Merge pull request #354 from DrChat/crypt_sha

Implement xboxkrnl SHA-1 algorithm
This commit is contained in:
Ben Vanik 2015-07-18 12:59:02 -07:00
commit ddf3813584
2 changed files with 324 additions and 9 deletions

View File

@ -13,27 +13,119 @@
#include "xenia/kernel/xboxkrnl_private.h" #include "xenia/kernel/xboxkrnl_private.h"
#include "xenia/xbox.h" #include "xenia/xbox.h"
#include "third_party/crypto/TinySHA1.hpp"
namespace xe { namespace xe {
namespace kernel { namespace kernel {
typedef struct { typedef struct {
xe::be<uint32_t> count; xe::be<uint32_t> count; // 0x0
xe::be<uint32_t> state[5]; xe::be<uint32_t> state[5]; // 0x4
uint8_t buffer[64]; uint8_t buffer[64]; // 0x18
} XECRYPT_SHA_STATE; } XECRYPT_SHA_STATE;
void InitSha1(sha1::SHA1& sha, const XECRYPT_SHA_STATE* state) {
uint32_t digest[5];
for (int i = 0; i < 5; i++) {
digest[i] = state->state[i];
}
sha.init(digest, state->buffer, state->count);
}
void StoreSha1(sha1::SHA1& sha, XECRYPT_SHA_STATE* state) {
for (int i = 0; i < 5; i++) {
state->state[i] = sha.getDigest()[i];
}
state->count = (uint32_t)sha.getByteCount();
std::memcpy(state->buffer, sha.getBlock(), sha.getBlockByteIndex());
}
void XeCryptShaInit(pointer_t<XECRYPT_SHA_STATE> sha_state) { void XeCryptShaInit(pointer_t<XECRYPT_SHA_STATE> sha_state) {
sha_state.Zero(); sha_state.Zero();
sha_state->state[0] = 0x67452301;
sha_state->state[1] = 0xEFCDAB89;
sha_state->state[2] = 0x98BADCFE;
sha_state->state[3] = 0x10325476;
sha_state->state[4] = 0xC3D2E1F0;
} }
DECLARE_XBOXKRNL_EXPORT(XeCryptShaInit, ExportTag::kStub); DECLARE_XBOXKRNL_EXPORT(XeCryptShaInit, ExportTag::kImplemented);
void XeCryptShaUpdate(pointer_t<XECRYPT_SHA_STATE> sha_state, lpvoid_t input, void XeCryptShaUpdate(pointer_t<XECRYPT_SHA_STATE> sha_state, lpvoid_t input,
dword_t input_size) {} dword_t input_size) {
DECLARE_XBOXKRNL_EXPORT(XeCryptShaUpdate, ExportTag::kStub); sha1::SHA1 sha;
InitSha1(sha, sha_state);
void XeCryptShaFinal(pointer_t<XECRYPT_SHA_STATE> sha_state, lpvoid_t out, sha.processBytes(input, input_size);
dword_t out_size) {}
DECLARE_XBOXKRNL_EXPORT(XeCryptShaFinal, ExportTag::kStub); StoreSha1(sha, sha_state);
}
DECLARE_XBOXKRNL_EXPORT(XeCryptShaUpdate, ExportTag::kImplemented);
void XeCryptShaFinal(pointer_t<XECRYPT_SHA_STATE> sha_state,
pointer_t<xe::be<uint32_t>> out, dword_t out_size) {
sha1::SHA1 sha;
InitSha1(sha, sha_state);
uint32_t digest[5];
sha.finalize(digest);
for (int i = 0; i < 5; i++) {
sha_state->state[i] = digest[i];
}
for (uint32_t i = 0; i < out_size / 4; i++) {
out[i] = digest[i];
}
}
DECLARE_XBOXKRNL_EXPORT(XeCryptShaFinal, ExportTag::kImplemented);
void XeCryptSha(lpvoid_t input_1, dword_t input_1_size, lpvoid_t input_2,
dword_t input_2_size, lpvoid_t input_3, dword_t input_3_size,
pointer_t<xe::be<uint32_t>> output, dword_t output_size) {
sha1::SHA1 sha;
if (input_1 && input_1_size) {
sha.processBytes(input_1, input_1_size);
}
if (input_2 && input_2_size) {
sha.processBytes(input_2, input_2_size);
}
if (input_3 && input_3_size) {
sha.processBytes(input_3, input_3_size);
}
uint32_t digest[5];
sha.finalize(digest);
for (uint32_t i = 0; i < output_size / 4; i++) {
output[i] = digest[i];
}
}
DECLARE_XBOXKRNL_EXPORT(XeCryptSha, ExportTag::kImplemented);
// Byteswap?
dword_result_t XeCryptBnQw_SwapDwQwLeBe(const lpqword_t qw_inp,
lpqword_t qw_out, dword_t size) {
return 0;
}
DECLARE_XBOXKRNL_EXPORT(XeCryptBnQw_SwapDwQwLeBe, ExportTag::kStub);
dword_result_t XeCryptBnQwNeRsaPubCrypt(const lpqword_t qw_a, lpqword_t qw_b,
const lpvoid_t rsa) {
// 0 indicates failure (but not a BOOL return value)
return 1;
}
DECLARE_XBOXKRNL_EXPORT(XeCryptBnQwNeRsaPubCrypt, ExportTag::kStub);
dword_result_t XeCryptBnDwLePkcs1Verify(const lpvoid_t hash, const lpvoid_t sig,
const dword_t size) {
// BOOL return value
return 1;
}
DECLARE_XBOXKRNL_EXPORT(XeCryptBnDwLePkcs1Verify, ExportTag::kStub);
void xe::kernel::xboxkrnl::RegisterCryptExports( void xe::kernel::xboxkrnl::RegisterCryptExports(
xe::cpu::ExportResolver* export_resolver, KernelState* kernel_state) {} xe::cpu::ExportResolver* export_resolver, KernelState* kernel_state) {}

223
third_party/crypto/TinySHA1.hpp vendored Normal file
View File

@ -0,0 +1,223 @@
/*
*
* TinySHA1 - a header only implementation of the SHA1 algorithm in C++. Based
* on the implementation in boost::uuid::details.
*
* SHA1 Wikipedia Page: http://en.wikipedia.org/wiki/SHA-1
*
* Copyright (c) 2012-22 SAURAV MOHAPATRA <mohaps@gmail.com>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* Taken from https://github.com/mohaps/TinySHA1
* Modified for use by Xenia
*/
#ifndef _TINY_SHA1_HPP_
#define _TINY_SHA1_HPP_
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <stdint.h>
namespace sha1 {
class SHA1 {
public:
typedef uint32_t digest32_t[5];
typedef uint8_t digest8_t[20];
inline static uint32_t LeftRotate(uint32_t value, size_t count) {
return (value << count) ^ (value >> (32 - count));
}
SHA1() { reset(); }
virtual ~SHA1() {}
SHA1(const SHA1& s) { *this = s; }
const SHA1& operator=(const SHA1& s) {
memcpy(m_digest, s.m_digest, 5 * sizeof(uint32_t));
memcpy(m_block, s.m_block, 64);
m_blockByteIndex = s.m_blockByteIndex;
m_byteCount = s.m_byteCount;
return *this;
}
SHA1& init(const uint32_t digest[5], const uint8_t block[64],
uint32_t count) {
std::memcpy(m_digest, digest, 20);
std::memcpy(m_block, block, count % 64);
m_byteCount = count;
m_blockByteIndex = count % 64;
return *this;
}
const uint32_t* getDigest() const { return m_digest; }
const uint8_t* getBlock() const { return m_block; }
size_t getBlockByteIndex() const { return m_blockByteIndex; }
size_t getByteCount() const { return m_byteCount; }
SHA1& reset() {
m_digest[0] = 0x67452301;
m_digest[1] = 0xEFCDAB89;
m_digest[2] = 0x98BADCFE;
m_digest[3] = 0x10325476;
m_digest[4] = 0xC3D2E1F0;
m_blockByteIndex = 0;
m_byteCount = 0;
return *this;
}
SHA1& processByte(uint8_t octet) {
this->m_block[this->m_blockByteIndex++] = octet;
++this->m_byteCount;
if (m_blockByteIndex == 64) {
this->m_blockByteIndex = 0;
processBlock();
}
return *this;
}
SHA1& processBlock(const void* const start, const void* const end) {
const uint8_t* begin = static_cast<const uint8_t*>(start);
const uint8_t* finish = static_cast<const uint8_t*>(end);
while (begin != finish) {
processByte(*begin);
begin++;
}
return *this;
}
SHA1& processBytes(const void* const data, size_t len) {
const uint8_t* block = static_cast<const uint8_t*>(data);
processBlock(block, block + len);
return *this;
}
const uint32_t* finalize(digest32_t digest) {
size_t bitCount = this->m_byteCount * 8;
processByte(0x80);
if (this->m_blockByteIndex > 56) {
while (m_blockByteIndex != 0) {
processByte(0);
}
while (m_blockByteIndex < 56) {
processByte(0);
}
} else {
while (m_blockByteIndex < 56) {
processByte(0);
}
}
processByte(0);
processByte(0);
processByte(0);
processByte(0);
processByte(static_cast<unsigned char>((bitCount >> 24) & 0xFF));
processByte(static_cast<unsigned char>((bitCount >> 16) & 0xFF));
processByte(static_cast<unsigned char>((bitCount >> 8) & 0xFF));
processByte(static_cast<unsigned char>((bitCount)&0xFF));
memcpy(digest, m_digest, 5 * sizeof(uint32_t));
return digest;
}
const uint8_t* finalize(digest8_t digest) {
digest32_t d32;
finalize(d32);
size_t di = 0;
digest[di++] = ((d32[0] >> 24) & 0xFF);
digest[di++] = ((d32[0] >> 16) & 0xFF);
digest[di++] = ((d32[0] >> 8) & 0xFF);
digest[di++] = ((d32[0]) & 0xFF);
digest[di++] = ((d32[1] >> 24) & 0xFF);
digest[di++] = ((d32[1] >> 16) & 0xFF);
digest[di++] = ((d32[1] >> 8) & 0xFF);
digest[di++] = ((d32[1]) & 0xFF);
digest[di++] = ((d32[2] >> 24) & 0xFF);
digest[di++] = ((d32[2] >> 16) & 0xFF);
digest[di++] = ((d32[2] >> 8) & 0xFF);
digest[di++] = ((d32[2]) & 0xFF);
digest[di++] = ((d32[3] >> 24) & 0xFF);
digest[di++] = ((d32[3] >> 16) & 0xFF);
digest[di++] = ((d32[3] >> 8) & 0xFF);
digest[di++] = ((d32[3]) & 0xFF);
digest[di++] = ((d32[4] >> 24) & 0xFF);
digest[di++] = ((d32[4] >> 16) & 0xFF);
digest[di++] = ((d32[4] >> 8) & 0xFF);
digest[di++] = ((d32[4]) & 0xFF);
return digest;
}
protected:
void processBlock() {
uint32_t w[80];
for (size_t i = 0; i < 16; i++) {
w[i] = (m_block[i * 4 + 0] << 24);
w[i] |= (m_block[i * 4 + 1] << 16);
w[i] |= (m_block[i * 4 + 2] << 8);
w[i] |= (m_block[i * 4 + 3]);
}
for (size_t i = 16; i < 80; i++) {
w[i] = LeftRotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]), 1);
}
uint32_t a = m_digest[0];
uint32_t b = m_digest[1];
uint32_t c = m_digest[2];
uint32_t d = m_digest[3];
uint32_t e = m_digest[4];
for (std::size_t i = 0; i < 80; ++i) {
uint32_t f = 0;
uint32_t k = 0;
if (i < 20) {
f = (b & c) | (~b & d);
k = 0x5A827999;
} else if (i < 40) {
f = b ^ c ^ d;
k = 0x6ED9EBA1;
} else if (i < 60) {
f = (b & c) | (b & d) | (c & d);
k = 0x8F1BBCDC;
} else {
f = b ^ c ^ d;
k = 0xCA62C1D6;
}
uint32_t temp = LeftRotate(a, 5) + f + e + k + w[i];
e = d;
d = c;
c = LeftRotate(b, 30);
b = a;
a = temp;
}
m_digest[0] += a;
m_digest[1] += b;
m_digest[2] += c;
m_digest[3] += d;
m_digest[4] += e;
}
private:
digest32_t m_digest;
uint8_t m_block[64];
size_t m_blockByteIndex;
size_t m_byteCount;
};
}
#endif