xenia-canary/src/xenia/cpu/xex_module.h

294 lines
8.7 KiB
C++

/**
******************************************************************************
* Xenia : Xbox 360 Emulator Research Project *
******************************************************************************
* Copyright 2020 Ben Vanik. All rights reserved. *
* Released under the BSD license - see LICENSE in the root for more details. *
******************************************************************************
*/
#ifndef XENIA_CPU_XEX_MODULE_H_
#define XENIA_CPU_XEX_MODULE_H_
#include <string>
#include <vector>
#include "xenia/base/mapped_memory.h"
#include "xenia/cpu/module.h"
#include "xenia/kernel/util/xex2_info.h"
namespace xe {
namespace kernel {
class KernelState;
} // namespace kernel
} // namespace xe
namespace xe {
namespace cpu {
constexpr fourcc_t kXEX1Signature = make_fourcc("XEX1");
constexpr fourcc_t kXEX2Signature = make_fourcc("XEX2");
constexpr fourcc_t kElfSignature = make_fourcc(0x7F, 'E', 'L', 'F');
class Runtime;
struct InfoCacheFlags {
uint32_t was_resolved : 1; // has this address ever been called/requested
// via resolvefunction?
uint32_t accessed_mmio : 1;
uint32_t is_syscall_func : 1;
uint32_t is_return_site : 1; // address can be reached from another function
// by returning
uint32_t reserved : 28;
};
static_assert(sizeof(InfoCacheFlags) == 4,
"InfoCacheFlags size should be equal to sizeof ppc instruction.");
struct XexInfoCache {
// increment this to invalidate all user infocaches
static constexpr uint32_t CURRENT_INFOCACHE_VERSION = 4;
struct InfoCacheFlagsHeader {
uint32_t version;
unsigned char reserved[252];
InfoCacheFlags* LookupFlags(unsigned offset) {
return &reinterpret_cast<InfoCacheFlags*>(&this[1])[offset];
}
};
/*
for every 4-byte aligned address, records a 4 byte set of flags.
*/
std::unique_ptr<MappedMemory> executable_addr_flags_;
void Init(class XexModule*);
InfoCacheFlagsHeader* GetHeader() {
if (!executable_addr_flags_) {
return nullptr;
}
uint8_t* data = executable_addr_flags_->data();
if (!data) {
return nullptr;
}
return reinterpret_cast<InfoCacheFlagsHeader*>(data);
}
InfoCacheFlags* LookupFlags(unsigned offset) {
offset /= 4;
if (!executable_addr_flags_) {
return nullptr;
}
uint8_t* data = executable_addr_flags_->data();
if (!data) {
return nullptr;
}
return reinterpret_cast<InfoCacheFlagsHeader*>(data)->LookupFlags(offset);
}
};
class XexModule : public xe::cpu::Module {
public:
struct ImportLibraryFn {
public:
uint32_t ordinal;
uint32_t value_address;
uint32_t thunk_address;
};
struct ImportLibrary {
public:
std::string name;
uint32_t id;
xe_xex2_version_t version;
xe_xex2_version_t min_version;
std::vector<ImportLibraryFn> imports;
};
struct SecurityInfoContext {
const char* rsa_signature;
const char* aes_key;
uint32_t image_size;
uint32_t image_flags;
uint32_t export_table;
uint32_t load_address;
uint32_t page_descriptor_count;
const xex2_page_descriptor* page_descriptors;
};
enum XexFormat {
kFormatUnknown,
kFormatXex1,
kFormatXex2,
};
XexModule(Processor* processor, kernel::KernelState* kernel_state);
virtual ~XexModule();
bool loaded() const { return loaded_; }
const xex2_header* xex_header() const {
return reinterpret_cast<const xex2_header*>(xex_header_mem_.data());
}
const SecurityInfoContext* xex_security_info() const {
return &security_info_;
}
uint32_t image_size() const {
assert_not_zero(base_address_);
// Calculate the new total size of the XEX image from its headers.
auto heap = memory()->LookupHeap(base_address_);
uint32_t total_size = 0;
for (uint32_t i = 0; i < xex_security_info()->page_descriptor_count; i++) {
// Byteswap the bitfield manually.
xex2_page_descriptor desc;
desc.value =
xe::byte_swap(xex_security_info()->page_descriptors[i].value);
total_size += desc.page_count * heap->page_size();
}
return total_size;
}
const std::vector<ImportLibrary>* import_libraries() const {
return &import_libs_;
}
const xex2_opt_execution_info* opt_execution_info() const {
xex2_opt_execution_info* retval = nullptr;
GetOptHeader(XEX_HEADER_EXECUTION_INFO, &retval);
return retval;
}
const xex2_opt_file_format_info* opt_file_format_info() const {
xex2_opt_file_format_info* retval = nullptr;
GetOptHeader(XEX_HEADER_FILE_FORMAT_INFO, &retval);
return retval;
}
std::vector<uint32_t> opt_alternate_title_ids() const {
return opt_alternate_title_ids_;
}
const uint32_t base_address() const { return base_address_; }
const bool is_dev_kit() const { return is_dev_kit_; }
// Gets an optional header. Returns NULL if not found.
// Special case: if key & 0xFF == 0x00, this function will return the value,
// not a pointer! This assumes out_ptr points to uint32_t.
static bool GetOptHeader(const xex2_header* header, xex2_header_keys key,
void** out_ptr);
bool GetOptHeader(xex2_header_keys key, void** out_ptr) const;
// Ultra-cool templated version
// Special case: if key & 0xFF == 0x00, this function will return the value,
// not a pointer! This assumes out_ptr points to uint32_t.
template <typename T>
static bool GetOptHeader(const xex2_header* header, xex2_header_keys key,
T* out_ptr) {
return GetOptHeader(header, key, reinterpret_cast<void**>(out_ptr));
}
template <typename T>
bool GetOptHeader(xex2_header_keys key, T* out_ptr) const {
return GetOptHeader(key, reinterpret_cast<void**>(out_ptr));
}
static const void* GetSecurityInfo(const xex2_header* header);
const PESection* GetPESection(const char* name);
uint32_t GetProcAddress(uint16_t ordinal) const;
uint32_t GetProcAddress(const std::string_view name) const;
int ApplyPatch(XexModule* module);
bool Load(const std::string_view name, const std::string_view path,
const void* xex_addr, size_t xex_length);
bool LoadContinue();
bool Unload();
bool ContainsAddress(uint32_t address) override;
const std::string& name() const override { return name_; }
bool is_executable() const override {
return (xex_header()->module_flags & XEX_MODULE_TITLE) != 0;
}
bool is_valid_executable() const {
assert_not_zero(base_address_);
if (!base_address_) {
return false;
}
uint8_t* buffer = memory()->TranslateVirtual(base_address_);
return *(uint32_t*)buffer == 0x905A4D;
}
bool is_patch() const {
assert_not_null(xex_header());
if (!xex_header()) {
return false;
}
return (xex_header()->module_flags &
(XEX_MODULE_MODULE_PATCH | XEX_MODULE_PATCH_DELTA |
XEX_MODULE_PATCH_FULL));
}
InfoCacheFlags* GetInstructionAddressFlags(uint32_t guest_addr);
virtual void Precompile() override;
protected:
std::unique_ptr<Function> CreateFunction(uint32_t address) override;
private:
void PrecompileKnownFunctions();
void PrecompileDiscoveredFunctions();
std::vector<uint32_t> PreanalyzeCode();
friend struct XexInfoCache;
void ReadSecurityInfo();
int ReadImage(const void* xex_addr, size_t xex_length, bool use_dev_key);
int ReadImageUncompressed(const void* xex_addr, size_t xex_length);
int ReadImageBasicCompressed(const void* xex_addr, size_t xex_length);
int ReadImageCompressed(const void* xex_addr, size_t xex_length);
int ReadPEHeaders();
bool SetupLibraryImports(const std::string_view name,
const xex2_import_library* library);
bool FindSaveRest();
Processor* processor_ = nullptr;
kernel::KernelState* kernel_state_ = nullptr;
std::string name_;
std::string path_;
std::vector<uint8_t> xex_header_mem_; // Holds the xex header
std::vector<uint8_t> xexp_data_mem_; // Holds XEXP patch data
std::vector<ImportLibrary>
import_libs_; // pre-loaded import libraries for ease of use
std::vector<PESection> pe_sections_;
// XEX_HEADER_ALTERNATE_TITLE_IDS loaded into a safe std::vector
std::vector<uint32_t> opt_alternate_title_ids_;
uint8_t session_key_[0x10];
bool is_dev_kit_ = false;
bool loaded_ = false; // Loaded into memory?
bool finished_load_ = false; // PE/imports/symbols/etc all loaded?
uint32_t base_address_ = 0;
uint32_t low_address_ = 0;
uint32_t high_address_ = 0;
XexFormat xex_format_ = kFormatUnknown;
SecurityInfoContext security_info_ = {};
uint8_t image_sha_bytes_[20];
std::string image_sha_str_;
XexInfoCache info_cache_;
};
} // namespace cpu
} // namespace xe
#endif // XENIA_CPU_XEX_MODULE_H_