xenia-canary/third_party/crunch/crnlib/crn_threading_null.h

193 lines
4.2 KiB
C++

// File: crn_threading_null.h
// See Copyright Notice and license at the end of include/crnlib.h
#pragma once
#include "crn_atomics.h"
namespace crnlib
{
const uint g_number_of_processors = 1;
inline void crn_threading_init()
{
}
typedef uint64 crn_thread_id_t;
inline crn_thread_id_t crn_get_current_thread_id()
{
return 0;
}
inline void crn_sleep(unsigned int milliseconds)
{
milliseconds;
}
inline uint crn_get_max_helper_threads()
{
return 0;
}
class mutex
{
CRNLIB_NO_COPY_OR_ASSIGNMENT_OP(mutex);
public:
inline mutex(unsigned int spin_count = 0)
{
spin_count;
}
inline ~mutex()
{
}
inline void lock()
{
}
inline void unlock()
{
}
inline void set_spin_count(unsigned int count)
{
count;
}
};
class scoped_mutex
{
scoped_mutex(const scoped_mutex&);
scoped_mutex& operator= (const scoped_mutex&);
public:
inline scoped_mutex(mutex& lock) : m_lock(lock) { m_lock.lock(); }
inline ~scoped_mutex() { m_lock.unlock(); }
private:
mutex& m_lock;
};
// Simple non-recursive spinlock.
class spinlock
{
public:
inline spinlock()
{
}
inline void lock(uint32 max_spins = 4096, bool yielding = true, bool memoryBarrier = true)
{
max_spins, yielding, memoryBarrier;
}
inline void lock_no_barrier(uint32 max_spins = 4096, bool yielding = true)
{
max_spins, yielding;
}
inline void unlock()
{
}
inline void unlock_no_barrier()
{
}
};
class scoped_spinlock
{
scoped_spinlock(const scoped_spinlock&);
scoped_spinlock& operator= (const scoped_spinlock&);
public:
inline scoped_spinlock(spinlock& lock) : m_lock(lock) { m_lock.lock(); }
inline ~scoped_spinlock() { m_lock.unlock(); }
private:
spinlock& m_lock;
};
class semaphore
{
CRNLIB_NO_COPY_OR_ASSIGNMENT_OP(semaphore);
public:
inline semaphore(long initialCount = 0, long maximumCount = 1, const char* pName = NULL)
{
initialCount, maximumCount, pName;
}
inline ~semaphore()
{
}
inline void release(long releaseCount = 1, long *pPreviousCount = NULL)
{
releaseCount, pPreviousCount;
}
inline bool wait(uint32 milliseconds = cUINT32_MAX)
{
milliseconds;
return true;
}
};
class task_pool
{
public:
inline task_pool() { }
inline task_pool(uint num_threads) { num_threads; }
inline ~task_pool() { }
inline bool init(uint num_threads) { num_threads; return true; }
inline void deinit() { }
inline uint get_num_threads() const { return 0; }
inline uint get_num_outstanding_tasks() const { return 0; }
// C-style task callback
typedef void (*task_callback_func)(uint64 data, void* pData_ptr);
inline bool queue_task(task_callback_func pFunc, uint64 data = 0, void* pData_ptr = NULL)
{
pFunc(data, pData_ptr);
return true;
}
class executable_task
{
public:
virtual void execute_task(uint64 data, void* pData_ptr) = 0;
};
// It's the caller's responsibility to delete pObj within the execute_task() method, if needed!
inline bool queue_task(executable_task* pObj, uint64 data = 0, void* pData_ptr = NULL)
{
pObj->execute_task(data, pData_ptr);
return true;
}
template<typename S, typename T>
inline bool queue_object_task(S* pObject, T pObject_method, uint64 data = 0, void* pData_ptr = NULL)
{
(pObject->*pObject_method)(data, pData_ptr);
return true;
}
template<typename S, typename T>
inline bool queue_multiple_object_tasks(S* pObject, T pObject_method, uint64 first_data, uint num_tasks, void* pData_ptr = NULL)
{
for (uint i = 0; i < num_tasks; i++)
{
(pObject->*pObject_method)(first_data + i, pData_ptr);
}
return true;
}
inline void join() { }
};
} // namespace crnlib