// File: crn_math.h // See Copyright Notice and license at the end of inc/crnlib.h #pragma once #if defined(_M_IX86) && defined(_MSC_VER) #include <intrin.h> #pragma intrinsic(__emulu) unsigned __int64 __emulu(unsigned int a,unsigned int b ); #endif namespace crnlib { namespace math { const float cNearlyInfinite = 1.0e+37f; const float cDegToRad = 0.01745329252f; const float cRadToDeg = 57.29577951f; extern uint g_bitmasks[32]; template<typename T> inline bool within_closed_range(T a, T b, T c) { return (a >= b) && (a <= c); } template<typename T> inline bool within_open_range(T a, T b, T c) { return (a >= b) && (a < c); } // Yes I know these should probably be pass by ref, not val: // http://www.stepanovpapers.com/notes.pdf // Just don't use them on non-simple (non built-in) types! template<typename T> inline T minimum(T a, T b) { return (a < b) ? a : b; } template<typename T> inline T minimum(T a, T b, T c) { return minimum(minimum(a, b), c); } template<typename T> inline T maximum(T a, T b) { return (a > b) ? a : b; } template<typename T> inline T maximum(T a, T b, T c) { return maximum(maximum(a, b), c); } template<typename T, typename U> inline T lerp(T a, T b, U c) { return a + (b - a) * c; } template<typename T> inline T clamp(T value, T low, T high) { return (value < low) ? low : ((value > high) ? high : value); } template<typename T> inline T saturate(T value) { return (value < 0.0f) ? 0.0f : ((value > 1.0f) ? 1.0f : value); } inline int float_to_int(float f) { return static_cast<int>(f); } inline uint float_to_uint(float f) { return static_cast<uint>(f); } inline int float_to_int(double f) { return static_cast<int>(f); } inline uint float_to_uint(double f) { return static_cast<uint>(f); } inline int float_to_int_round(float f) { return static_cast<int>((f < 0.0f) ? -floor(-f + .5f) : floor(f + .5f)); } inline uint float_to_uint_round(float f) { return static_cast<uint>((f < 0.0f) ? 0.0f : floor(f + .5f)); } template<typename T> inline int sign(T value) { return (value < 0) ? -1 : ((value > 0) ? 1 : 0); } template<typename T> inline T square(T value) { return value * value; } inline bool is_power_of_2(uint32 x) { return x && ((x & (x - 1U)) == 0U); } inline bool is_power_of_2(uint64 x) { return x && ((x & (x - 1U)) == 0U); } template<typename T> inline T align_up_value(T x, uint alignment) { CRNLIB_ASSERT(is_power_of_2(alignment)); uint q = static_cast<uint>(x); q = (q + alignment - 1) & (~(alignment - 1)); return static_cast<T>(q); } template<typename T> inline T align_down_value(T x, uint alignment) { CRNLIB_ASSERT(is_power_of_2(alignment)); uint q = static_cast<uint>(x); q = q & (~(alignment - 1)); return static_cast<T>(q); } template<typename T> inline T get_align_up_value_delta(T x, uint alignment) { return align_up_value(x, alignment) - x; } // From "Hackers Delight" inline uint32 next_pow2(uint32 val) { val--; val |= val >> 16; val |= val >> 8; val |= val >> 4; val |= val >> 2; val |= val >> 1; return val + 1; } inline uint64 next_pow2(uint64 val) { val--; val |= val >> 32; val |= val >> 16; val |= val >> 8; val |= val >> 4; val |= val >> 2; val |= val >> 1; return val + 1; } inline uint floor_log2i(uint v) { uint l = 0; while (v > 1U) { v >>= 1; l++; } return l; } inline uint ceil_log2i(uint v) { uint l = floor_log2i(v); if ((l != cIntBits) && (v > (1U << l))) l++; return l; } // Returns the total number of bits needed to encode v. inline uint total_bits(uint v) { uint l = 0; while (v > 0U) { v >>= 1; l++; } return l; } // Actually counts the number of set bits, but hey inline uint bitmask_size(uint mask) { uint size = 0; while (mask) { mask &= (mask - 1U); size++; } return size; } inline uint bitmask_ofs(uint mask) { if (!mask) return 0; uint ofs = 0; while ((mask & 1U) == 0) { mask >>= 1U; ofs++; } return ofs; } // See Bit Twiddling Hacks (public domain) // http://www-graphics.stanford.edu/~seander/bithacks.html inline uint count_trailing_zero_bits(uint v) { uint c = 32; // c will be the number of zero bits on the right static const unsigned int B[] = { 0x55555555, 0x33333333, 0x0F0F0F0F, 0x00FF00FF, 0x0000FFFF }; static const unsigned int S[] = { 1, 2, 4, 8, 16 }; // Our Magic Binary Numbers for (int i = 4; i >= 0; --i) // unroll for more speed { if (v & B[i]) { v <<= S[i]; c -= S[i]; } } if (v) { c--; } return c; } inline uint count_leading_zero_bits(uint v) { uint temp; uint result = 32U; temp = (v >> 16U); if (temp) { result -= 16U; v = temp; } temp = (v >> 8U); if (temp) { result -= 8U; v = temp; } temp = (v >> 4U); if (temp) { result -= 4U; v = temp; } temp = (v >> 2U); if (temp) { result -= 2U; v = temp; } temp = (v >> 1U); if (temp) { result -= 1U; v = temp; } if (v & 1U) result--; return result; } inline uint64 emulu(uint32 a, uint32 b) { #if defined(_M_IX86) && defined(_MSC_VER) return __emulu(a, b); #else return static_cast<uint64>(a) * static_cast<uint64>(b); #endif } double compute_entropy(const uint8* p, uint n); void compute_lower_pow2_dim(int& width, int& height); void compute_upper_pow2_dim(int& width, int& height); inline bool equal_tol(float a, float b, float t) { return fabs(a - b) < ((maximum(fabs(a), fabs(b)) + 1.0f) * t); } inline bool equal_tol(double a, double b, double t) { return fabs(a - b) < ((maximum(fabs(a), fabs(b)) + 1.0f) * t); } } } // namespace crnlib