GL4 command processor.

This commit is contained in:
Ben Vanik 2014-12-22 14:25:34 -08:00
parent 42e6a44624
commit f8325512d7
13 changed files with 1279 additions and 32 deletions

View File

@ -45,6 +45,7 @@ class Control {
virtual void ResizeToFill(int32_t pad_left, int32_t pad_top,
int32_t pad_right, int32_t pad_bottom) = 0;
void Layout();
virtual void Invalidate() {}
// TODO(benvanik): colors/brushes/etc.
// TODO(benvanik): fonts.

View File

@ -114,10 +114,19 @@ void Win32Control::OnResize(UIEvent& e) {
for (auto& child_control : children_) {
auto win32_control = static_cast<Win32Control*>(child_control.get());
win32_control->OnResize(e);
win32_control->Invalidate();
}
}
}
void Win32Control::Invalidate() {
InvalidateRect(hwnd_, nullptr, FALSE);
for (auto& child_control : children_) {
auto win32_control = static_cast<Win32Control*>(child_control.get());
win32_control->Invalidate();
}
}
void Win32Control::set_cursor_visible(bool value) {
if (is_cursor_visible_ == value) {
return;

View File

@ -33,6 +33,7 @@ class Win32Control : public Control {
int32_t bottom) override;
void ResizeToFill(int32_t pad_left, int32_t pad_top, int32_t pad_right,
int32_t pad_bottom) override;
void Invalidate() override;
void set_cursor_visible(bool value) override;
void set_enabled(bool value) override;

View File

@ -0,0 +1,940 @@
/**
******************************************************************************
* Xenia : Xbox 360 Emulator Research Project *
******************************************************************************
* Copyright 2014 Ben Vanik. All rights reserved. *
* Released under the BSD license - see LICENSE in the root for more details. *
******************************************************************************
*/
#include <xenia/gpu/gl4/command_processor.h>
#include <algorithm>
#include <poly/logging.h>
#include <xenia/gpu/gl4/gl4_graphics_system.h>
#include <xenia/gpu/gpu-private.h>
#include <xenia/gpu/xenos.h>
#define XETRACECP(fmt, ...) \
if (FLAGS_trace_ring_buffer) XELOGGPU(fmt, ##__VA_ARGS__)
namespace xe {
namespace gpu {
namespace gl4 {
using namespace xe::gpu::xenos;
CommandProcessor::CommandProcessor(GL4GraphicsSystem* graphics_system)
: memory_(graphics_system->memory()),
membase_(graphics_system->memory()->membase()),
graphics_system_(graphics_system),
register_file_(graphics_system_->register_file()),
worker_running_(true),
time_base_(0),
counter_(0),
primary_buffer_ptr_(0),
primary_buffer_size_(0),
read_ptr_index_(0),
read_ptr_update_freq_(0),
read_ptr_writeback_ptr_(0),
write_ptr_index_event_(CreateEvent(NULL, FALSE, FALSE, NULL)),
write_ptr_index_(0) {
LARGE_INTEGER perf_counter;
QueryPerformanceCounter(&perf_counter);
time_base_ = perf_counter.QuadPart;
}
CommandProcessor::~CommandProcessor() { CloseHandle(write_ptr_index_event_); }
uint64_t CommandProcessor::QueryTime() {
LARGE_INTEGER perf_counter;
QueryPerformanceCounter(&perf_counter);
return perf_counter.QuadPart - time_base_;
}
void CommandProcessor::Initialize(uint32_t ptr, uint32_t page_count) {
primary_buffer_ptr_ = ptr;
// Not sure this is correct, but it's a way to take the page_count back to
// the number of bytes allocated by the physical alloc.
uint32_t original_size = 1 << (0x1C - page_count - 1);
primary_buffer_size_ = original_size;
read_ptr_index_ = 0;
worker_running_ = true;
worker_thread_ = std::thread([this]() {
poly::threading::set_name("GL4 Worker");
xe::Profiler::ThreadEnter("GL4 Worker");
WorkerMain();
xe::Profiler::ThreadExit();
});
}
void CommandProcessor::Shutdown() {
worker_running_ = false;
SetEvent(write_ptr_index_event_);
worker_thread_.join();
}
void CommandProcessor::WorkerMain() {
while (worker_running_) {
uint32_t write_ptr_index = write_ptr_index_.load();
while (write_ptr_index == 0xBAADF00D ||
read_ptr_index_ == write_ptr_index) {
// Check if the pointer has moved.
// We wait a short bit here to yield time. Since we are also running the
// main window display we don't want to pause too long, though.
// YieldProcessor();
const int wait_time_ms = 5;
if (WaitForSingleObject(write_ptr_index_event_, wait_time_ms) ==
WAIT_TIMEOUT) {
write_ptr_index = write_ptr_index_.load();
continue;
}
}
assert_true(read_ptr_index_ != write_ptr_index);
// Process the new commands.
XETRACECP("Command processor thread work");
// Execute. Note that we handle wraparound transparently.
ExecutePrimaryBuffer(read_ptr_index_, write_ptr_index);
read_ptr_index_ = write_ptr_index;
// TODO(benvanik): use reader->Read_update_freq_ and only issue after moving
// that many indices.
if (read_ptr_writeback_ptr_) {
poly::store_and_swap<uint32_t>(membase_ + read_ptr_writeback_ptr_,
read_ptr_index_);
}
}
}
void CommandProcessor::EnableReadPointerWriteBack(uint32_t ptr,
uint32_t block_size) {
// CP_RB_RPTR_ADDR Ring Buffer Read Pointer Address 0x70C
// ptr = RB_RPTR_ADDR, pointer to write back the address to.
read_ptr_writeback_ptr_ = (primary_buffer_ptr_ & ~0x1FFFFFFF) + ptr;
// CP_RB_CNTL Ring Buffer Control 0x704
// block_size = RB_BLKSZ, number of quadwords read between updates of the
// read pointer.
read_ptr_update_freq_ = (uint32_t)pow(2.0, (double)block_size) / 4;
}
void CommandProcessor::UpdateWritePointer(uint32_t value) {
write_ptr_index_ = value;
SetEvent(write_ptr_index_event_);
}
void CommandProcessor::WriteRegister(uint32_t packet_ptr, uint32_t index,
uint32_t value) {
RegisterFile* regs = register_file_;
assert_true(index < RegisterFile::kRegisterCount);
regs->values[index].u32 = value;
// If this is a COHER register, set the dirty flag.
// This will block the command processor the next time it WAIT_MEM_REGs and
// allow us to synchronize the memory.
if (index == XE_GPU_REG_COHER_STATUS_HOST) {
regs->values[index].u32 |= 0x80000000ul;
}
// Scratch register writeback.
if (index >= XE_GPU_REG_SCRATCH_REG0 && index <= XE_GPU_REG_SCRATCH_REG7) {
uint32_t scratch_reg = index - XE_GPU_REG_SCRATCH_REG0;
if ((1 << scratch_reg) & regs->values[XE_GPU_REG_SCRATCH_UMSK].u32) {
// Enabled - write to address.
uint32_t scratch_addr = regs->values[XE_GPU_REG_SCRATCH_ADDR].u32;
uint32_t mem_addr = scratch_addr + (scratch_reg * 4);
poly::store_and_swap<uint32_t>(
membase_ + xenos::GpuToCpu(primary_buffer_ptr_, mem_addr), value);
}
}
}
void CommandProcessor::MakeCoherent() {
// Status host often has 0x01000000 or 0x03000000.
// This is likely toggling VC (vertex cache) or TC (texture cache).
// Or, it also has a direction in here maybe - there is probably
// some way to check for dest coherency (what all the COHER_DEST_BASE_*
// registers are for).
// Best docs I've found on this are here:
// http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/10/R6xx_R7xx_3D.pdf
// http://cgit.freedesktop.org/xorg/driver/xf86-video-radeonhd/tree/src/r6xx_accel.c?id=3f8b6eccd9dba116cc4801e7f80ce21a879c67d2#n454
RegisterFile* regs = register_file_;
auto status_host = regs->values[XE_GPU_REG_COHER_STATUS_HOST].u32;
auto base_host = regs->values[XE_GPU_REG_COHER_BASE_HOST].u32;
auto size_host = regs->values[XE_GPU_REG_COHER_SIZE_HOST].u32;
if (!(status_host & 0x80000000ul)) {
return;
}
// TODO(benvanik): notify resource cache of base->size and type.
XETRACECP("Make %.8X -> %.8X (%db) coherent", base_host,
base_host + size_host, size_host);
// Mark coherent.
status_host &= ~0x80000000ul;
regs->values[XE_GPU_REG_COHER_STATUS_HOST].u32 = status_host;
}
class CommandProcessor::RingbufferReader {
public:
RingbufferReader(uint8_t* membase, uint32_t base_ptr, uint32_t ptr_mask,
uint32_t start_ptr, uint32_t end_ptr)
: membase_(membase),
base_ptr_(base_ptr),
ptr_mask_(ptr_mask),
start_ptr_(start_ptr),
end_ptr_(end_ptr),
ptr_(start_ptr) {}
uint32_t ptr() const { return ptr_; }
uint32_t offset() const { return (ptr_ - start_ptr_) / sizeof(uint32_t); }
bool can_read() const { return ptr_ != end_ptr_; }
uint32_t Peek() { return poly::load_and_swap<uint32_t>(membase_ + ptr_); }
void CheckRead(uint32_t words) {
assert_true(ptr_ + words * sizeof(uint32_t) <= end_ptr_);
}
uint32_t Read() {
uint32_t value = poly::load_and_swap<uint32_t>(membase_ + ptr_);
Advance(1);
return value;
}
void Advance(uint32_t words) {
ptr_ = ptr_ + words * sizeof(uint32_t);
if (ptr_mask_) {
ptr_ = base_ptr_ +
(((ptr_ - base_ptr_) / sizeof(uint32_t)) & ptr_mask_) *
sizeof(uint32_t);
}
assert_true(ptr_ <= end_ptr_);
}
void Skip(uint32_t words) { Advance(words); }
void TraceData(uint32_t words) {
for (uint32_t i = 0; i < words; ++i) {
uint32_t i_ptr = ptr_ + i * sizeof(uint32_t);
XETRACECP("[%.8X] %.8X", i_ptr,
poly::load_and_swap<uint32_t>(membase_ + i_ptr));
}
}
private:
uint8_t* membase_;
uint32_t base_ptr_;
uint32_t ptr_mask_;
uint32_t start_ptr_;
uint32_t end_ptr_;
uint32_t ptr_;
};
void CommandProcessor::ExecutePrimaryBuffer(uint32_t start_index,
uint32_t end_index) {
SCOPE_profile_cpu_f("gpu");
// Adjust pointer base.
uint32_t start_ptr = primary_buffer_ptr_ + start_index * sizeof(uint32_t);
start_ptr = (primary_buffer_ptr_ & ~0x1FFFFFFF) | (start_ptr & 0x1FFFFFFF);
uint32_t end_ptr = primary_buffer_ptr_ + end_index * sizeof(uint32_t);
end_ptr = (primary_buffer_ptr_ & ~0x1FFFFFFF) | (end_ptr & 0x1FFFFFFF);
XETRACECP("[%.8X] ExecutePrimaryBuffer(%dw -> %dw)", start_ptr, start_index,
end_index);
// Execute commands!
uint32_t ptr_mask = (primary_buffer_size_ / sizeof(uint32_t)) - 1;
RingbufferReader reader(membase_, primary_buffer_ptr_, ptr_mask, start_ptr,
end_ptr);
while (reader.can_read()) {
ExecutePacket(&reader);
}
if (end_index > start_index) {
assert_true(reader.offset() == (end_index - start_index));
}
XETRACECP(" ExecutePrimaryBuffer End");
}
void CommandProcessor::ExecuteIndirectBuffer(uint32_t ptr, uint32_t length) {
XETRACECP("[%.8X] ExecuteIndirectBuffer(%dw)", ptr, length);
// Execute commands!
uint32_t ptr_mask = 0;
RingbufferReader reader(membase_, primary_buffer_ptr_, ptr_mask, ptr,
ptr + length * sizeof(uint32_t));
while (reader.can_read()) {
ExecutePacket(&reader);
}
XETRACECP(" ExecuteIndirectBuffer End");
}
bool CommandProcessor::ExecutePacket(RingbufferReader* reader) {
RegisterFile* regs = register_file_;
uint32_t packet_ptr = reader->ptr();
const uint32_t packet = reader->Read();
const uint32_t packet_type = packet >> 30;
if (packet == 0) {
XETRACECP("[%.8X] Packet(%.8X): 0?", packet_ptr, packet);
return true;
}
switch (packet_type) {
case 0x00:
return ExecutePacketType0(reader, packet_ptr, packet);
case 0x01:
return ExecutePacketType1(reader, packet_ptr, packet);
case 0x02:
return ExecutePacketType2(reader, packet_ptr, packet);
case 0x03:
return ExecutePacketType3(reader, packet_ptr, packet);
}
}
bool CommandProcessor::ExecutePacketType0(RingbufferReader* reader,
uint32_t packet_ptr,
uint32_t packet) {
// Type-0 packet.
// Write count registers in sequence to the registers starting at
// (base_index << 2).
XETRACECP("[%.8X] Packet(%.8X): set registers:", packet_ptr, packet);
uint32_t count = ((packet >> 16) & 0x3FFF) + 1;
uint32_t base_index = (packet & 0x7FFF);
uint32_t write_one_reg = (packet >> 15) & 0x1;
for (uint32_t m = 0; m < count; m++) {
uint32_t reg_data = reader->Peek();
uint32_t target_index = write_one_reg ? base_index : base_index + m;
const char* reg_name = register_file_->GetRegisterName(target_index);
XETRACECP("[%.8X] %.8X -> %.4X %s", reader->ptr(), reg_data, target_index,
reg_name ? reg_name : "");
reader->Advance(1);
WriteRegister(packet_ptr, target_index, reg_data);
}
return true;
}
bool CommandProcessor::ExecutePacketType1(RingbufferReader* reader,
uint32_t packet_ptr,
uint32_t packet) {
// Type-1 packet.
// Contains two registers of data. Type-0 should be more common.
XETRACECP("[%.8X] Packet(%.8X): set registers:", packet_ptr, packet);
uint32_t reg_index_1 = packet & 0x7FF;
uint32_t reg_index_2 = (packet >> 11) & 0x7FF;
uint32_t reg_ptr_1 = reader->ptr();
uint32_t reg_data_1 = reader->Read();
uint32_t reg_ptr_2 = reader->ptr();
uint32_t reg_data_2 = reader->Read();
const char* reg_name_1 = register_file_->GetRegisterName(reg_index_1);
const char* reg_name_2 = register_file_->GetRegisterName(reg_index_2);
XETRACECP("[%.8X] %.8X -> %.4X %s", reg_ptr_1, reg_data_1, reg_index_1,
reg_name_1 ? reg_name_1 : "");
XETRACECP("[%.8X] %.8X -> %.4X %s", reg_ptr_2, reg_data_2, reg_index_2,
reg_name_2 ? reg_name_2 : "");
WriteRegister(packet_ptr, reg_index_1, reg_data_1);
WriteRegister(packet_ptr, reg_index_2, reg_data_2);
return true;
}
bool CommandProcessor::ExecutePacketType2(RingbufferReader* reader,
uint32_t packet_ptr,
uint32_t packet) {
// Type-2 packet.
// No-op. Do nothing.
XETRACECP("[%.8X] Packet(%.8X): padding", packet_ptr, packet);
return true;
}
bool CommandProcessor::ExecutePacketType3(RingbufferReader* reader,
uint32_t packet_ptr,
uint32_t packet) {
// Type-3 packet.
// & 1 == predicate, maybe?
uint32_t opcode = (packet >> 8) & 0x7F;
uint32_t count = ((packet >> 16) & 0x3FFF) + 1;
auto data_start_offset = reader->offset();
bool result = false;
switch (opcode) {
case PM4_ME_INIT:
result = ExecutePacketType3_ME_INIT(reader, packet_ptr, packet, count);
break;
case PM4_NOP:
result = ExecutePacketType3_NOP(reader, packet_ptr, packet, count);
break;
case PM4_INTERRUPT:
result = ExecutePacketType3_INTERRUPT(reader, packet_ptr, packet, count);
break;
case PM4_XE_SWAP:
result = ExecutePacketType3_XE_SWAP(reader, packet_ptr, packet, count);
break;
case PM4_INDIRECT_BUFFER:
result =
ExecutePacketType3_INDIRECT_BUFFER(reader, packet_ptr, packet, count);
break;
case PM4_WAIT_REG_MEM:
result =
ExecutePacketType3_WAIT_REG_MEM(reader, packet_ptr, packet, count);
break;
case PM4_REG_RMW:
result = ExecutePacketType3_REG_RMW(reader, packet_ptr, packet, count);
break;
case PM4_COND_WRITE:
result = ExecutePacketType3_COND_WRITE(reader, packet_ptr, packet, count);
break;
case PM4_EVENT_WRITE:
result =
ExecutePacketType3_EVENT_WRITE(reader, packet_ptr, packet, count);
break;
case PM4_EVENT_WRITE_SHD:
result =
ExecutePacketType3_EVENT_WRITE_SHD(reader, packet_ptr, packet, count);
break;
case PM4_DRAW_INDX:
result = ExecutePacketType3_DRAW_INDX(reader, packet_ptr, packet, count);
break;
case PM4_DRAW_INDX_2:
result =
ExecutePacketType3_DRAW_INDX_2(reader, packet_ptr, packet, count);
break;
case PM4_SET_CONSTANT:
result =
ExecutePacketType3_SET_CONSTANT(reader, packet_ptr, packet, count);
break;
case PM4_LOAD_ALU_CONSTANT:
result = ExecutePacketType3_LOAD_ALU_CONSTANT(reader, packet_ptr, packet,
count);
break;
case PM4_IM_LOAD:
result = ExecutePacketType3_IM_LOAD(reader, packet_ptr, packet, count);
break;
case PM4_IM_LOAD_IMMEDIATE:
result = ExecutePacketType3_IM_LOAD_IMMEDIATE(reader, packet_ptr, packet,
count);
break;
case PM4_INVALIDATE_STATE:
result = ExecutePacketType3_INVALIDATE_STATE(reader, packet_ptr, packet,
count);
break;
case PM4_SET_BIN_MASK_LO: {
uint32_t value = reader->Read();
XETRACECP("[%.8X] Packet(%.8X): PM4_SET_BIN_MASK_LO = %.8X", packet_ptr,
packet, value);
result = true;
} break;
case PM4_SET_BIN_MASK_HI: {
uint32_t value = reader->Read();
XETRACECP("[%.8X] Packet(%.8X): PM4_SET_BIN_MASK_HI = %.8X", packet_ptr,
packet, value);
result = true;
} break;
case PM4_SET_BIN_SELECT_LO: {
uint32_t value = reader->Read();
XETRACECP("[%.8X] Packet(%.8X): PM4_SET_BIN_SELECT_LO = %.8X", packet_ptr,
packet, value);
result = true;
} break;
case PM4_SET_BIN_SELECT_HI: {
uint32_t value = reader->Read();
XETRACECP("[%.8X] Packet(%.8X): PM4_SET_BIN_SELECT_HI = %.8X", packet_ptr,
packet, value);
result = true;
} break;
// Ignored packets - useful if breaking on the default handler below.
case 0x50: // 0xC0015000 usually 2 words, 0xFFFFFFFF / 0x00000000
XETRACECP("[%.8X] Packet(%.8X): unknown!", packet_ptr, packet);
reader->TraceData(count);
reader->Skip(count);
break;
default:
XETRACECP("[%.8X] Packet(%.8X): unknown!", packet_ptr, packet);
reader->TraceData(count);
reader->Skip(count);
break;
}
assert_true(reader->offset() == data_start_offset + count);
return result;
}
bool CommandProcessor::ExecutePacketType3_ME_INIT(RingbufferReader* reader,
uint32_t packet_ptr,
uint32_t packet,
uint32_t count) {
// initialize CP's micro-engine
XETRACECP("[%.8X] Packet(%.8X): PM4_ME_INIT", packet_ptr, packet);
reader->TraceData(count);
reader->Advance(count);
return true;
}
bool CommandProcessor::ExecutePacketType3_NOP(RingbufferReader* reader,
uint32_t packet_ptr,
uint32_t packet, uint32_t count) {
// skip N 32-bit words to get to the next packet
// No-op, ignore some data.
XETRACECP("[%.8X] Packet(%.8X): PM4_NOP", packet_ptr, packet);
reader->TraceData(count);
reader->Advance(count);
return true;
}
bool CommandProcessor::ExecutePacketType3_INTERRUPT(RingbufferReader* reader,
uint32_t packet_ptr,
uint32_t packet,
uint32_t count) {
// generate interrupt from the command stream
XETRACECP("[%.8X] Packet(%.8X): PM4_INTERRUPT", packet_ptr, packet);
reader->TraceData(count);
uint32_t cpu_mask = reader->Read();
for (int n = 0; n < 6; n++) {
if (cpu_mask & (1 << n)) {
graphics_system_->DispatchInterruptCallback(1, n);
}
}
return true;
}
bool CommandProcessor::ExecutePacketType3_XE_SWAP(RingbufferReader* reader,
uint32_t packet_ptr,
uint32_t packet,
uint32_t count) {
// Xenia-specific VdSwap hook.
// VdSwap will post this to tell us we need to swap the screen/fire an
// interrupt.
XETRACECP("[%.8X] Packet(%.8X): PM4_XE_SWAP", packet_ptr, packet);
reader->TraceData(count);
reader->Advance(count);
if (swap_handler_) {
swap_handler_();
}
return true;
}
bool CommandProcessor::ExecutePacketType3_INDIRECT_BUFFER(
RingbufferReader* reader, uint32_t packet_ptr, uint32_t packet,
uint32_t count) {
// indirect buffer dispatch
uint32_t list_ptr = reader->Read();
uint32_t list_length = reader->Read();
XETRACECP("[%.8X] Packet(%.8X): PM4_INDIRECT_BUFFER %.8X (%dw)", packet_ptr,
packet, list_ptr, list_length);
ExecuteIndirectBuffer(GpuToCpu(list_ptr), list_length);
return true;
}
bool CommandProcessor::ExecutePacketType3_WAIT_REG_MEM(RingbufferReader* reader,
uint32_t packet_ptr,
uint32_t packet,
uint32_t count) {
// wait until a register or memory location is a specific value
XETRACECP("[%.8X] Packet(%.8X): PM4_WAIT_REG_MEM", packet_ptr, packet);
reader->TraceData(count);
uint32_t wait_info = reader->Read();
uint32_t poll_reg_addr = reader->Read();
uint32_t ref = reader->Read();
uint32_t mask = reader->Read();
uint32_t wait = reader->Read();
bool matched = false;
do {
uint32_t value;
if (wait_info & 0x10) {
// Memory.
auto endianness = static_cast<Endian>(poll_reg_addr & 0x3);
poll_reg_addr &= ~0x3;
value =
poly::load<uint32_t>(membase_ + GpuToCpu(packet_ptr, poll_reg_addr));
value = GpuSwap(value, endianness);
} else {
// Register.
assert_true(poll_reg_addr < RegisterFile::kRegisterCount);
value = register_file_->values[poll_reg_addr].u32;
if (poll_reg_addr == XE_GPU_REG_COHER_STATUS_HOST) {
MakeCoherent();
value = register_file_->values[poll_reg_addr].u32;
}
}
switch (wait_info & 0x7) {
case 0x0: // Never.
matched = false;
break;
case 0x1: // Less than reference.
matched = (value & mask) < ref;
break;
case 0x2: // Less than or equal to reference.
matched = (value & mask) <= ref;
break;
case 0x3: // Equal to reference.
matched = (value & mask) == ref;
break;
case 0x4: // Not equal to reference.
matched = (value & mask) != ref;
break;
case 0x5: // Greater than or equal to reference.
matched = (value & mask) >= ref;
break;
case 0x6: // Greater than reference.
matched = (value & mask) > ref;
break;
case 0x7: // Always
matched = true;
break;
}
if (!matched) {
// Wait.
if (wait >= 0x100) {
Sleep(wait / 0x100);
} else {
SwitchToThread();
}
}
} while (!matched);
return true;
}
bool CommandProcessor::ExecutePacketType3_REG_RMW(RingbufferReader* reader,
uint32_t packet_ptr,
uint32_t packet,
uint32_t count) {
// register read/modify/write
// ? (used during shader upload and edram setup)
XETRACECP("[%.8X] Packet(%.8X): PM4_REG_RMW", packet_ptr, packet);
reader->TraceData(count);
uint32_t rmw_info = reader->Read();
uint32_t and_mask = reader->Read();
uint32_t or_mask = reader->Read();
uint32_t value = register_file_->values[rmw_info & 0x1FFF].u32;
if ((rmw_info >> 30) & 0x1) {
// | reg
value |= register_file_->values[or_mask & 0x1FFF].u32;
} else {
// | imm
value |= or_mask;
}
if ((rmw_info >> 31) & 0x1) {
// & reg
value &= register_file_->values[and_mask & 0x1FFF].u32;
} else {
// & imm
value &= and_mask;
}
WriteRegister(packet_ptr, rmw_info & 0x1FFF, value);
return true;
}
bool CommandProcessor::ExecutePacketType3_COND_WRITE(RingbufferReader* reader,
uint32_t packet_ptr,
uint32_t packet,
uint32_t count) {
// conditional write to memory or register
XETRACECP("[%.8X] Packet(%.8X): PM4_COND_WRITE", packet_ptr, packet);
reader->TraceData(count);
uint32_t wait_info = reader->Read();
uint32_t poll_reg_addr = reader->Read();
uint32_t ref = reader->Read();
uint32_t mask = reader->Read();
uint32_t write_reg_addr = reader->Read();
uint32_t write_data = reader->Read();
uint32_t value;
if (wait_info & 0x10) {
// Memory.
auto endianness = static_cast<Endian>(poll_reg_addr & 0x3);
poll_reg_addr &= ~0x3;
value =
poly::load<uint32_t>(membase_ + GpuToCpu(packet_ptr, poll_reg_addr));
value = GpuSwap(value, endianness);
} else {
// Register.
assert_true(poll_reg_addr < RegisterFile::kRegisterCount);
value = register_file_->values[poll_reg_addr].u32;
}
bool matched = false;
switch (wait_info & 0x7) {
case 0x0: // Never.
matched = false;
break;
case 0x1: // Less than reference.
matched = (value & mask) < ref;
break;
case 0x2: // Less than or equal to reference.
matched = (value & mask) <= ref;
break;
case 0x3: // Equal to reference.
matched = (value & mask) == ref;
break;
case 0x4: // Not equal to reference.
matched = (value & mask) != ref;
break;
case 0x5: // Greater than or equal to reference.
matched = (value & mask) >= ref;
break;
case 0x6: // Greater than reference.
matched = (value & mask) > ref;
break;
case 0x7: // Always
matched = true;
break;
}
if (matched) {
// Write.
if (wait_info & 0x100) {
// Memory.
auto endianness = static_cast<Endian>(write_reg_addr & 0x3);
write_reg_addr &= ~0x3;
write_data = GpuSwap(write_data, endianness);
poly::store(membase_ + GpuToCpu(packet_ptr, write_reg_addr), write_data);
} else {
// Register.
WriteRegister(packet_ptr, write_reg_addr, write_data);
}
}
return true;
}
bool CommandProcessor::ExecutePacketType3_EVENT_WRITE(RingbufferReader* reader,
uint32_t packet_ptr,
uint32_t packet,
uint32_t count) {
// generate an event that creates a write to memory when completed
XETRACECP("[%.8X] Packet(%.8X): PM4_EVENT_WRITE (unimplemented!)", packet_ptr,
packet);
reader->TraceData(count);
uint32_t initiator = reader->Read();
if (count == 1) {
// Just an event flag? Where does this write?
} else {
// Write to an address.
assert_always();
reader->Advance(count - 1);
}
return true;
}
bool CommandProcessor::ExecutePacketType3_EVENT_WRITE_SHD(
RingbufferReader* reader, uint32_t packet_ptr, uint32_t packet,
uint32_t count) {
// generate a VS|PS_done event
XETRACECP("[%.8X] Packet(%.8X): PM4_EVENT_WRITE_SHD", packet_ptr, packet);
reader->TraceData(count);
uint32_t initiator = reader->Read();
uint32_t address = reader->Read();
uint32_t value = reader->Read();
// Writeback initiator.
WriteRegister(packet_ptr, XE_GPU_REG_VGT_EVENT_INITIATOR, initiator & 0x3F);
uint32_t data_value;
if ((initiator >> 31) & 0x1) {
// Write counter (GPU vblank counter?).
data_value = counter_;
} else {
// Write value.
data_value = value;
}
auto endianness = static_cast<Endian>(address & 0x3);
address &= ~0x3;
data_value = GpuSwap(data_value, endianness);
poly::store(membase_ + GpuToCpu(address), data_value);
return true;
}
bool CommandProcessor::ExecutePacketType3_DRAW_INDX(RingbufferReader* reader,
uint32_t packet_ptr,
uint32_t packet,
uint32_t count) {
// initiate fetch of index buffer and draw
XETRACECP("[%.8X] Packet(%.8X): PM4_DRAW_INDX", packet_ptr, packet);
reader->TraceData(count);
// dword0 = viz query info
uint32_t dword0 = reader->Read();
uint32_t dword1 = reader->Read();
uint32_t index_count = dword1 >> 16;
auto prim_type = static_cast<PrimitiveType>(dword1 & 0x3F);
uint32_t src_sel = (dword1 >> 6) & 0x3;
if (src_sel == 0x0) {
// Indexed draw.
uint32_t index_base = reader->Read();
uint32_t index_size = reader->Read();
auto endianness = static_cast<Endian>(index_size >> 30);
index_size &= 0x00FFFFFF;
bool index_32bit = (dword1 >> 11) & 0x1;
index_size *= index_32bit ? 4 : 2;
} else if (src_sel == 0x2) {
// Auto draw.
} else {
// Unknown source select.
assert_always();
}
// if (!driver_->PrepareDraw(draw_command_)) {
// draw_command_.prim_type = prim_type;
// draw_command_.start_index = 0;
// draw_command_.index_count = index_count;
// draw_command_.base_vertex = 0;
// if (src_sel == 0x0) {
// // Indexed draw.
// // TODO(benvanik): detect subregions of larger index
// buffers!
// driver_->PrepareDrawIndexBuffer(
// draw_command_, index_base, index_size,
// endianness,
// index_32bit ? INDEX_FORMAT_32BIT : INDEX_FORMAT_16BIT);
// } else if (src_sel == 0x2) {
// // Auto draw.
// draw_command_.index_buffer = nullptr;
// } else {
// // Unknown source select.
// assert_always();
// }
// driver_->Draw(draw_command_);
// } else {
// if (src_sel == 0x0) {
// reader->Advance(2); // skip
// }
// }
return true;
}
bool CommandProcessor::ExecutePacketType3_DRAW_INDX_2(RingbufferReader* reader,
uint32_t packet_ptr,
uint32_t packet,
uint32_t count) {
// draw using supplied indices in packet
XETRACECP("[%.8X] Packet(%.8X): PM4_DRAW_INDX_2", packet_ptr, packet);
reader->TraceData(count);
uint32_t dword0 = reader->Read();
uint32_t index_count = dword0 >> 16;
auto prim_type = static_cast<PrimitiveType>(dword0 & 0x3F);
uint32_t src_sel = (dword0 >> 6) & 0x3;
assert_true(src_sel == 0x2); // 'SrcSel=AutoIndex'
bool index_32bit = (dword0 >> 11) & 0x1;
uint32_t indices_size = index_count * (index_32bit ? 4 : 2);
reader->CheckRead(indices_size / sizeof(uint32_t));
/*if (!driver_->PrepareDraw(draw_command_)) {
draw_command_.prim_type = prim_type;
draw_command_.start_index = 0;
draw_command_.index_count = index_count;
draw_command_.base_vertex = 0;
draw_command_.index_buffer = nullptr;
driver_->Draw(draw_command_);
}*/
reader->Advance(count - 1);
return true;
}
bool CommandProcessor::ExecutePacketType3_SET_CONSTANT(RingbufferReader* reader,
uint32_t packet_ptr,
uint32_t packet,
uint32_t count) {
// load constant into chip and to memory
XETRACECP("[%.8X] Packet(%.8X): PM4_SET_CONSTANT", packet_ptr, packet);
// PM4_REG(reg) ((0x4 << 16) | (GSL_HAL_SUBBLOCK_OFFSET(reg)))
// reg - 0x2000
uint32_t offset_type = reader->Read();
uint32_t index = offset_type & 0x7FF;
uint32_t type = (offset_type >> 16) & 0xFF;
switch (type) {
case 0x4: // REGISTER
index += 0x2000; // registers
for (uint32_t n = 0; n < count - 1; n++, index++) {
uint32_t data = reader->Read();
const char* reg_name = register_file_->GetRegisterName(index);
XETRACECP("[%.8X] %.8X -> %.4X %s", packet_ptr + (1 + n) * 4, data,
index, reg_name ? reg_name : "");
WriteRegister(packet_ptr, index, data);
}
break;
default:
assert_always();
break;
}
return true;
}
bool CommandProcessor::ExecutePacketType3_LOAD_ALU_CONSTANT(
RingbufferReader* reader, uint32_t packet_ptr, uint32_t packet,
uint32_t count) {
// load constants from memory
XETRACECP("[%.8X] Packet(%.8X): PM4_LOAD_ALU_CONSTANT", packet_ptr, packet);
uint32_t address = reader->Read();
address &= 0x3FFFFFFF;
uint32_t offset_type = reader->Read();
uint32_t index = offset_type & 0x7FF;
uint32_t size = reader->Read();
size &= 0xFFF;
index += 0x4000; // alu constants
for (uint32_t n = 0; n < size; n++, index++) {
uint32_t data = poly::load_and_swap<uint32_t>(
membase_ + GpuToCpu(packet_ptr, address + n * 4));
const char* reg_name = register_file_->GetRegisterName(index);
XETRACECP("[%.8X] %.8X -> %.4X %s", packet_ptr, data, index,
reg_name ? reg_name : "");
WriteRegister(packet_ptr, index, data);
}
return true;
}
bool CommandProcessor::ExecutePacketType3_IM_LOAD(RingbufferReader* reader,
uint32_t packet_ptr,
uint32_t packet,
uint32_t count) {
// load sequencer instruction memory (pointer-based)
XETRACECP("[%.8X] Packet(%.8X): PM4_IM_LOAD", packet_ptr, packet);
reader->TraceData(count);
uint32_t addr_type = reader->Read();
auto shader_type = static_cast<ShaderType>(addr_type & 0x3);
uint32_t addr = addr_type & ~0x3;
uint32_t start_size = reader->Read();
uint32_t start = start_size >> 16;
uint32_t size = start_size & 0xFFFF; // dwords
assert_true(start == 0);
/*driver_->LoadShader(shader_type,
GpuToCpu(packet_ptr, addr), size * 4, start);*/
return true;
}
bool CommandProcessor::ExecutePacketType3_IM_LOAD_IMMEDIATE(
RingbufferReader* reader, uint32_t packet_ptr, uint32_t packet,
uint32_t count) {
// load sequencer instruction memory (code embedded in packet)
XETRACECP("[%.8X] Packet(%.8X): PM4_IM_LOAD_IMMEDIATE", packet_ptr, packet);
reader->TraceData(count);
uint32_t dword0 = reader->Read();
uint32_t dword1 = reader->Read();
auto shader_type = static_cast<ShaderType>(dword0);
uint32_t start_size = dword1;
uint32_t start = start_size >> 16;
uint32_t size = start_size & 0xFFFF; // dwords
assert_true(start == 0);
// TODO(benvanik): figure out if this could wrap.
reader->CheckRead(size);
/*driver_->LoadShader(shader_type, reader->ptr(), size * 4,
start);*/
reader->Advance(size);
return true;
}
bool CommandProcessor::ExecutePacketType3_INVALIDATE_STATE(
RingbufferReader* reader, uint32_t packet_ptr, uint32_t packet,
uint32_t count) {
// selective invalidation of state pointers
XETRACECP("[%.8X] Packet(%.8X): PM4_INVALIDATE_STATE", packet_ptr, packet);
reader->TraceData(count);
uint32_t mask = reader->Read();
// driver_->InvalidateState(mask);
return true;
}
} // namespace gl4
} // namespace gpu
} // namespace xe

View File

@ -0,0 +1,138 @@
/**
******************************************************************************
* Xenia : Xbox 360 Emulator Research Project *
******************************************************************************
* Copyright 2014 Ben Vanik. All rights reserved. *
* Released under the BSD license - see LICENSE in the root for more details. *
******************************************************************************
*/
#ifndef XENIA_GPU_GL4_COMMAND_PROCESSOR_H_
#define XENIA_GPU_GL4_COMMAND_PROCESSOR_H_
#include <atomic>
#include <functional>
#include <thread>
#include <xenia/gpu/register_file.h>
#include <xenia/gpu/xenos.h>
#include <xenia/memory.h>
namespace xe {
namespace gpu {
namespace gl4 {
class GL4GraphicsSystem;
class CommandProcessor {
public:
CommandProcessor(GL4GraphicsSystem* graphics_system);
~CommandProcessor();
void set_swap_handler(std::function<void()> fn) { swap_handler_ = fn; }
uint64_t QueryTime();
uint32_t counter() const { return counter_; }
void increment_counter() { counter_++; }
void Initialize(uint32_t ptr, uint32_t page_count);
void Shutdown();
void EnableReadPointerWriteBack(uint32_t ptr, uint32_t block_size);
void UpdateWritePointer(uint32_t value);
private:
class RingbufferReader;
void WorkerMain();
void WriteRegister(uint32_t packet_ptr, uint32_t index, uint32_t value);
void MakeCoherent();
void ExecutePrimaryBuffer(uint32_t start_index, uint32_t end_index);
void ExecuteIndirectBuffer(uint32_t ptr, uint32_t length);
bool ExecutePacket(RingbufferReader* reader);
bool ExecutePacketType0(RingbufferReader* reader, uint32_t packet_ptr,
uint32_t packet);
bool ExecutePacketType1(RingbufferReader* reader, uint32_t packet_ptr,
uint32_t packet);
bool ExecutePacketType2(RingbufferReader* reader, uint32_t packet_ptr,
uint32_t packet);
bool ExecutePacketType3(RingbufferReader* reader, uint32_t packet_ptr,
uint32_t packet);
bool ExecutePacketType3_ME_INIT(RingbufferReader* reader, uint32_t packet_ptr,
uint32_t packet, uint32_t count);
bool ExecutePacketType3_NOP(RingbufferReader* reader, uint32_t packet_ptr,
uint32_t packet, uint32_t count);
bool ExecutePacketType3_INTERRUPT(RingbufferReader* reader,
uint32_t packet_ptr, uint32_t packet,
uint32_t count);
bool ExecutePacketType3_XE_SWAP(RingbufferReader* reader, uint32_t packet_ptr,
uint32_t packet, uint32_t count);
bool ExecutePacketType3_INDIRECT_BUFFER(RingbufferReader* reader,
uint32_t packet_ptr, uint32_t packet,
uint32_t count);
bool ExecutePacketType3_WAIT_REG_MEM(RingbufferReader* reader,
uint32_t packet_ptr, uint32_t packet,
uint32_t count);
bool ExecutePacketType3_REG_RMW(RingbufferReader* reader, uint32_t packet_ptr,
uint32_t packet, uint32_t count);
bool ExecutePacketType3_COND_WRITE(RingbufferReader* reader,
uint32_t packet_ptr, uint32_t packet,
uint32_t count);
bool ExecutePacketType3_EVENT_WRITE(RingbufferReader* reader,
uint32_t packet_ptr, uint32_t packet,
uint32_t count);
bool ExecutePacketType3_EVENT_WRITE_SHD(RingbufferReader* reader,
uint32_t packet_ptr, uint32_t packet,
uint32_t count);
bool ExecutePacketType3_DRAW_INDX(RingbufferReader* reader,
uint32_t packet_ptr, uint32_t packet,
uint32_t count);
bool ExecutePacketType3_DRAW_INDX_2(RingbufferReader* reader,
uint32_t packet_ptr, uint32_t packet,
uint32_t count);
bool ExecutePacketType3_SET_CONSTANT(RingbufferReader* reader,
uint32_t packet_ptr, uint32_t packet,
uint32_t count);
bool ExecutePacketType3_LOAD_ALU_CONSTANT(RingbufferReader* reader,
uint32_t packet_ptr,
uint32_t packet, uint32_t count);
bool ExecutePacketType3_IM_LOAD(RingbufferReader* reader, uint32_t packet_ptr,
uint32_t packet, uint32_t count);
bool ExecutePacketType3_IM_LOAD_IMMEDIATE(RingbufferReader* reader,
uint32_t packet_ptr,
uint32_t packet, uint32_t count);
bool ExecutePacketType3_INVALIDATE_STATE(RingbufferReader* reader,
uint32_t packet_ptr, uint32_t packet,
uint32_t count);
Memory* memory_;
uint8_t* membase_;
GL4GraphicsSystem* graphics_system_;
RegisterFile* register_file_;
std::thread worker_thread_;
std::atomic<bool> worker_running_;
std::function<void()> swap_handler_;
uint64_t time_base_;
uint32_t counter_;
uint32_t primary_buffer_ptr_;
uint32_t primary_buffer_size_;
uint32_t read_ptr_index_;
uint32_t read_ptr_update_freq_;
uint32_t read_ptr_writeback_ptr_;
HANDLE write_ptr_index_event_;
std::atomic<uint32_t> write_ptr_index_;
};
} // namespace gl4
} // namespace gpu
} // namespace xe
#endif // XENIA_GPU_GL4_COMMAND_PROCESSOR_H_

View File

@ -9,26 +9,148 @@
#include <xenia/gpu/gl4/gl4_graphics_system.h>
#include <poly/threading.h>
#include <xenia/cpu/processor.h>
#include <xenia/gpu/gpu-private.h>
namespace xe {
namespace gpu {
namespace gl4 {
GL4GraphicsSystem::GL4GraphicsSystem(Emulator* emulator)
: GraphicsSystem(emulator) {}
: GraphicsSystem(emulator), timer_queue_(nullptr), vsync_timer_(nullptr) {}
GL4GraphicsSystem::~GL4GraphicsSystem() = default;
X_STATUS GL4GraphicsSystem::Setup() {
auto result = GraphicsSystem::Setup();
if (result) {
return result;
}
// Create rendering control.
// This must happen on the UI thread.
poly::threading::Fence control_ready_fence;
auto loop = emulator_->main_window()->loop();
loop->Post([this]() {
control_ = std::make_unique<WGLControl>();
loop->Post([&]() {
control_ = std::make_unique<WGLControl>(loop);
emulator_->main_window()->AddChild(control_.get());
control_ready_fence.Signal();
});
control_ready_fence.Wait();
// Create command processor. This will spin up a thread to process all
// incoming ringbuffer packets.
command_processor_ = std::make_unique<CommandProcessor>(this);
command_processor_->set_swap_handler(
std::bind(&GL4GraphicsSystem::SwapHandler, this));
// Let the processor know we want register access callbacks.
emulator_->memory()->AddMappedRange(
0x7FC80000, 0xFFFF0000, 0x0000FFFF, this,
reinterpret_cast<cpu::MMIOReadCallback>(MMIOReadRegisterThunk),
reinterpret_cast<cpu::MMIOWriteCallback>(MMIOWriteRegisterThunk));
// 60hz vsync timer.
timer_queue_ = CreateTimerQueue();
CreateTimerQueueTimer(&vsync_timer_, timer_queue_,
(WAITORTIMERCALLBACK)VsyncCallbackThunk, this, 16, 16,
WT_EXECUTEINTIMERTHREAD);
return X_STATUS_SUCCESS;
}
void GL4GraphicsSystem::Shutdown() {
DeleteTimerQueueTimer(timer_queue_, vsync_timer_, nullptr);
DeleteTimerQueue(timer_queue_);
command_processor_->Shutdown();
// TODO(benvanik): remove mapped range.
command_processor_.reset();
control_.reset();
GraphicsSystem::Shutdown();
}
void GL4GraphicsSystem::InitializeRingBuffer(uint32_t ptr,
uint32_t page_count) {
command_processor_->Initialize(ptr, page_count);
}
void GL4GraphicsSystem::EnableReadPointerWriteBack(uint32_t ptr,
uint32_t block_size) {
command_processor_->EnableReadPointerWriteBack(ptr, block_size);
}
void GL4GraphicsSystem::MarkVblank() {
static bool thread_name_set = false;
if (!thread_name_set) {
thread_name_set = true;
Profiler::ThreadEnter("GL4 Vsync Timer");
}
SCOPE_profile_cpu_f("gpu");
// Increment vblank counter (so the game sees us making progress).
command_processor_->increment_counter();
// TODO(benvanik): we shouldn't need to do the dispatch here, but there's
// something wrong and the CP will block waiting for code that
// needs to be run in the interrupt.
DispatchInterruptCallback(0, 2);
}
void GL4GraphicsSystem::SwapHandler() {
SCOPE_profile_cpu_f("gpu");
// Swap requested. Synchronously post a request to the loop so that
// we do the swap in the right thread.
control_->SynchronousRepaint();
// Roll over vblank.
MarkVblank();
}
uint64_t GL4GraphicsSystem::ReadRegister(uint64_t addr) {
uint32_t r = addr & 0xFFFF;
if (FLAGS_trace_ring_buffer) {
XELOGGPU("ReadRegister(%.4X)", r);
}
switch (r) {
case 0x6530: // ????
return 1;
case 0x6544: // ? vblank pending?
return 1;
case 0x6584: // ????
return 1;
}
assert_true(r >= 0 && r < RegisterFile::kRegisterCount);
return register_file_.values[r].u32;
}
void GL4GraphicsSystem::WriteRegister(uint64_t addr, uint64_t value) {
uint32_t r = addr & 0xFFFF;
if (FLAGS_trace_ring_buffer) {
XELOGGPU("WriteRegister(%.4X, %.8X)", r, value);
}
switch (r) {
case 0x0714: // CP_RB_WPTR
command_processor_->UpdateWritePointer(static_cast<uint32_t>(value));
break;
case 0x6110: // ? swap related?
XELOGW("Unimplemented GPU register %.4X write: %.8X", r, value);
return;
default:
XELOGW("Unknown GPU register %.4X write: %.8X", r, value);
break;
}
assert_true(r >= 0 && r < RegisterFile::kRegisterCount);
register_file_.values[r].u32 = static_cast<uint32_t>(value);
}
} // namespace gl4

View File

@ -13,8 +13,10 @@
#include <memory>
#include <xenia/common.h>
#include <xenia/gpu/gl4/command_processor.h>
#include <xenia/gpu/gl4/wgl_control.h>
#include <xenia/gpu/graphics_system.h>
#include <xenia/gpu/register_file.h>
namespace xe {
namespace gpu {
@ -28,8 +30,34 @@ class GL4GraphicsSystem : public GraphicsSystem {
X_STATUS Setup() override;
void Shutdown() override;
RegisterFile* register_file() { return &register_file_; }
void InitializeRingBuffer(uint32_t ptr, uint32_t page_count) override;
void EnableReadPointerWriteBack(uint32_t ptr, uint32_t block_size) override;
private:
void MarkVblank();
void SwapHandler();
uint64_t ReadRegister(uint64_t addr);
void WriteRegister(uint64_t addr, uint64_t value);
static uint64_t MMIOReadRegisterThunk(GL4GraphicsSystem* gs, uint64_t addr) {
return gs->ReadRegister(addr);
}
static void MMIOWriteRegisterThunk(GL4GraphicsSystem* gs, uint64_t addr,
uint64_t value) {
gs->WriteRegister(addr, value);
}
static void __stdcall VsyncCallbackThunk(GL4GraphicsSystem* gs, BOOLEAN) {
gs->MarkVblank();
}
RegisterFile register_file_;
std::unique_ptr<CommandProcessor> command_processor_;
std::unique_ptr<WGLControl> control_;
HANDLE timer_queue_;
HANDLE vsync_timer_;
};
} // namespace gl4

View File

@ -1,6 +1,8 @@
# Copyright 2014 Ben Vanik. All Rights Reserved.
{
'sources': [
'command_processor.cc',
'command_processor.h',
'gl4_gpu-private.h',
'gl4_gpu.cc',
'gl4_gpu.h',

View File

@ -9,14 +9,17 @@
#include <xenia/gpu/gl4/wgl_control.h>
#include <poly/assert.h>
#include <poly/logging.h>
#include <xenia/profiling.h>
namespace xe {
namespace gpu {
namespace gl4 {
WGLControl::WGLControl()
: poly::ui::win32::Win32Control(Flags::kFlagOwnPaint) {}
WGLControl::WGLControl(poly::ui::Loop* loop)
: poly::ui::win32::Win32Control(Flags::kFlagOwnPaint),
loop_(loop) {}
WGLControl::~WGLControl() = default;
@ -68,9 +71,7 @@ bool WGLControl::Create() {
return true;
}
void WGLControl::OnLayout(poly::ui::UIEvent& e) {
Control::ResizeToFill();
}
void WGLControl::OnLayout(poly::ui::UIEvent& e) { Control::ResizeToFill(); }
LRESULT WGLControl::WndProc(HWND hWnd, UINT message, WPARAM wParam,
LPARAM lParam) {
@ -78,14 +79,23 @@ LRESULT WGLControl::WndProc(HWND hWnd, UINT message, WPARAM wParam,
case WM_PAINT:
context_.MakeCurrent();
glViewport(0, 0, width_, height_);
glClearColor(1.0f, 0, 0, 1.0f);
glClearColor(rand() / (float)RAND_MAX, 1.0f, 0, 1.0f);
glClear(GL_COLOR_BUFFER_BIT);
// TODO(benvanik): profiler present.
// Profiler::Present();
SwapBuffers(context_.dc());
return 0;
break;
}
return Win32Control::WndProc(hWnd, message, wParam, lParam);
}
void WGLControl::SynchronousRepaint() {
SCOPE_profile_cpu_f("gpu");
// This will not return until the WM_PAINT has completed.
RedrawWindow(hwnd(), nullptr, nullptr,
RDW_INTERNALPAINT | RDW_UPDATENOW | RDW_ALLCHILDREN);
}
} // namespace gl4
} // namespace gpu
} // namespace xe

View File

@ -10,6 +10,8 @@
#ifndef XENIA_GPU_GL4_WGL_CONTROL_H_
#define XENIA_GPU_GL4_WGL_CONTROL_H_
#include <poly/threading.h>
#include <poly/ui/loop.h>
#include <poly/ui/win32/win32_control.h>
#include <xenia/gpu/gl4/gl_context.h>
@ -19,11 +21,13 @@ namespace gl4 {
class WGLControl : public poly::ui::win32::Win32Control {
public:
WGLControl();
WGLControl(poly::ui::Loop* loop);
~WGLControl() override;
GLContext* context() { return &context_; }
void SynchronousRepaint();
protected:
bool Create() override;
@ -33,6 +37,7 @@ class WGLControl : public poly::ui::win32::Win32Control {
LPARAM lParam) override;
private:
poly::ui::Loop* loop_;
GLContext context_;
};

View File

@ -13,15 +13,15 @@
// TODO(benvanik): based on platform.
#include <xenia/gpu/gl4/gl4_gpu.h>
namespace xe {
namespace gpu {
DEFINE_string(gpu, "any", "Graphics system. Use: [any, gl4]");
DEFINE_bool(trace_ring_buffer, false, "Trace GPU ring buffer packets.");
DEFINE_string(dump_shaders, "",
"Path to write GPU shaders to as they are compiled.");
namespace xe {
namespace gpu {
std::unique_ptr<GraphicsSystem> Create(Emulator* emulator) {
if (FLAGS_gpu.compare("gl4") == 0) {
return xe::gpu::gl4::Create(emulator);

View File

@ -40,15 +40,6 @@ void GraphicsSystem::SetInterruptCallback(uint32_t callback,
XELOGGPU("SetInterruptCallback(%.4X, %.4X)", callback, user_data);
}
void GraphicsSystem::InitializeRingBuffer(uint32_t ptr, uint32_t page_count) {
//
}
void GraphicsSystem::EnableReadPointerWriteBack(uint32_t ptr,
uint32_t block_size) {
//
}
void GraphicsSystem::DispatchInterruptCallback(uint32_t source, uint32_t cpu) {
// Pick a CPU, if needed. We're going to guess 2. Because.
if (cpu == 0xFFFFFFFF) {

View File

@ -32,14 +32,14 @@ class GraphicsSystem {
virtual void Shutdown();
void SetInterruptCallback(uint32_t callback, uint32_t user_data);
void InitializeRingBuffer(uint32_t ptr, uint32_t page_count);
void EnableReadPointerWriteBack(uint32_t ptr, uint32_t block_size);
virtual void InitializeRingBuffer(uint32_t ptr, uint32_t page_count) = 0;
virtual void EnableReadPointerWriteBack(uint32_t ptr, uint32_t block_size) = 0;
void DispatchInterruptCallback(uint32_t source, uint32_t cpu);
protected:
GraphicsSystem(Emulator* emulator);
void DispatchInterruptCallback(uint32_t source, uint32_t cpu);
Emulator* emulator_;
Memory* memory_;
cpu::Processor* processor_;