xenia-canary/src/xenia/cpu/processor.h

277 lines
10 KiB
C++

/**
******************************************************************************
* Xenia : Xbox 360 Emulator Research Project *
******************************************************************************
* Copyright 2013 Ben Vanik. All rights reserved. *
* Released under the BSD license - see LICENSE in the root for more details. *
******************************************************************************
*/
#ifndef XENIA_CPU_PROCESSOR_H_
#define XENIA_CPU_PROCESSOR_H_
#include <gflags/gflags.h>
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "xenia/base/mapped_memory.h"
#include "xenia/base/mutex.h"
#include "xenia/cpu/backend/backend.h"
#include "xenia/cpu/debug_listener.h"
#include "xenia/cpu/entry_table.h"
#include "xenia/cpu/export_resolver.h"
#include "xenia/cpu/function.h"
#include "xenia/cpu/module.h"
#include "xenia/cpu/ppc/ppc_frontend.h"
#include "xenia/cpu/thread_debug_info.h"
#include "xenia/cpu/thread_state.h"
#include "xenia/memory.h"
DECLARE_bool(debug);
namespace xe {
namespace cpu {
class Breakpoint;
class StackWalker;
class XexModule;
enum class Irql : uint32_t {
PASSIVE = 0,
APC = 1,
DISPATCH = 2,
DPC = 3,
};
// Describes the current state of the emulator as known to the debugger.
// This determines which state the debugger is in and what operations are
// allowed.
enum class ExecutionState {
// Target is running; the debugger is not waiting for any events.
kRunning,
// Target is running in stepping mode with the debugger waiting for feedback.
kStepping,
// Target is paused for debugging.
kPaused,
// Target has been stopped and cannot be restarted (crash, etc).
kEnded,
};
class Processor {
public:
Processor(Memory* memory, ExportResolver* export_resolver);
~Processor();
Memory* memory() const { return memory_; }
StackWalker* stack_walker() const { return stack_walker_.get(); }
ppc::PPCFrontend* frontend() const { return frontend_.get(); }
backend::Backend* backend() const { return backend_.get(); }
ExportResolver* export_resolver() const { return export_resolver_; }
bool Setup(std::unique_ptr<backend::Backend> backend);
// Runs any pre-launch logic once the module and thread have been setup.
void PreLaunch();
// The current execution state of the emulator.
ExecutionState execution_state() const { return execution_state_; }
// True if a debug listener is attached and the debugger is active.
bool is_debugger_attached() const { return !!debug_listener_; }
// Gets the active debug listener, if any.
DebugListener* debug_listener() const { return debug_listener_; }
// Sets the active debug listener, if any.
// This can be used to detach the listener.
void set_debug_listener(DebugListener* debug_listener);
// Sets a handler that will be called from a random thread when a debugger
// listener is required (such as on a breakpoint hit/etc).
// Will only be called if the debug listener has not already been specified
// with set_debug_listener.
void set_debug_listener_request_handler(
std::function<DebugListener*(Processor*)> handler) {
debug_listener_handler_ = std::move(handler);
}
void set_debug_info_flags(uint32_t debug_info_flags) {
debug_info_flags_ = debug_info_flags;
}
bool AddModule(std::unique_ptr<Module> module);
Module* GetModule(const char* name);
Module* GetModule(const std::string& name) { return GetModule(name.c_str()); }
std::vector<Module*> GetModules();
Module* builtin_module() const { return builtin_module_; }
Function* DefineBuiltin(const std::string& name,
BuiltinFunction::Handler handler, void* arg0,
void* arg1);
Function* QueryFunction(uint32_t address);
std::vector<Function*> FindFunctionsWithAddress(uint32_t address);
Function* LookupFunction(uint32_t address);
Function* LookupFunction(Module* module, uint32_t address);
Function* ResolveFunction(uint32_t address);
bool Execute(ThreadState* thread_state, uint32_t address);
bool ExecuteRaw(ThreadState* thread_state, uint32_t address);
uint64_t Execute(ThreadState* thread_state, uint32_t address, uint64_t args[],
size_t arg_count);
uint64_t ExecuteInterrupt(ThreadState* thread_state, uint32_t address,
uint64_t args[], size_t arg_count);
Irql RaiseIrql(Irql new_value);
void LowerIrql(Irql old_value);
bool Save(ByteStream* stream);
bool Restore(ByteStream* stream);
// Returns a list of debugger info for all threads that have ever existed.
// This is the preferred way to sample thread state vs. attempting to ask
// the kernel.
std::vector<ThreadDebugInfo*> QueryThreadDebugInfos();
// Returns the debugger info for the given thread.
ThreadDebugInfo* QueryThreadDebugInfo(uint32_t thread_id);
// Adds a breakpoint to the debugger and activates it (if enabled).
// The given breakpoint will not be owned by the debugger and must remain
// allocated so long as it is added.
void AddBreakpoint(Breakpoint* breakpoint);
// Removes a breakpoint from the debugger and deactivates it.
void RemoveBreakpoint(Breakpoint* breakpoint);
// Finds a breakpoint that may be registered at the given address.
Breakpoint* FindBreakpoint(uint32_t address);
// Returns all currently registered breakpoints.
std::vector<Breakpoint*> breakpoints() const;
// Shows the debug listener, focusing it if it already exists.
void ShowDebugger();
// Pauses target execution by suspending all threads.
// The debug listener will be requested if it has not been attached.
void Pause();
// Continues target execution from wherever it is.
// This will cancel any active step operations and resume all threads.
void Continue();
// Steps the given thread a single x64 host instruction.
// If the step is over a branch the branch will be followed.
void StepHostInstruction(uint32_t thread_id);
// Steps the given thread a single PPC guest instruction.
// If the step is over a branch the branch will be followed.
void StepGuestInstruction(uint32_t thread_id);
// Steps the given thread until the guest address is hit.
// Returns false if the step could not be completed (invalid target address).
bool StepToGuestAddress(uint32_t thread_id, uint32_t pc);
// Steps the given thread to the target of the branch at the specified guest
// address. The address must specify a branch instruction.
// Returns the new PC guest address.
uint32_t StepIntoGuestBranchTarget(uint32_t thread_id, uint32_t pc);
// Steps the thread to a point where it's safe to terminate or read its
// context. Returns the PC after we've finished stepping.
// Pass true for ignore_host if you've stopped the thread yourself
// in host code you want to ignore.
// Returns the new PC guest address.
uint32_t StepToGuestSafePoint(uint32_t thread_id, bool ignore_host = false);
public:
// TODO(benvanik): hide.
void OnThreadCreated(uint32_t handle, ThreadState* thread_state,
Thread* thread);
void OnThreadExit(uint32_t thread_id);
void OnThreadDestroyed(uint32_t thread_id);
void OnThreadEnteringWait(uint32_t thread_id);
void OnThreadLeavingWait(uint32_t thread_id);
bool OnUnhandledException(Exception* ex);
bool OnThreadBreakpointHit(Exception* ex);
uint8_t* AllocateFunctionTraceData(size_t size);
private:
// Synchronously demands a debug listener.
void DemandDebugListener();
// Suspends all known threads (except the caller).
bool SuspendAllThreads();
// Resumes the given thread.
bool ResumeThread(uint32_t thread_id);
// Resumes all known threads (except the caller).
bool ResumeAllThreads();
// Updates all cached thread execution info (state, call stacks, etc).
// The given override thread handle and context will be used in place of
// sampled values for that thread.
void UpdateThreadExecutionStates(uint32_t override_handle = 0,
X64Context* override_context = nullptr);
// Suspends all breakpoints, uninstalling them as required.
// No breakpoints will be triggered until they are resumed.
void SuspendAllBreakpoints();
// Resumes all breakpoints, re-installing them if required.
void ResumeAllBreakpoints();
void OnFunctionDefined(Function* function);
static bool ExceptionCallbackThunk(Exception* ex, void* data);
bool ExceptionCallback(Exception* ex);
void OnStepCompleted(ThreadDebugInfo* thread_info);
void OnBreakpointHit(ThreadDebugInfo* thread_info, Breakpoint* breakpoint);
// Calculates the next guest instruction based on the current thread state and
// current PC. This will look for branches and other control flow
// instructions.
uint32_t CalculateNextGuestInstruction(ThreadDebugInfo* thread_info,
uint32_t current_pc);
bool DemandFunction(Function* function);
Memory* memory_ = nullptr;
std::unique_ptr<StackWalker> stack_walker_;
std::function<DebugListener*(Processor*)> debug_listener_handler_;
DebugListener* debug_listener_ = nullptr;
// Which debug features are enabled in generated code.
uint32_t debug_info_flags_ = 0;
// If specified, the file trace data gets written to when running.
std::wstring functions_trace_path_;
std::unique_ptr<ChunkedMappedMemoryWriter> functions_trace_file_;
std::unique_ptr<ppc::PPCFrontend> frontend_;
std::unique_ptr<backend::Backend> backend_;
ExportResolver* export_resolver_ = nullptr;
EntryTable entry_table_;
xe::global_critical_region global_critical_region_;
ExecutionState execution_state_ = ExecutionState::kPaused;
std::vector<std::unique_ptr<Module>> modules_;
Module* builtin_module_ = nullptr;
uint32_t next_builtin_address_ = 0xFFFF0000u;
// Maps thread ID to state. Updated on thread create, and threads are never
// removed. Must be guarded with the global lock.
std::map<uint32_t, std::unique_ptr<ThreadDebugInfo>> thread_debug_infos_;
// TODO(benvanik): cleanup/change structures.
std::vector<Breakpoint*> breakpoints_;
Irql irql_;
};
} // namespace cpu
} // namespace xe
#endif // XENIA_CPU_PROCESSOR_H_