
}
MicroProfilePrintString(CB, Handle, "];\n");
MicroProfileThreadInfo Threads[MICROPROFILE_MAX_CONTEXT_SWITCH_THREADS];
uint32_t nNumThreadsBase = 0;
uint32_t nNumThreads = MicroProfileContextSwitchGatherThreads(nContextSwitchStart, nContextSwitchEnd, Threads, &nNumThreadsBase);
MicroProfilePrintString(CB, Handle, "var CSwitchThreads = {");
for (uint32_t i = 0; i < nNumThreads; ++i)
{
char Name[256];
const char* pProcessName = MicroProfileGetProcessName(Threads[i].nProcessId, Name, sizeof(Name));
const char* p1 = i < nNumThreadsBase ? S.Pool[i]->ThreadName : "?";
const char* p2 = pProcessName ? pProcessName : "?";
MicroProfilePrintf(CB, Handle, "%lld:{\'tid\':%lld,\'pid\':%lld,\'t\':\'%s\',\'p\':\'%s\'},",
(long long)Threads[i].nThreadId,
(long long)Threads[i].nThreadId,
(long long)Threads[i].nProcessId,
p1, p2
);
}
MicroProfilePrintString(CB, Handle, "};\n");
for(size_t i = 0; i < g_MicroProfileHtml_end_count; ++i)
{
CB(Handle, g_MicroProfileHtml_end_sizes[i]-1, g_MicroProfileHtml_end[i]);
}
uint32_t* nGroupCounter = (uint32_t*)alloca(sizeof(uint32_t)* S.nGroupCount);
memset(nGroupCounter, 0, sizeof(uint32_t) * S.nGroupCount);
for(uint32_t i = 0; i < S.nTotalTimers; ++i)
{
uint32_t nGroupIndex = S.TimerInfo[i].nGroupIndex;
nGroupCounter[nGroupIndex] += nTimerCounter[i];
}
uint32_t* nGroupCounterSort = (uint32_t*)alloca(sizeof(uint32_t)* S.nGroupCount);
uint32_t* nTimerCounterSort = (uint32_t*)alloca(sizeof(uint32_t)* S.nTotalTimers);
for(uint32_t i = 0; i < S.nGroupCount; ++i)
{
nGroupCounterSort[i] = i;
}
for(uint32_t i = 0; i < S.nTotalTimers; ++i)
{
nTimerCounterSort[i] = i;
}
std::sort(nGroupCounterSort, nGroupCounterSort + S.nGroupCount,
[nGroupCounter](const uint32_t l, const uint32_t r)
{
return nGroupCounter[l] > nGroupCounter[r];
}
);
std::sort(nTimerCounterSort, nTimerCounterSort + S.nTotalTimers,
[nTimerCounter](const uint32_t l, const uint32_t r)
{
return nTimerCounter[l] > nTimerCounter[r];
}
);
MicroProfilePrintf(CB, Handle, "\n<!--\nMarker Per Group\n");
for(uint32_t i = 0; i < S.nGroupCount; ++i)
{
uint32_t idx = nGroupCounterSort[i];
MicroProfilePrintf(CB, Handle, "%8d:%s\n", nGroupCounter[idx], S.GroupInfo[idx].pName);
}
MicroProfilePrintf(CB, Handle, "Marker Per Timer\n");
for(uint32_t i = 0; i < S.nTotalTimers; ++i)
{
uint32_t idx = nTimerCounterSort[i];
MicroProfilePrintf(CB, Handle, "%8d:%s(%s)\n", nTimerCounter[idx], S.TimerInfo[idx].pName, S.GroupInfo[S.TimerInfo[idx].nGroupIndex].pName);
}
MicroProfilePrintf(CB, Handle, "\n-->\n");
S.nActiveGroup = nActiveGroup;
S.nRunning = nRunning;
#if MICROPROFILE_DEBUG
int64_t nTicksEnd = MP_TICK();
float fMs = fToMsCpu * (nTicksEnd - S.nPauseTicks);
printf("html dump took %6.2fms\n", fMs);
#endif
}
#else
void MicroProfileDumpHtml(MicroProfileWriteCallback CB, void* Handle, int nMaxFrames, const char* pHost)
{
MicroProfilePrintString(CB, Handle, "HTML output is disabled because MICROPROFILE_EMBED_HTML is 0\n");
}
#endif
void MicroProfileWriteFile(void* Handle, size_t nSize, const char* pData)
{
fwrite(pData, nSize, 1, (FILE*)Handle);
}
void MicroProfileDumpToFile()
{
std::lock_guard<std::recursive_mutex> Lock(MicroProfileMutex());
FILE* F = fopen(S.DumpPath, "w");
if(F)
{
if(S.eDumpType == MicroProfileDumpTypeHtml)
MicroProfileDumpHtml(MicroProfileWriteFile, F, S.nDumpFrames, 0);
else if(S.eDumpType == MicroProfileDumpTypeCsv)
MicroProfileDumpCsv(MicroProfileWriteFile, F, S.nDumpFrames);
fclose(F);
}
}
#if MICROPROFILE_WEBSERVER
uint32_t MicroProfileWebServerPort()
{
return S.nWebServerPort;
}
void MicroProfileSendSocket(MpSocket Socket, const char* pData, size_t nSize)
{
#ifdef MSG_NOSIGNAL
int nFlags = MSG_NOSIGNAL;
#else
int nFlags = 0;
#endif
send(Socket, pData, (int)nSize, nFlags);
}
void MicroProfileFlushSocket(MpSocket Socket)
{
if(S.nWebServerPut)
{
MicroProfileSendSocket(Socket, &S.WebServerBuffer[0], S.nWebServerPut);
S.nWebServerPut = 0;
}
}
void MicroProfileWriteSocket(void* Handle, size_t nSize, const char* pData)
{
MpSocket Socket = *(MpSocket*)Handle;
if(nSize > MICROPROFILE_WEBSERVER_SOCKET_BUFFER_SIZE / 2)
{
MicroProfileFlushSocket(Socket);
MicroProfileSendSocket(Socket, pData, nSize);
}
else
{
memcpy(&S.WebServerBuffer[S.nWebServerPut], pData, nSize);
S.nWebServerPut += (uint32_t)nSize;
if(S.nWebServerPut > MICROPROFILE_WEBSERVER_SOCKET_BUFFER_SIZE/2)
{
MicroProfileFlushSocket(Socket);
}
}
S.nWebServerDataSent += nSize;
}
#if MICROPROFILE_MINIZ
#ifndef MICROPROFILE_COMPRESS_BUFFER_SIZE
#define MICROPROFILE_COMPRESS_BUFFER_SIZE (256<<10)
#endif
#define MICROPROFILE_COMPRESS_CHUNK (MICROPROFILE_COMPRESS_BUFFER_SIZE/2)
struct MicroProfileCompressedSocketState
{
unsigned char DeflateOut[MICROPROFILE_COMPRESS_CHUNK];
unsigned char DeflateIn[MICROPROFILE_COMPRESS_CHUNK];
mz_stream Stream;
MpSocket Socket;
uint32_t nSize;
uint32_t nCompressedSize;
uint32_t nFlushes;
uint32_t nMemmoveBytes;
};
void MicroProfileCompressedSocketFlush(MicroProfileCompressedSocketState* pState)
{
mz_stream& Stream = pState->Stream;
unsigned char* pSendStart = &pState->DeflateOut[0];
unsigned char* pSendEnd = &pState->DeflateOut[MICROPROFILE_COMPRESS_CHUNK - Stream.avail_out];
if(pSendStart != pSendEnd)
{
MicroProfileSendSocket(pState->Socket, (char*)pSendStart, pSendEnd - pSendStart);
pState->nCompressedSize += pSendEnd - pSendStart;
}
Stream.next_out = &pState->DeflateOut[0];
Stream.avail_out = MICROPROFILE_COMPRESS_CHUNK;
}
void MicroProfileCompressedSocketStart(MicroProfileCompressedSocketState* pState, MpSocket Socket)
{
mz_stream& Stream = pState->Stream;
memset(&Stream, 0, sizeof(Stream));
Stream.next_out = &pState->DeflateOut[0];
Stream.avail_out = MICROPROFILE_COMPRESS_CHUNK;
Stream.next_in = &pState->DeflateIn[0];
Stream.avail_in = 0;
mz_deflateInit(&Stream, MZ_DEFAULT_COMPRESSION);
pState->Socket = Socket;
pState->nSize = 0;
pState->nCompressedSize = 0;
pState->nFlushes = 0;
pState->nMemmoveBytes = 0;
}
void MicroProfileCompressedSocketFinish(MicroProfileCompressedSocketState* pState)
{
mz_stream& Stream = pState->Stream;
MicroProfileCompressedSocketFlush(pState);
int r = mz_deflate(&Stream, MZ_FINISH);
MP_ASSERT(r == MZ_STREAM_END);
MicroProfileCompressedSocketFlush(pState);
r = mz_deflateEnd(&Stream);
MP_ASSERT(r == MZ_OK);
}
void MicroProfileCompressedWriteSocket(void* Handle, size_t nSize, const char* pData)
{
MicroProfileCompressedSocketState* pState = (MicroProfileCompressedSocketState*)Handle;
mz_stream& Stream = pState->Stream;
const unsigned char* pDeflateInEnd = Stream.next_in + Stream.avail_in;
const unsigned char* pDeflateInStart = &pState->DeflateIn[0];
const unsigned char* pDeflateInRealEnd = &pState->DeflateIn[MICROPROFILE_COMPRESS_CHUNK];
pState->nSize += nSize;
if(nSize <= pDeflateInRealEnd - pDeflateInEnd)
{
memcpy((void*)pDeflateInEnd, pData, nSize);
Stream.avail_in += nSize;
MP_ASSERT(Stream.next_in + Stream.avail_in <= pDeflateInRealEnd);
return;
}
int Flush = 0;
while(nSize)
{
pDeflateInEnd = Stream.next_in + Stream.avail_in;
if(Flush)
{
pState->nFlushes++;
MicroProfileCompressedSocketFlush(pState);
pDeflateInRealEnd = &pState->DeflateIn[MICROPROFILE_COMPRESS_CHUNK];
if(pDeflateInEnd == pDeflateInRealEnd)
{
if(Stream.avail_in)
{
MP_ASSERT(pDeflateInStart != Stream.next_in);
memmove((void*)pDeflateInStart, Stream.next_in, Stream.avail_in);
pState->nMemmoveBytes += Stream.avail_in;
}
Stream.next_in = pDeflateInStart;
pDeflateInEnd = Stream.next_in + Stream.avail_in;
}
}
size_t nSpace = pDeflateInRealEnd - pDeflateInEnd;
size_t nBytes = MicroProfileMin(nSpace, nSize);
MP_ASSERT(nBytes + pDeflateInEnd <= pDeflateInRealEnd);
memcpy((void*)pDeflateInEnd, pData, nBytes);
Stream.avail_in += nBytes;
nSize -= nBytes;
pData += nBytes;
int r = mz_deflate(&Stream, MZ_NO_FLUSH);
Flush = r == MZ_BUF_ERROR || nBytes == 0 || Stream.avail_out == 0 ? 1 : 0;
MP_ASSERT(r == MZ_BUF_ERROR || r == MZ_OK);
if(r == MZ_BUF_ERROR)
{
r = mz_deflate(&Stream, MZ_SYNC_FLUSH);
}
}
}
#endif
void* MicroProfileWebServerUpdate(void*);
void MicroProfileWebServerUpdateStop();
void MicroProfileWebServerHello(int nPort)
{
uint32_t nInterfaces = 0;
// getifaddrs hangs on some versions of Android so disable IP address scanning
#if (defined(__APPLE__) || defined(__linux__)) && !defined(__ANDROID__)
struct ifaddrs* ifal;
if(getifaddrs(&ifal) == 0 && ifal)
{
for(struct ifaddrs* ifa = ifal; ifa; ifa = ifa->ifa_next)
{
if(ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET)
{
void* pAddress = &((struct sockaddr_in *)ifa->ifa_addr)->sin_addr;
char Ip[INET_ADDRSTRLEN];
if(inet_ntop(AF_INET, pAddress, Ip, sizeof(Ip)))
{
MICROPROFILE_PRINTF("MicroProfile: Web server started on %s:%d\n", Ip, nPort);
nInterfaces++;
}
}
}
freeifaddrs(ifal);
}
#endif
if(nInterfaces == 0)
{
MICROPROFILE_PRINTF("MicroProfile: Web server started on port %d\n", nPort);
}
}
void MicroProfileWebServerStart()
{
if(!S.WebServerThread)
{
MicroProfileThreadStart(&S.WebServerThread, MicroProfileWebServerUpdate);
}
}
void MicroProfileWebServerStop()
{
if(S.WebServerThread)
{
MicroProfileWebServerUpdateStop();
MicroProfileThreadJoin(&S.WebServerThread);
}
}
const char* MicroProfileParseHeader(char* pRequest, const char* pPrefix)
{
size_t nRequestSize = strlen(pRequest);
size_t nPrefixSize = strlen(pPrefix);
for(uint32_t i = 0; i < nRequestSize; ++i)
{
if((i == 0 || pRequest[i-1] == '\n') && strncmp(&pRequest[i], pPrefix, nPrefixSize) == 0)
{
char* pResult = &pRequest[i + nPrefixSize];
size_t nResultSize = strcspn(pResult, " \r\n");
pResult[nResultSize] = '\0';
return pResult;
}
}
return 0;
}
int MicroProfileParseGet(const char* pGet)
{
const char* pStart = pGet;
while(*pGet != '\0')
{
if(*pGet < '0' || *pGet > '9')
return 0;
pGet++;
}
int nFrames = atoi(pStart);
if(nFrames)
{
return nFrames;
}
else
{
return MICROPROFILE_WEBSERVER_FRAMES;
}
}
void MicroProfileWebServerHandleRequest(MpSocket Connection)
{
char Request[8192];
int nReceived = recv(Connection, Request, sizeof(Request)-1, 0);
if(nReceived <= 0)
return;
Request[nReceived] = 0;
std::lock_guard<std::recursive_mutex> Lock(MicroProfileMutex());
MICROPROFILE_SCOPE(g_MicroProfileWebServerUpdate);
#if MICROPROFILE_MINIZ
#define MICROPROFILE_HTML_HEADER "HTTP/1.0 200 OK\r\nContent-Type: text/html\r\nContent-Encoding: deflate\r\nExpires: Tue, 01 Jan 2199 16:00:00 GMT\r\n\r\n"
#else
#define MICROPROFILE_HTML_HEADER "HTTP/1.0 200 OK\r\nContent-Type: text/html\r\nExpires: Tue, 01 Jan 2199 16:00:00 GMT\r\n\r\n"
#endif
const char* pUrl = MicroProfileParseHeader(Request, "GET /");
if(!pUrl)
return;
int nFrames = MicroProfileParseGet(pUrl);
if(nFrames <= 0)
return;
const char* pHost = MicroProfileParseHeader(Request, "Host: ");
uint64_t nTickStart = MP_TICK();
MicroProfileSendSocket(Connection, MICROPROFILE_HTML_HEADER, sizeof(MICROPROFILE_HTML_HEADER)-1);
uint64_t nDataStart = S.nWebServerDataSent;
S.nWebServerPut = 0;
#if 0 == MICROPROFILE_MINIZ
MicroProfileDumpHtml(MicroProfileWriteSocket, &Connection, nFrames, pHost);
uint64_t nDataEnd = S.nWebServerDataSent;
uint64_t nTickEnd = MP_TICK();
uint64_t nDiff = (nTickEnd - nTickStart);
float fMs = MicroProfileTickToMsMultiplier(MicroProfileTicksPerSecondCpu()) * nDiff;
int nKb = ((nDataEnd-nDataStart)>>10) + 1;
MicroProfilePrintf(MicroProfileWriteSocket, &Connection, "\n<!-- Sent %dkb in %.2fms-->\n\n",nKb, fMs);
MicroProfileFlushSocket(Connection);
#else
MicroProfileCompressedSocketState CompressState;
MicroProfileCompressedSocketStart(&CompressState, Connection);
MicroProfileDumpHtml(MicroProfileCompressedWriteSocket, &CompressState, nFrames, pHost);
S.nWebServerDataSent += CompressState.nSize;
uint64_t nDataEnd = S.nWebServerDataSent;
uint64_t nTickEnd = MP_TICK();
uint64_t nDiff = (nTickEnd - nTickStart);
float fMs = MicroProfileTickToMsMultiplier(MicroProfileTicksPerSecondCpu()) * nDiff;
int nKb = ((nDataEnd-nDataStart)>>10) + 1;
int nCompressedKb = ((CompressState.nCompressedSize)>>10) + 1;
MicroProfilePrintf(MicroProfileCompressedWriteSocket, &CompressState, "\n<!-- Sent %dkb(compressed %dkb) in %.2fms-->\n\n", nKb, nCompressedKb, fMs);
MicroProfileCompressedSocketFinish(&CompressState);
MicroProfileFlushSocket(Connection);
#endif
}
void MicroProfileWebServerCloseSocket(MpSocket Connection)
{
#ifdef _WIN32
closesocket(Connection);
#else
shutdown(Connection,SHUT_RDWR);
close(Connection);
#endif
}
void* MicroProfileWebServerUpdate(void*)
{
#ifdef _WIN32
WSADATA wsa;
if(WSAStartup(MAKEWORD(2, 2), &wsa))
return 0;
#endif
S.WebServerSocket = socket(PF_INET, SOCK_STREAM, 6);
MP_ASSERT(!MP_INVALID_SOCKET(S.WebServerSocket));
uint32_t nPortBegin = MICROPROFILE_WEBSERVER_PORT;
uint32_t nPortEnd = nPortBegin + 20;
struct sockaddr_in Addr;
Addr.sin_family = AF_INET;
Addr.sin_addr.s_addr = INADDR_ANY;
for(uint32_t nPort = nPortBegin; nPort < nPortEnd; ++nPort)
{
Addr.sin_port = htons(nPort);
if(0 == ::bind(S.WebServerSocket, (sockaddr*)&Addr, sizeof(Addr)))
{
S.nWebServerPort = nPort;
break;
}
}
if(S.nWebServerPort)
{
MicroProfileWebServerHello(S.nWebServerPort);
listen(S.WebServerSocket, 8);
for (;;)
{
MpSocket Connection = accept(S.WebServerSocket, 0, 0);
if(MP_INVALID_SOCKET(Connection)) break;
#ifdef SO_NOSIGPIPE
int nConnectionOption = 1;
setsockopt(Connection, SOL_SOCKET, SO_NOSIGPIPE, &nConnectionOption, sizeof(nConnectionOption));
#endif
MicroProfileWebServerHandleRequest(Connection);
MicroProfileWebServerCloseSocket(Connection);
}
S.nWebServerPort = 0;
}
else
{
MICROPROFILE_PRINTF("MicroProfile: Web server could not start: no free ports in range [%d..%d)\n", nPortBegin, nPortEnd);
}
#ifdef _WIN32
WSACleanup();
#endif
return 0;
}
void MicroProfileWebServerUpdateStop()
{
MicroProfileWebServerCloseSocket(S.WebServerSocket);
}
#else
void MicroProfileWebServerStart()
{
}
void MicroProfileWebServerStop()
{
}
uint32_t MicroProfileWebServerPort()
{
return 0;
}
#endif
#if MICROPROFILE_CONTEXT_SWITCH_TRACE
//functions that need to be implemented per platform.
void* MicroProfileTraceThread(void* unused);
void MicroProfileContextSwitchTraceStart()
{
if(!S.ContextSwitchThread)
{
MicroProfileThreadStart(&S.ContextSwitchThread, MicroProfileTraceThread);
}
}
void MicroProfileContextSwitchTraceStop()
{
if(S.ContextSwitchThread)
{
S.bContextSwitchStop = true;
MicroProfileThreadJoin(&S.ContextSwitchThread);
S.bContextSwitchStop = false;
}
}
void MicroProfileContextSwitchSearch(uint32_t* pContextSwitchStart, uint32_t* pContextSwitchEnd, uint64_t nBaseTicksCpu, uint64_t nBaseTicksEndCpu)
{
MICROPROFILE_SCOPE(g_MicroProfileContextSwitchSearch);
uint32_t nContextSwitchPut = S.nContextSwitchPut;
uint64_t nContextSwitchStart, nContextSwitchEnd;
nContextSwitchStart = nContextSwitchEnd = (nContextSwitchPut + MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE - 1) % MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE;
int64_t nSearchEnd = nBaseTicksEndCpu + MicroProfileMsToTick(30.f, MicroProfileTicksPerSecondCpu());
int64_t nSearchBegin = nBaseTicksCpu - MicroProfileMsToTick(30.f, MicroProfileTicksPerSecondCpu());
for(uint32_t i = 0; i < MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE; ++i)
{
uint32_t nIndex = (nContextSwitchPut + MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE - (i+1)) % MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE;
MicroProfileContextSwitch& CS = S.ContextSwitch[nIndex];
if(CS.nTicks > nSearchEnd)
{
nContextSwitchEnd = nIndex;
}
if(CS.nTicks > nSearchBegin)
{
nContextSwitchStart = nIndex;
}
}
*pContextSwitchStart = nContextSwitchStart;
*pContextSwitchEnd = nContextSwitchEnd;
}
uint32_t MicroProfileContextSwitchGatherThreads(uint32_t nContextSwitchStart, uint32_t nContextSwitchEnd, MicroProfileThreadInfo* Threads, uint32_t* nNumThreadsBase)
{
MicroProfileProcessIdType nCurrentProcessId = MP_GETCURRENTPROCESSID();
uint32_t nNumThreads = 0;
for(uint32_t i = 0; i < MICROPROFILE_MAX_THREADS && S.Pool[i]; ++i)
{
Threads[nNumThreads].nProcessId = nCurrentProcessId;
Threads[nNumThreads].nThreadId = S.Pool[i]->nThreadId;
nNumThreads++;
}
*nNumThreadsBase = nNumThreads;
for(uint32_t i = nContextSwitchStart; i != nContextSwitchEnd; i = (i+1) % MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE)
{
MicroProfileContextSwitch CS = S.ContextSwitch[i];
MicroProfileThreadIdType nThreadId = CS.nThreadIn;
if(nThreadId)
{
MicroProfileProcessIdType nProcessId = CS.nProcessIn;
bool bSeen = false;
for(uint32_t j = 0; j < nNumThreads; ++j)
{
if(Threads[j].nThreadId == nThreadId && Threads[j].nProcessId == nProcessId)
{
bSeen = true;
break;
}
}
if(!bSeen)
{
Threads[nNumThreads].nProcessId = nProcessId;
Threads[nNumThreads].nThreadId = nThreadId;
nNumThreads++;
}
}
if(nNumThreads == MICROPROFILE_MAX_CONTEXT_SWITCH_THREADS)
{
break;
}
}
return nNumThreads;
}
#if defined(_WIN32)
#include <psapi.h>
#pragma comment(lib, "psapi.lib")
const char* MicroProfileGetProcessName(MicroProfileProcessIdType nId, char* Buffer, uint32_t nSize)
{
if(HANDLE Handle = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ, FALSE, nId))
{
DWORD nResult = GetModuleBaseNameA(Handle, nullptr, Buffer, nSize);
CloseHandle(Handle);
return nResult ? Buffer : nullptr;
}
return nullptr;
}
void* MicroProfileTraceThread(void* unused)
{
while(!S.bContextSwitchStop)
{
FILE* pFile = fopen("\\\\.\\pipe\\microprofile-contextswitch", "rb");
if(!pFile)
{
Sleep(1000);
continue;
}
S.bContextSwitchRunning = true;
MicroProfileContextSwitch Buffer[1024];
while(!ferror(pFile) && !S.bContextSwitchStop)
{
size_t nCount = fread(Buffer, sizeof(MicroProfileContextSwitch), ARRAYSIZE(Buffer), pFile);
for(size_t i = 0; i < nCount; ++i)
MicroProfileContextSwitchPut(&Buffer[i]);
}
fclose(pFile);
S.bContextSwitchRunning = false;
}
return 0;
}
#elif defined(__APPLE__)
#include <sys/time.h>
#include <libproc.h>
const char* MicroProfileGetProcessName(MicroProfileProcessIdType nId, char* Buffer, uint32_t nSize)
{
char Path[PATH_MAX];
if(proc_pidpath(nId, Path, sizeof(Path)) == 0)
return nullptr;
char* pSlash = strrchr(Path, '/');
char* pName = pSlash ? pSlash + 1 : Path;
strncpy(Buffer, pName, nSize-1);
Buffer[nSize-1] = 0;
return Buffer;
}
void* MicroProfileTraceThread(void*)
{
while(!S.bContextSwitchStop)
{
FILE* pFile = fopen("/tmp/microprofile-contextswitch", "r");
if(!pFile)
{
usleep(1000000);
continue;
}
S.bContextSwitchRunning = true;
char* pLine = 0;
size_t cap = 0;
size_t len = 0;
uint32_t nLastThread[MICROPROFILE_MAX_CONTEXT_SWITCH_THREADS] = {0};
while((len = getline(&pLine, &cap, pFile))>0 && !S.bContextSwitchStop)
{
if(strncmp(pLine, "MPTD ", 5) != 0)
continue;
char* pos = pLine + 4;
uint32_t cpu = strtol(pos + 1, &pos, 16);
uint32_t pid = strtol(pos + 1, &pos, 16);
uint32_t tid = strtol(pos + 1, &pos, 16);
int64_t timestamp = strtoll(pos + 1, &pos, 16);
if(cpu < MICROPROFILE_MAX_CONTEXT_SWITCH_THREADS)
{
MicroProfileContextSwitch Switch;
Switch.nThreadOut = nLastThread[cpu];
Switch.nThreadIn = tid;
Switch.nProcessIn = pid;
Switch.nCpu = cpu;
Switch.nTicks = timestamp;
MicroProfileContextSwitchPut(&Switch);
nLastThread[cpu] = tid;
}
}
fclose(pFile);
S.bContextSwitchRunning = false;
}
return 0;
}
#endif
#else
void MicroProfileContextSwitchTraceStart()
{
}
void MicroProfileContextSwitchTraceStop()
{
}
void MicroProfileContextSwitchSearch(uint32_t* pContextSwitchStart, uint32_t* pContextSwitchEnd, uint64_t nBaseTicksCpu, uint64_t nBaseTicksEndCpu)
{
(void)nBaseTicksCpu;
(void)nBaseTicksEndCpu;
*pContextSwitchStart = 0;
*pContextSwitchEnd = 0;
}
uint32_t MicroProfileContextSwitchGatherThreads(uint32_t nContextSwitchStart, uint32_t nContextSwitchEnd, MicroProfileThreadInfo* Threads, uint32_t* nNumThreadsBase)
{
(void)nContextSwitchStart;
(void)nContextSwitchEnd;
(void)Threads;
*nNumThreadsBase = 0;
return 0;
}
const char* MicroProfileGetProcessName(MicroProfileProcessIdType nId, char* Buffer, uint32_t nSize)
{
(void)nId;
(void)Buffer;
(void)nSize;
return nullptr;
}
#endif
void MicroProfileGpuShutdown()
{
if(!S.GPU.Shutdown)
return;
S.GPU.Shutdown();
memset(&S.GPU, 0, sizeof(S.GPU));
}
uint32_t MicroProfileGpuFlip()
{
if(!S.GPU.Flip)
return (uint32_t)-1;
return S.GPU.Flip();
}
uint32_t MicroProfileGpuInsertTimer(void* pContext)
{
if(!S.GPU.InsertTimer)
return (uint32_t)-1;
return S.GPU.InsertTimer(pContext);
}
uint64_t MicroProfileGpuGetTimeStamp(uint32_t nIndex)
{
if(!S.GPU.GetTimeStamp)
return MICROPROFILE_INVALID_TICK;
if(nIndex == (uint32_t)-1)
return MICROPROFILE_INVALID_TICK;
return S.GPU.GetTimeStamp(nIndex);
}
uint64_t MicroProfileTicksPerSecondGpu()
{
if (!S.GPU.GetTicksPerSecond)
return 1000000000ll;
return S.GPU.GetTicksPerSecond();
}
bool MicroProfileGetGpuTickReference(int64_t* pOutCpu, int64_t* pOutGpu)
{
if(!S.GPU.GetTickReference)
return false;
return S.GPU.GetTickReference(pOutCpu, pOutGpu);
}
#define MICROPROFILE_GPU_STATE_DECL(API) \
void MicroProfileGpuInitState##API(); \
MicroProfileGpuTimerState##API g_MicroProfileGPU_##API;
#define MICROPROFILE_GPU_STATE_IMPL(API) \
void MicroProfileGpuInitState##API() \
{ \
MP_ASSERT(!S.GPU.Shutdown); \
memset(&g_MicroProfileGPU_##API, 0, sizeof(g_MicroProfileGPU_##API)); \
S.GPU.Shutdown = MicroProfileGpuShutdown##API; \
S.GPU.Flip = MicroProfileGpuFlip##API; \
S.GPU.InsertTimer = MicroProfileGpuInsertTimer##API; \
S.GPU.GetTimeStamp = MicroProfileGpuGetTimeStamp##API; \
S.GPU.GetTicksPerSecond = MicroProfileTicksPerSecondGpu##API; \
S.GPU.GetTickReference = MicroProfileGetGpuTickReference##API; \
}
#if MICROPROFILE_GPU_TIMERS_D3D11
#ifndef D3D11_SDK_VERSION
#include <d3d11.h>
#endif
struct MicroProfileGpuTimerStateD3D11
{
ID3D11DeviceContext* pDeviceContext;
ID3D11Query* pQueries[MICROPROFILE_GPU_MAX_QUERIES];
ID3D11Query* pRateQuery;
ID3D11Query* pSyncQuery;
uint64_t nFrame;
std::atomic<uint32_t> nFramePut;
uint32_t nSubmitted[MICROPROFILE_GPU_FRAMES];
uint64_t nResults[MICROPROFILE_GPU_MAX_QUERIES];
uint32_t nRateQueryIssue;
uint64_t nQueryFrequency;
};
MICROPROFILE_GPU_STATE_DECL(D3D11)
void MicroProfileGpuInitD3D11(ID3D11Device* pDevice)
{
MicroProfileGpuInitStateD3D11();
MicroProfileGpuTimerStateD3D11& GPU = g_MicroProfileGPU_D3D11;
pDevice->GetImmediateContext(&GPU.pDeviceContext);
D3D11_QUERY_DESC Desc;
Desc.MiscFlags = 0;
Desc.Query = D3D11_QUERY_TIMESTAMP;
for(uint32_t i = 0; i < MICROPROFILE_GPU_MAX_QUERIES; ++i)
{
HRESULT hr = pDevice->CreateQuery(&Desc, &GPU.pQueries[i]);
MP_ASSERT(hr == S_OK);
}
HRESULT hr = pDevice->CreateQuery(&Desc, &GPU.pSyncQuery);
MP_ASSERT(hr == S_OK);
Desc.Query = D3D11_QUERY_TIMESTAMP_DISJOINT;
hr = pDevice->CreateQuery(&Desc, &GPU.pRateQuery);
MP_ASSERT(hr == S_OK);
}
void MicroProfileGpuShutdownD3D11()
{
MicroProfileGpuTimerStateD3D11& GPU = g_MicroProfileGPU_D3D11;
for(uint32_t i = 0; i < MICROPROFILE_GPU_MAX_QUERIES; ++i)
{
GPU.pQueries[i]->Release();
GPU.pQueries[i] = 0;
}
GPU.pRateQuery->Release();
GPU.pRateQuery = 0;
GPU.pSyncQuery->Release();
GPU.pSyncQuery = 0;
GPU.pDeviceContext->Release();
GPU.pDeviceContext = 0;
}
uint32_t MicroProfileGpuFlipD3D11()
{
MicroProfileGpuTimerStateD3D11& GPU = g_MicroProfileGPU_D3D11;
if (!GPU.pDeviceContext) return (uint32_t)-1;
uint32_t nFrameQueries = MICROPROFILE_GPU_MAX_QUERIES / MICROPROFILE_GPU_FRAMES;
// Submit current frame
uint32_t nFrameIndex = GPU.nFrame % MICROPROFILE_GPU_FRAMES;
uint32_t nFramePut = MicroProfileMin(GPU.nFramePut.load(), nFrameQueries);
GPU.nSubmitted[nFrameIndex] = nFramePut;
GPU.nFramePut.store(0);
GPU.nFrame++;
// Fetch frame results
if (GPU.nFrame >= MICROPROFILE_GPU_FRAMES)
{
uint64_t nPendingFrame = GPU.nFrame - MICROPROFILE_GPU_FRAMES;
uint32_t nPendingFrameIndex = nPendingFrame % MICROPROFILE_GPU_FRAMES;
for(uint32_t i = 0; i < GPU.nSubmitted[nPendingFrameIndex]; ++i)
{
uint32_t nQueryIndex = nPendingFrameIndex * nFrameQueries + i;
MP_ASSERT(nQueryIndex < MICROPROFILE_GPU_MAX_QUERIES);
uint64_t nResult = 0;
HRESULT hr;
do hr = GPU.pDeviceContext->GetData(GPU.pQueries[nQueryIndex], &nResult, sizeof(nResult), 0);
while(hr == S_FALSE);
GPU.nResults[nQueryIndex] = (hr == S_OK) ? nResult : MICROPROFILE_INVALID_TICK;
}
}
// Update timestamp frequency
if(GPU.nRateQueryIssue == 0)
{
GPU.pDeviceContext->Begin(GPU.pRateQuery);
GPU.nRateQueryIssue = 1;
}
else if(GPU.nRateQueryIssue == 1)
{
GPU.pDeviceContext->End(GPU.pRateQuery);
GPU.nRateQueryIssue = 2;
}
else
{
D3D11_QUERY_DATA_TIMESTAMP_DISJOINT Result;
if(S_OK == GPU.pDeviceContext->GetData(GPU.pRateQuery, &Result, sizeof(Result), D3D11_ASYNC_GETDATA_DONOTFLUSH))
{
GPU.nQueryFrequency = Result.Frequency;
GPU.nRateQueryIssue = 0;
}
}
return MicroProfileGpuInsertTimer(0);
}
uint32_t MicroProfileGpuInsertTimerD3D11(void* pContext)
{
MicroProfileGpuTimerStateD3D11& GPU = g_MicroProfileGPU_D3D11;
uint32_t nFrameQueries = MICROPROFILE_GPU_MAX_QUERIES / MICROPROFILE_GPU_FRAMES;
uint32_t nIndex = GPU.nFramePut.fetch_add(1);
if(nIndex >= nFrameQueries)
return (uint32_t)-1;
uint32_t nQueryIndex = (GPU.nFrame % MICROPROFILE_GPU_FRAMES) * nFrameQueries + nIndex;
GPU.pDeviceContext->End(GPU.pQueries[nQueryIndex]);
return nQueryIndex;
}
uint64_t MicroProfileGpuGetTimeStampD3D11(uint32_t nIndex)
{
MicroProfileGpuTimerStateD3D11& GPU = g_MicroProfileGPU_D3D11;
return GPU.nResults[nIndex];
}
uint64_t MicroProfileTicksPerSecondGpuD3D11()
{
MicroProfileGpuTimerStateD3D11& GPU = g_MicroProfileGPU_D3D11;
return GPU.nQueryFrequency ? GPU.nQueryFrequency : 1000000000ll;
}
bool MicroProfileGetGpuTickReferenceD3D11(int64_t* pOutCpu, int64_t* pOutGpu)
{
MicroProfileGpuTimerStateD3D11& GPU = g_MicroProfileGPU_D3D11;
GPU.pDeviceContext->End(GPU.pSyncQuery);
uint64_t nResult = 0;
HRESULT hr;
do hr = GPU.pDeviceContext->GetData(GPU.pSyncQuery, &nResult, sizeof(nResult), 0);
while(hr == S_FALSE);
if (hr != S_OK) return false;
*pOutCpu = MP_TICK();
*pOutGpu = nResult;
return true;
}
MICROPROFILE_GPU_STATE_IMPL(D3D11)
#endif
#if MICROPROFILE_GPU_TIMERS_D3D12
#ifndef D3D12_MAJOR_VERSION
#include <d3d12.h>
#endif
struct MicroProfileGpuTimerStateD3D12
{
ID3D12CommandQueue* pCommandQueue;
ID3D12QueryHeap* pHeap;
ID3D12Resource* pBuffer;
ID3D12GraphicsCommandList* pCommandLists[MICROPROFILE_GPU_FRAMES];
ID3D12CommandAllocator* pCommandAllocators[MICROPROFILE_GPU_FRAMES];
ID3D12Fence* pFence;
void* pFenceEvent;
uint64_t nFrame;
std::atomic<uint32_t> nFramePut;
uint32_t nSubmitted[MICROPROFILE_GPU_FRAMES];
uint64_t nResults[MICROPROFILE_GPU_MAX_QUERIES];
uint64_t nQueryFrequency;
};
MICROPROFILE_GPU_STATE_DECL(D3D12)
void MicroProfileGpuInitD3D12(ID3D12Device* pDevice, ID3D12CommandQueue* pCommandQueue)
{
MicroProfileGpuInitStateD3D12();
MicroProfileGpuTimerStateD3D12& GPU = g_MicroProfileGPU_D3D12;
GPU.pCommandQueue = pCommandQueue;
HRESULT hr;
D3D12_QUERY_HEAP_DESC HeapDesc;
HeapDesc.Type = D3D12_QUERY_HEAP_TYPE_TIMESTAMP;
HeapDesc.Count = MICROPROFILE_GPU_MAX_QUERIES;
HeapDesc.NodeMask = 0;
D3D12_HEAP_PROPERTIES HeapProperties;
HeapProperties.Type = D3D12_HEAP_TYPE_READBACK;
HeapProperties.CPUPageProperty = D3D12_CPU_PAGE_PROPERTY_UNKNOWN;
HeapProperties.MemoryPoolPreference = D3D12_MEMORY_POOL_UNKNOWN;
HeapProperties.CreationNodeMask = 1;
HeapProperties.VisibleNodeMask = 1;
D3D12_RESOURCE_DESC ResourceDesc;
ResourceDesc.Dimension = D3D12_RESOURCE_DIMENSION_BUFFER;
ResourceDesc.Alignment = 0;
ResourceDesc.Width = MICROPROFILE_GPU_MAX_QUERIES * sizeof(uint64_t);
ResourceDesc.Height = 1;
ResourceDesc.DepthOrArraySize = 1;
ResourceDesc.MipLevels = 1;
ResourceDesc.Format = DXGI_FORMAT_UNKNOWN;
ResourceDesc.SampleDesc.Count = 1;
ResourceDesc.SampleDesc.Quality = 0;
ResourceDesc.Layout = D3D12_TEXTURE_LAYOUT_ROW_MAJOR;
ResourceDesc.Flags = D3D12_RESOURCE_FLAG_NONE;
hr = pDevice->CreateQueryHeap(&HeapDesc, IID_PPV_ARGS(&GPU.pHeap));
MP_ASSERT(hr == S_OK);
hr = pDevice->CreateCommittedResource(&HeapProperties, D3D12_HEAP_FLAG_NONE, &ResourceDesc, D3D12_RESOURCE_STATE_COPY_DEST, nullptr, IID_PPV_ARGS(&GPU.pBuffer));
MP_ASSERT(hr == S_OK);
hr = pDevice->CreateFence(0, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&GPU.pFence));
MP_ASSERT(hr == S_OK);
GPU.pFenceEvent = CreateEvent(nullptr, false, false, nullptr);
MP_ASSERT(GPU.pFenceEvent != INVALID_HANDLE_VALUE);
for (uint32_t i = 0; i < MICROPROFILE_GPU_FRAMES; ++i)
{
hr = pDevice->CreateCommandAllocator(D3D12_COMMAND_LIST_TYPE_DIRECT, IID_PPV_ARGS(&GPU.pCommandAllocators[i]));
MP_ASSERT(hr == S_OK);
hr = pDevice->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, GPU.pCommandAllocators[i], nullptr, IID_PPV_ARGS(&GPU.pCommandLists[i]));
MP_ASSERT(hr == S_OK);
hr = GPU.pCommandLists[i]->Close();
MP_ASSERT(hr == S_OK);
}
hr = pCommandQueue->GetTimestampFrequency(&GPU.nQueryFrequency);
MP_ASSERT(hr == S_OK);
}
void MicroProfileGpuShutdownD3D12()
{
MicroProfileGpuTimerStateD3D12& GPU = g_MicroProfileGPU_D3D12;
if(!GPU.pCommandQueue)
return;
if (GPU.nFrame > 0)
{
GPU.pFence->SetEventOnCompletion(GPU.nFrame, GPU.pFenceEvent);
WaitForSingleObject(GPU.pFenceEvent, INFINITE);
}
for (uint32_t i = 0; i < MICROPROFILE_GPU_FRAMES; ++i)
{
GPU.pCommandLists[i]->Release();
GPU.pCommandLists[i] = 0;
GPU.pCommandAllocators[i]->Release();
GPU.pCommandAllocators[i] = 0;
}
GPU.pHeap->Release();
GPU.pHeap = 0;
GPU.pBuffer->Release();
GPU.pBuffer = 0;
GPU.pFence->Release();
GPU.pFence = 0;
CloseHandle(GPU.pFenceEvent);
GPU.pFenceEvent = 0;
GPU.pCommandQueue = 0;
}
uint32_t MicroProfileGpuFlipD3D12()
{
MicroProfileGpuTimerStateD3D12& GPU = g_MicroProfileGPU_D3D12;
uint32_t nFrameQueries = MICROPROFILE_GPU_MAX_QUERIES / MICROPROFILE_GPU_FRAMES;
// Submit current frame
uint32_t nFrameIndex = GPU.nFrame % MICROPROFILE_GPU_FRAMES;
uint32_t nFrameStart = nFrameIndex * nFrameQueries;
ID3D12CommandAllocator* pCommandAllocator = GPU.pCommandAllocators[nFrameIndex];
ID3D12GraphicsCommandList* pCommandList = GPU.pCommandLists[nFrameIndex];
pCommandAllocator->Reset();
pCommandList->Reset(pCommandAllocator, nullptr);
uint32_t nFrameTimeStamp = MicroProfileGpuInsertTimer(pCommandList);
uint32_t nFramePut = MicroProfileMin(GPU.nFramePut.load(), nFrameQueries);
if (nFramePut)
pCommandList->ResolveQueryData(GPU.pHeap, D3D12_QUERY_TYPE_TIMESTAMP, nFrameStart, nFramePut, GPU.pBuffer, nFrameStart * sizeof(int64_t));
pCommandList->Close();
ID3D12CommandList* pList = pCommandList;
GPU.pCommandQueue->ExecuteCommandLists(1, &pList);
GPU.pCommandQueue->Signal(GPU.pFence, GPU.nFrame + 1);
GPU.nSubmitted[nFrameIndex] = nFramePut;
GPU.nFramePut.store(0);
GPU.nFrame++;
// Fetch frame results
if (GPU.nFrame >= MICROPROFILE_GPU_FRAMES)
{
uint64_t nPendingFrame = GPU.nFrame - MICROPROFILE_GPU_FRAMES;
uint32_t nPendingFrameIndex = nPendingFrame % MICROPROFILE_GPU_FRAMES;
GPU.pFence->SetEventOnCompletion(nPendingFrame + 1, GPU.pFenceEvent);
WaitForSingleObject(GPU.pFenceEvent, INFINITE);
uint32_t nPendingFrameStart = nPendingFrameIndex * nFrameQueries;
uint32_t nPendingFrameCount = GPU.nSubmitted[nPendingFrameIndex];
if (nPendingFrameCount)
{
void* pData = 0;
D3D12_RANGE Range = { nPendingFrameStart * sizeof(uint64_t), (nPendingFrameStart + nPendingFrameCount) * sizeof(uint64_t) };
HRESULT hr = GPU.pBuffer->Map(0, &Range, &pData);
MP_ASSERT(hr == S_OK);
memcpy(&GPU.nResults[nPendingFrameStart], (uint64_t*)pData + nPendingFrameStart, nPendingFrameCount * sizeof(uint64_t));
GPU.pBuffer->Unmap(0, 0);
}
}
return nFrameTimeStamp;
}
uint32_t MicroProfileGpuInsertTimerD3D12(void* pContext)
{
MicroProfileGpuTimerStateD3D12& GPU = g_MicroProfileGPU_D3D12;
if (!pContext) return (uint32_t)-1;
uint32_t nFrameQueries = MICROPROFILE_GPU_MAX_QUERIES / MICROPROFILE_GPU_FRAMES;
uint32_t nIndex = GPU.nFramePut.fetch_add(1);
if(nIndex >= nFrameQueries) return (uint32_t)-1;
uint32_t nQueryIndex = (GPU.nFrame % MICROPROFILE_GPU_FRAMES) * nFrameQueries + nIndex;
((ID3D12GraphicsCommandList*)pContext)->EndQuery(GPU.pHeap, D3D12_QUERY_TYPE_TIMESTAMP, nQueryIndex);
return nQueryIndex;
}
uint64_t MicroProfileGpuGetTimeStampD3D12(uint32_t nIndex)
{
MicroProfileGpuTimerStateD3D12& GPU = g_MicroProfileGPU_D3D12;
return GPU.nResults[nIndex];
}
uint64_t MicroProfileTicksPerSecondGpuD3D12()
{
MicroProfileGpuTimerStateD3D12& GPU = g_MicroProfileGPU_D3D12;
return GPU.nQueryFrequency ? GPU.nQueryFrequency : 1000000000ll;
}
bool MicroProfileGetGpuTickReferenceD3D12(int64_t* pOutCpu, int64_t* pOutGpu)
{
MicroProfileGpuTimerStateD3D12& GPU = g_MicroProfileGPU_D3D12;
return SUCCEEDED(GPU.pCommandQueue->GetClockCalibration((uint64_t*)pOutGpu, (uint64_t*)pOutCpu));
}
MICROPROFILE_GPU_STATE_IMPL(D3D12)
#endif
#if MICROPROFILE_GPU_TIMERS_GL
#ifndef GL_TIMESTAMP
#ifdef __APPLE__
#include <OpenGL/gl3.h>
#else
#error You must include OpenGL headers for GPU timers to work
#endif
#endif
struct MicroProfileGpuTimerStateGL
{
int32_t nTimestampBits;
uint32_t nQueries[MICROPROFILE_GPU_MAX_QUERIES];
uint64_t nFrame;
std::atomic<uint32_t> nFramePut;
uint64_t nTimerOffset[MICROPROFILE_GPU_FRAMES];
uint32_t nSubmitted[MICROPROFILE_GPU_FRAMES];
uint64_t nResults[MICROPROFILE_GPU_MAX_QUERIES];
};
MICROPROFILE_GPU_STATE_DECL(GL)
void MicroProfileGpuInitGL()
{
MicroProfileGpuInitStateGL();
MicroProfileGpuTimerStateGL& GPU = g_MicroProfileGPU_GL;
glGetQueryiv(GL_TIMESTAMP, GL_QUERY_COUNTER_BITS, &GPU.nTimestampBits);
#ifdef __APPLE__
// OSX GL driver (incorrectly) issues GL_INVALID_ENUM when querying the timestamp bits
glGetError();
#endif
glGenQueries(MICROPROFILE_GPU_MAX_QUERIES, &GPU.nQueries[0]);
}
void MicroProfileGpuShutdownGL()
{
MicroProfileGpuTimerStateGL& GPU = g_MicroProfileGPU_GL;
glDeleteQueries(MICROPROFILE_GPU_MAX_QUERIES, &GPU.nQueries[0]);
}
uint32_t MicroProfileGpuFlipGL()
{
MicroProfileGpuTimerStateGL& GPU = g_MicroProfileGPU_GL;
uint32_t nFrameQueries = MICROPROFILE_GPU_MAX_QUERIES / MICROPROFILE_GPU_FRAMES;
// Submit current frame
uint32_t nFrameIndex = GPU.nFrame % MICROPROFILE_GPU_FRAMES;
uint32_t nFramePut = MicroProfileMin(GPU.nFramePut.load(), nFrameQueries);
if(!GPU.nTimestampBits && nFramePut > 0)
glEndQuery(GL_TIME_ELAPSED);
GPU.nTimerOffset[nFrameIndex] = MP_TICK() * (double(MicroProfileTicksPerSecondGpu()) / double(MicroProfileTicksPerSecondCpu()));
GPU.nSubmitted[nFrameIndex] = nFramePut;
GPU.nFramePut.store(0);
GPU.nFrame++;
// Fetch frame results
if (GPU.nFrame >= MICROPROFILE_GPU_FRAMES)
{
uint64_t nPendingFrame = GPU.nFrame - MICROPROFILE_GPU_FRAMES;
uint32_t nPendingFrameIndex = nPendingFrame % MICROPROFILE_GPU_FRAMES;
uint64_t nTimerOffset = GPU.nTimerOffset[nPendingFrameIndex];
for(uint32_t i = 0; i < GPU.nSubmitted[nPendingFrameIndex]; ++i)
{
uint32_t nQueryIndex = nPendingFrameIndex * nFrameQueries + i;
MP_ASSERT(nQueryIndex < MICROPROFILE_GPU_MAX_QUERIES);
uint64_t nResult = 0;
glGetQueryObjectui64v(GPU.nQueries[nQueryIndex], GL_QUERY_RESULT, &nResult);
if(GPU.nTimestampBits)
{
GPU.nResults[nQueryIndex] = nResult;
}
else
{
GPU.nResults[nQueryIndex] = nTimerOffset;
nTimerOffset += nResult;
}
}
}
return MicroProfileGpuInsertTimer(0);
}
uint32_t MicroProfileGpuInsertTimerGL(void* pContext)
{
MicroProfileGpuTimerStateGL& GPU = g_MicroProfileGPU_GL;
(void)pContext;
uint32_t nFrameQueries = MICROPROFILE_GPU_MAX_QUERIES / MICROPROFILE_GPU_FRAMES;
uint32_t nIndex = GPU.nFramePut.fetch_add(1);
if(nIndex >= nFrameQueries) return (uint32_t)-1;
uint32_t nQueryIndex = (GPU.nFrame % MICROPROFILE_GPU_FRAMES) * nFrameQueries + nIndex;
if(!GPU.nTimestampBits && nIndex > 0)
glEndQuery(GL_TIME_ELAPSED);
if(GPU.nTimestampBits)
glQueryCounter(GPU.nQueries[nQueryIndex], GL_TIMESTAMP);
else
glBeginQuery(GL_TIME_ELAPSED, GPU.nQueries[nQueryIndex]);
return nQueryIndex;
}
uint64_t MicroProfileGpuGetTimeStampGL(uint32_t nIndex)
{
MicroProfileGpuTimerStateGL& GPU = g_MicroProfileGPU_GL;
return GPU.nResults[nIndex];
}
uint64_t MicroProfileTicksPerSecondGpuGL()
{
return 1000000000ll;
}
bool MicroProfileGetGpuTickReferenceGL(int64_t* pOutCpu, int64_t* pOutGpu)
{
MicroProfileGpuTimerStateGL& GPU = g_MicroProfileGPU_GL;
if(GPU.nTimestampBits)
{
int64_t nGpuTimeStamp = 0;
glGetInteger64v(GL_TIMESTAMP, &nGpuTimeStamp);
if(nGpuTimeStamp)
{
*pOutCpu = MP_TICK();
*pOutGpu = nGpuTimeStamp;
return true;
}
return false;
}
else
{
*pOutCpu = MP_TICK();
*pOutGpu = MP_TICK() * (double(MicroProfileTicksPerSecondGpu()) / double(MicroProfileTicksPerSecondCpu()));
return true;
}
}
MICROPROFILE_GPU_STATE_IMPL(GL)
#endif
#if MICROPROFILE_GPU_TIMERS_VK
#ifndef VK_HEADER_VERSION
#include <vulkan/vulkan.h>
#endif
struct MicroProfileGpuTimerStateVK
{
VkDevice pDevice;
VkQueue pQueue;
VkQueryPool pQueryPool;
VkCommandPool pCommandPool;
VkCommandBuffer pCommandBuffers[MICROPROFILE_GPU_FRAMES];
VkFence pFences[MICROPROFILE_GPU_FRAMES];
VkCommandBuffer pReferenceCommandBuffer;
uint32_t nReferenceQuery;
uint64_t nFrame;
std::atomic<uint32_t> nFramePut;
uint32_t nSubmitted[MICROPROFILE_GPU_FRAMES];
uint64_t nResults[MICROPROFILE_GPU_MAX_QUERIES];
uint64_t nQueryFrequency;
};
MICROPROFILE_GPU_STATE_DECL(VK)
void MicroProfileGpuInitVK(VkDevice pDevice, VkPhysicalDevice pPhysicalDevice, VkQueue pQueue)
{
MicroProfileGpuInitStateVK();
MicroProfileGpuTimerStateVK& GPU = g_MicroProfileGPU_VK;
VkPhysicalDeviceProperties Properties;
vkGetPhysicalDeviceProperties(pPhysicalDevice, &Properties);
GPU.pDevice = pDevice;
GPU.pQueue = pQueue;
VkQueryPoolCreateInfo queryPoolInfo = {};
queryPoolInfo.sType = VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO;
queryPoolInfo.queryType = VK_QUERY_TYPE_TIMESTAMP;
queryPoolInfo.queryCount = MICROPROFILE_GPU_MAX_QUERIES + 1; // reference query
VkResult res = vkCreateQueryPool(pDevice, &queryPoolInfo, nullptr, &GPU.pQueryPool);
MP_ASSERT(res == VK_SUCCESS);
VkCommandPoolCreateInfo commandPoolInfo = {};
commandPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
commandPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
commandPoolInfo.queueFamilyIndex = 0;
res = vkCreateCommandPool(pDevice, &commandPoolInfo, nullptr, &GPU.pCommandPool);
MP_ASSERT(res == VK_SUCCESS);
VkCommandBuffer pCommandBuffers[MICROPROFILE_GPU_FRAMES + 1] = {};
VkCommandBufferAllocateInfo commandBufferInfo = {};
commandBufferInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
commandBufferInfo.commandPool = GPU.pCommandPool;
commandBufferInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
commandBufferInfo.commandBufferCount = sizeof(pCommandBuffers) / sizeof(pCommandBuffers[0]);
res = vkAllocateCommandBuffers(pDevice, &commandBufferInfo, pCommandBuffers);
MP_ASSERT(res == VK_SUCCESS);
VkFenceCreateInfo fenceInfo = {};
fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
for (uint32_t i = 0; i < MICROPROFILE_GPU_FRAMES; ++i)
{
GPU.pCommandBuffers[i] = pCommandBuffers[i];
res = vkCreateFence(pDevice, &fenceInfo, nullptr, &GPU.pFences[i]);
MP_ASSERT(res == VK_SUCCESS);
}
GPU.pReferenceCommandBuffer = pCommandBuffers[MICROPROFILE_GPU_FRAMES];
GPU.nReferenceQuery = MICROPROFILE_GPU_MAX_QUERIES; // reference query
GPU.nQueryFrequency = 1e9 / Properties.limits.timestampPeriod;
}
void MicroProfileGpuShutdownVK()
{
MicroProfileGpuTimerStateVK& GPU = g_MicroProfileGPU_VK;
if (GPU.nFrame > 0)
{
uint32_t nFrameIndex = (GPU.nFrame - 1) % MICROPROFILE_GPU_FRAMES;
VkResult res = vkWaitForFences(GPU.pDevice, 1, &GPU.pFences[nFrameIndex], VK_TRUE, UINT64_MAX);
MP_ASSERT(res == VK_SUCCESS);
}
for (uint32_t i = 0; i < MICROPROFILE_GPU_FRAMES; ++i)
{
vkDestroyFence(GPU.pDevice, GPU.pFences[i], nullptr);
GPU.pFences[i] = 0;
}
vkDestroyCommandPool(GPU.pDevice, GPU.pCommandPool, nullptr);
memset(GPU.pCommandBuffers, 0, sizeof(GPU.pCommandBuffers));
GPU.pCommandPool = 0;
vkDestroyQueryPool(GPU.pDevice, GPU.pQueryPool, nullptr);
GPU.pQueryPool = 0;
GPU.pQueue = 0;
GPU.pDevice = 0;
}
uint32_t MicroProfileGpuFlipVK()
{
MicroProfileGpuTimerStateVK& GPU = g_MicroProfileGPU_VK;
uint32_t nFrameQueries = MICROPROFILE_GPU_MAX_QUERIES / MICROPROFILE_GPU_FRAMES;
// Submit current frame
uint32_t nFrameIndex = GPU.nFrame % MICROPROFILE_GPU_FRAMES;
uint32_t nFrameStart = nFrameIndex * nFrameQueries;
VkCommandBuffer pCommandBuffer = GPU.pCommandBuffers[nFrameIndex];
VkCommandBufferBeginInfo commandBufferBeginInfo = {};
commandBufferBeginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
commandBufferBeginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
VkResult res = vkBeginCommandBuffer(pCommandBuffer, &commandBufferBeginInfo);
MP_ASSERT(res == VK_SUCCESS);
uint32_t nFrameTimeStamp = MicroProfileGpuInsertTimer(pCommandBuffer);
uint32_t nFramePut = MicroProfileMin(GPU.nFramePut.load(), nFrameQueries);
res = vkEndCommandBuffer(pCommandBuffer);
MP_ASSERT(res == VK_SUCCESS);
VkSubmitInfo submitInfo = {};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &pCommandBuffer;
res = vkQueueSubmit(GPU.pQueue, 1, &submitInfo, GPU.pFences[nFrameIndex]);
MP_ASSERT(res == VK_SUCCESS);
GPU.nSubmitted[nFrameIndex] = nFramePut;
GPU.nFramePut.store(0);
GPU.nFrame++;
// Fetch frame results
if (GPU.nFrame >= MICROPROFILE_GPU_FRAMES)
{
uint64_t nPendingFrame = GPU.nFrame - MICROPROFILE_GPU_FRAMES;
uint32_t nPendingFrameIndex = nPendingFrame % MICROPROFILE_GPU_FRAMES;
res = vkWaitForFences(GPU.pDevice, 1, &GPU.pFences[nPendingFrameIndex], VK_TRUE, UINT64_MAX);
MP_ASSERT(res == VK_SUCCESS);
res = vkResetFences(GPU.pDevice, 1, &GPU.pFences[nPendingFrameIndex]);
MP_ASSERT(res == VK_SUCCESS);
uint32_t nPendingFrameStart = nPendingFrameIndex * nFrameQueries;
uint32_t nPendingFrameCount = GPU.nSubmitted[nPendingFrameIndex];
if (nPendingFrameCount)
{
res = vkGetQueryPoolResults(GPU.pDevice, GPU.pQueryPool,
nPendingFrameStart, nPendingFrameCount,
nPendingFrameCount * sizeof(uint64_t), &GPU.nResults[nPendingFrameStart],
sizeof(uint64_t), VK_QUERY_RESULT_64_BIT | VK_QUERY_RESULT_WAIT_BIT);
MP_ASSERT(res == VK_SUCCESS);
}
}
return nFrameTimeStamp;
}
uint32_t MicroProfileGpuInsertTimerVK(void* pContext)
{
MicroProfileGpuTimerStateVK& GPU = g_MicroProfileGPU_VK;
uint32_t nFrameQueries = MICROPROFILE_GPU_MAX_QUERIES / MICROPROFILE_GPU_FRAMES;
uint32_t nIndex = GPU.nFramePut.fetch_add(1);
if(nIndex >= nFrameQueries) return (uint32_t)-1;
uint32_t nQueryIndex = (GPU.nFrame % MICROPROFILE_GPU_FRAMES) * nFrameQueries + nIndex;
vkCmdWriteTimestamp((VkCommandBuffer)pContext, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, GPU.pQueryPool, nQueryIndex);
return nQueryIndex;
}
uint64_t MicroProfileGpuGetTimeStampVK(uint32_t nIndex)
{
MicroProfileGpuTimerStateVK& GPU = g_MicroProfileGPU_VK;
return GPU.nResults[nIndex];
}
uint64_t MicroProfileTicksPerSecondGpuVK()
{
MicroProfileGpuTimerStateVK& GPU = g_MicroProfileGPU_VK;
return GPU.nQueryFrequency ? GPU.nQueryFrequency : 1000000000ll;
}
bool MicroProfileGetGpuTickReferenceVK(int64_t* pOutCpu, int64_t* pOutGpu)
{
MicroProfileGpuTimerStateVK& GPU = g_MicroProfileGPU_VK;
VkCommandBuffer pCommandBuffer = GPU.pReferenceCommandBuffer;
uint32_t nQueryIndex = GPU.nReferenceQuery;
VkCommandBufferBeginInfo commandBufferBeginInfo = {};
commandBufferBeginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
commandBufferBeginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
VkResult res = vkBeginCommandBuffer(pCommandBuffer, &commandBufferBeginInfo);
MP_ASSERT(res == VK_SUCCESS);
vkCmdWriteTimestamp(pCommandBuffer, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, GPU.pQueryPool, nQueryIndex);
res = vkEndCommandBuffer(pCommandBuffer);
MP_ASSERT(res == VK_SUCCESS);
VkSubmitInfo submitInfo = {};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &pCommandBuffer;
res = vkQueueSubmit(GPU.pQueue, 1, &submitInfo, VK_NULL_HANDLE);
MP_ASSERT(res == VK_SUCCESS);
res = vkQueueWaitIdle(GPU.pQueue);
MP_ASSERT(res == VK_SUCCESS);
*pOutCpu = MP_TICK();
res = vkGetQueryPoolResults(GPU.pDevice, GPU.pQueryPool, nQueryIndex, 1, sizeof(uint64_t), pOutGpu, sizeof(uint64_t), VK_QUERY_RESULT_64_BIT | VK_QUERY_RESULT_WAIT_BIT);
MP_ASSERT(res == VK_SUCCESS);
return true;
}
MICROPROFILE_GPU_STATE_IMPL(VK)
#endif
#undef S
#ifdef _WIN32
#pragma warning(pop)
#endif
#if MICROPROFILE_EMBED_HTML
#include "microprofilehtml.h"
#endif //MICROPROFILE_EMBED_HTML
#endif
#endif