/* * * TinySHA1 - a header only implementation of the SHA1 algorithm in C++. Based * on the implementation in boost::uuid::details. * * SHA1 Wikipedia Page: http://en.wikipedia.org/wiki/SHA-1 * * Copyright (c) 2012-22 SAURAV MOHAPATRA <mohaps@gmail.com> * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * Taken from https://github.com/mohaps/TinySHA1 * Modified for use by Xenia */ #ifndef _TINY_SHA1_HPP_ #define _TINY_SHA1_HPP_ #include <cstdio> #include <cstdlib> #include <cstring> #include <stdint.h> namespace sha1 { class SHA1 { public: typedef uint32_t digest32_t[5]; typedef uint8_t digest8_t[20]; inline static uint32_t LeftRotate(uint32_t value, size_t count) { return (value << count) ^ (value >> (32 - count)); } SHA1() { reset(); } virtual ~SHA1() {} SHA1(const SHA1& s) { *this = s; } const SHA1& operator=(const SHA1& s) { memcpy(m_digest, s.m_digest, 5 * sizeof(uint32_t)); memcpy(m_block, s.m_block, 64); m_blockByteIndex = s.m_blockByteIndex; m_byteCount = s.m_byteCount; return *this; } SHA1& init(const uint32_t digest[5], const uint8_t block[64], uint32_t count) { std::memcpy(m_digest, digest, 20); std::memcpy(m_block, block, count % 64); m_byteCount = count; m_blockByteIndex = count % 64; return *this; } const uint32_t* getDigest() const { return m_digest; } const uint8_t* getBlock() const { return m_block; } size_t getBlockByteIndex() const { return m_blockByteIndex; } size_t getByteCount() const { return m_byteCount; } SHA1& reset() { m_digest[0] = 0x67452301; m_digest[1] = 0xEFCDAB89; m_digest[2] = 0x98BADCFE; m_digest[3] = 0x10325476; m_digest[4] = 0xC3D2E1F0; m_blockByteIndex = 0; m_byteCount = 0; return *this; } SHA1& processByte(uint8_t octet) { this->m_block[this->m_blockByteIndex++] = octet; ++this->m_byteCount; if (m_blockByteIndex == 64) { this->m_blockByteIndex = 0; processBlock(); } return *this; } SHA1& processBlock(const void* const start, const void* const end) { const uint8_t* begin = static_cast<const uint8_t*>(start); const uint8_t* finish = static_cast<const uint8_t*>(end); while (begin != finish) { processByte(*begin); begin++; } return *this; } SHA1& processBytes(const void* const data, size_t len) { const uint8_t* block = static_cast<const uint8_t*>(data); processBlock(block, block + len); return *this; } const uint32_t* finalize(digest32_t digest) { size_t bitCount = this->m_byteCount * 8; processByte(0x80); if (this->m_blockByteIndex > 56) { while (m_blockByteIndex != 0) { processByte(0); } while (m_blockByteIndex < 56) { processByte(0); } } else { while (m_blockByteIndex < 56) { processByte(0); } } processByte(0); processByte(0); processByte(0); processByte(0); processByte(static_cast<unsigned char>((bitCount >> 24) & 0xFF)); processByte(static_cast<unsigned char>((bitCount >> 16) & 0xFF)); processByte(static_cast<unsigned char>((bitCount >> 8) & 0xFF)); processByte(static_cast<unsigned char>((bitCount)&0xFF)); memcpy(digest, m_digest, 5 * sizeof(uint32_t)); return digest; } const uint8_t* finalize(digest8_t digest) { digest32_t d32; finalize(d32); size_t di = 0; digest[di++] = ((d32[0] >> 24) & 0xFF); digest[di++] = ((d32[0] >> 16) & 0xFF); digest[di++] = ((d32[0] >> 8) & 0xFF); digest[di++] = ((d32[0]) & 0xFF); digest[di++] = ((d32[1] >> 24) & 0xFF); digest[di++] = ((d32[1] >> 16) & 0xFF); digest[di++] = ((d32[1] >> 8) & 0xFF); digest[di++] = ((d32[1]) & 0xFF); digest[di++] = ((d32[2] >> 24) & 0xFF); digest[di++] = ((d32[2] >> 16) & 0xFF); digest[di++] = ((d32[2] >> 8) & 0xFF); digest[di++] = ((d32[2]) & 0xFF); digest[di++] = ((d32[3] >> 24) & 0xFF); digest[di++] = ((d32[3] >> 16) & 0xFF); digest[di++] = ((d32[3] >> 8) & 0xFF); digest[di++] = ((d32[3]) & 0xFF); digest[di++] = ((d32[4] >> 24) & 0xFF); digest[di++] = ((d32[4] >> 16) & 0xFF); digest[di++] = ((d32[4] >> 8) & 0xFF); digest[di++] = ((d32[4]) & 0xFF); return digest; } protected: void processBlock() { uint32_t w[80]; for (size_t i = 0; i < 16; i++) { w[i] = (m_block[i * 4 + 0] << 24); w[i] |= (m_block[i * 4 + 1] << 16); w[i] |= (m_block[i * 4 + 2] << 8); w[i] |= (m_block[i * 4 + 3]); } for (size_t i = 16; i < 80; i++) { w[i] = LeftRotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]), 1); } uint32_t a = m_digest[0]; uint32_t b = m_digest[1]; uint32_t c = m_digest[2]; uint32_t d = m_digest[3]; uint32_t e = m_digest[4]; for (std::size_t i = 0; i < 80; ++i) { uint32_t f = 0; uint32_t k = 0; if (i < 20) { f = (b & c) | (~b & d); k = 0x5A827999; } else if (i < 40) { f = b ^ c ^ d; k = 0x6ED9EBA1; } else if (i < 60) { f = (b & c) | (b & d) | (c & d); k = 0x8F1BBCDC; } else { f = b ^ c ^ d; k = 0xCA62C1D6; } uint32_t temp = LeftRotate(a, 5) + f + e + k + w[i]; e = d; d = c; c = LeftRotate(b, 30); b = a; a = temp; } m_digest[0] += a; m_digest[1] += b; m_digest[2] += c; m_digest[3] += d; m_digest[4] += e; } private: digest32_t m_digest; uint8_t m_block[64]; size_t m_blockByteIndex; size_t m_byteCount; }; } #endif