Rewrote memory manager to use a bunch of mapped views.

This commit is contained in:
Ben Vanik 2013-10-20 23:19:57 -07:00
parent d00f4d58e9
commit ca208fa60a
3 changed files with 133 additions and 81 deletions

View File

@ -27,7 +27,7 @@
#define MALLOC_ALIGNMENT 32 #define MALLOC_ALIGNMENT 32
#define MALLOC_INSPECT_ALL 1 #define MALLOC_INSPECT_ALL 1
#if XE_DEBUG #if XE_DEBUG
#define FOOTERS 1 #define FOOTERS 0
#endif // XE_DEBUG #endif // XE_DEBUG
#include <third_party/dlmalloc/malloc.c.h> #include <third_party/dlmalloc/malloc.c.h>
@ -67,71 +67,98 @@ DEFINE_uint64(
* for previous commits and assert that we really isn't committing twice. * for previous commits and assert that we really isn't committing twice.
*/ */
#define XE_MEMORY_HEAP_LOW 0x20000000 #define XE_MEMORY_HEAP_LOW 0x00000000
#define XE_MEMORY_HEAP_HIGH 0x40000000 #define XE_MEMORY_HEAP_HIGH 0x40000000
struct xe_memory { struct xe_memory {
xe_ref_t ref; xe_ref_t ref;
size_t system_page_size; size_t system_page_size;
size_t length; HANDLE mapping;
void* ptr; uint8_t* mapping_base;
union {
struct {
uint8_t* v00000000;
uint8_t* v40000000;
uint8_t* v80000000;
uint8_t* vA0000000;
uint8_t* vC0000000;
uint8_t* vE0000000;
};
uint8_t* all_views[6];
} views;
xe_mutex_t* heap_mutex; xe_mutex_t* heap_mutex;
mspace heap; size_t heap_size;
uint8_t* heap_ptr;
mspace heap;
}; };
int xe_memory_map_views(xe_memory_ref memory, uint8_t* mapping_base);
void xe_memory_unmap_views(xe_memory_ref memory);
xe_memory_ref xe_memory_create(xe_memory_options_t options) { xe_memory_ref xe_memory_create(xe_memory_options_t options) {
xe_memory_ref memory = (xe_memory_ref)xe_calloc(sizeof(xe_memory)); xe_memory_ref memory = (xe_memory_ref)xe_calloc(sizeof(xe_memory));
xe_ref_init((xe_ref)memory); xe_ref_init((xe_ref)memory);
#if XE_PLATFORM(WIN32)
SYSTEM_INFO si; SYSTEM_INFO si;
GetSystemInfo(&si); GetSystemInfo(&si);
memory->system_page_size = si.dwPageSize; memory->system_page_size = si.dwPageSize;
#else
#error need to implement page size retrieval
#endif // WIN32
memory->length = 0xC0000000; // Create main page file-backed mapping. This is all reserved but
// uncommitted (so it shouldn't expand page file).
memory->mapping = CreateFileMapping(
INVALID_HANDLE_VALUE,
NULL,
PAGE_READWRITE | SEC_RESERVE,
0, 0xFFFFFFFF, // entire 4gb space
NULL);
if (!memory->mapping) {
XELOGE("Unable to reserve the 4gb guest address space.");
XEASSERTNOTNULL(memory->mapping);
XEFAIL();
}
#if XE_PLATFORM(WIN32) // Attempt to create our views. This may fail at the first address
// Reserve the entire usable address space. // we pick, so try a few times.
// We're 64-bit, so this should be no problem. memory->mapping_base = 0;
memory->ptr = VirtualAlloc(0, memory->length, for (size_t n = 32; n < 64; n++) {
MEM_RESERVE, uint8_t* mapping_base = (uint8_t*)(1ull << n);
PAGE_READWRITE); if (!xe_memory_map_views(memory, mapping_base)) {
XEEXPECTNOTNULL(memory->ptr); memory->mapping_base = mapping_base;
#else break;
memory->ptr = mmap(0, memory->length, PROT_READ | PROT_WRITE, }
MAP_PRIVATE | MAP_ANON, -1, 0); }
XEEXPECT(memory->ptr != MAP_FAILED); if (!memory->mapping_base) {
XEEXPECTNOTNULL(memory->ptr); XELOGE("Unable to find a continuous block in the 64bit address space.");
#endif // WIN32 XEASSERTALWAYS();
XEFAIL();
}
// Lock used around heap allocs/frees. // Lock used around heap allocs/frees.
memory->heap_mutex = xe_mutex_alloc(10000); memory->heap_mutex = xe_mutex_alloc(10000);
XEEXPECTNOTNULL(memory->heap_mutex); XEEXPECTNOTNULL(memory->heap_mutex);
// Commit the memory where our heap will live. // Commit the memory where our heap will live.
// We don't allocate at 0 to make bad writes easier to find. // TODO(benvanik): replace dlmalloc with an implementation that can commit
// as it goes.
uint32_t heap_offset = XE_MEMORY_HEAP_LOW; uint32_t heap_offset = XE_MEMORY_HEAP_LOW;
uint32_t heap_size = XE_MEMORY_HEAP_HIGH - XE_MEMORY_HEAP_LOW; uint32_t heap_size = XE_MEMORY_HEAP_HIGH - XE_MEMORY_HEAP_LOW;
uint8_t* heap_ptr = (uint8_t*)memory->ptr + heap_offset; memory->heap_size = heap_size;
#if XE_PLATFORM(WIN32) memory->heap_ptr = memory->views.v00000000 + heap_offset;
void* heap_result = VirtualAlloc(heap_ptr, heap_size, void* heap_result = VirtualAlloc(
MEM_COMMIT, PAGE_READWRITE); memory->heap_ptr, heap_size,
MEM_COMMIT,
PAGE_READWRITE);
XEEXPECTNOTNULL(heap_result); XEEXPECTNOTNULL(heap_result);
#else
#error ?
#endif // WIN32
// Allocate the mspace for our heap. // Allocate the mspace for our heap.
memory->heap = create_mspace_with_base(heap_ptr, heap_size, 0); memory->heap = create_mspace_with_base(memory->heap_ptr, heap_size, 0);
return memory; return memory;
@ -152,12 +179,52 @@ void xe_memory_dealloc(xe_memory_ref memory) {
memory->heap_mutex = NULL; memory->heap_mutex = NULL;
} }
#if XE_PLATFORM(WIN32)
// This decommits all pages and releases everything. // This decommits all pages and releases everything.
XEIGNORE(VirtualFree(memory->ptr, 0, MEM_RELEASE)); XEIGNORE(VirtualFree(memory->heap_ptr, 0, MEM_RELEASE));
#else
munmap(memory->ptr, memory->length); // Unmap all views and close mapping.
#endif // WIN32 if (memory->mapping) {
xe_memory_unmap_views(memory);
CloseHandle(memory->mapping);
}
}
int xe_memory_map_views(xe_memory_ref memory, uint8_t* mapping_base) {
static struct {
uint32_t virtual_address_start;
uint32_t virtual_address_end;
uint32_t target_address;
} map_info[] = {
0x00000000, 0x3FFFFFFF, 0x00000000, // (1024mb) - virtual 4k pages
0x40000000, 0x7FFFFFFF, 0x40000000, // (1024mb) - virtual 64k pages
0x80000000, 0x9FFFFFFF, 0x80000000, // (512mb) - xex pages
0xA0000000, 0xBFFFFFFF, 0xA0000000, // (512mb) - physical 64k pages
0xC0000000, 0xDFFFFFFF, 0xA0000000, // - physical 16mb pages
0xE0000000, 0xFFFFFFFF, 0xA0000000, // - physical 4k pages
};
XEASSERT(XECOUNT(map_info) == XECOUNT(memory->views.all_views));
for (size_t n = 0; n < XECOUNT(map_info); n++) {
memory->views.all_views[n] = (uint8_t*)MapViewOfFileEx(
memory->mapping,
FILE_MAP_ALL_ACCESS,
0x00000000, map_info[n].target_address,
map_info[n].virtual_address_end - map_info[n].virtual_address_start + 1,
mapping_base + map_info[n].virtual_address_start);
XEEXPECTNOTNULL(memory->views.all_views[n]);
}
return 0;
XECLEANUP:
xe_memory_unmap_views(memory);
return 1;
}
void xe_memory_unmap_views(xe_memory_ref memory) {
for (size_t n = 0; n < XECOUNT(memory->views.all_views); n++) {
if (memory->views.all_views[n]) {
UnmapViewOfFile(memory->views.all_views[n]);
}
}
} }
xe_memory_ref xe_memory_retain(xe_memory_ref memory) { xe_memory_ref xe_memory_retain(xe_memory_ref memory) {
@ -169,18 +236,14 @@ void xe_memory_release(xe_memory_ref memory) {
xe_ref_release((xe_ref)memory, (xe_ref_dealloc_t)xe_memory_dealloc); xe_ref_release((xe_ref)memory, (xe_ref_dealloc_t)xe_memory_dealloc);
} }
size_t xe_memory_get_length(xe_memory_ref memory) {
return memory->length;
}
uint8_t *xe_memory_addr(xe_memory_ref memory, size_t guest_addr) { uint8_t *xe_memory_addr(xe_memory_ref memory, size_t guest_addr) {
return (uint8_t*)memory->ptr + guest_addr; return memory->mapping_base + guest_addr;
} }
void xe_memory_copy(xe_memory_ref memory, void xe_memory_copy(xe_memory_ref memory,
uint32_t dest, uint32_t src, uint32_t size) { uint32_t dest, uint32_t src, uint32_t size) {
uint8_t* pdest = (uint8_t*)memory->ptr + dest; uint8_t* pdest = memory->mapping_base + dest;
uint8_t* psrc = (uint8_t*)memory->ptr + src; uint8_t* psrc = memory->mapping_base + src;
XEIGNORE(xe_copy_memory(pdest, size, psrc, size)); XEIGNORE(xe_copy_memory(pdest, size, psrc, size));
} }
@ -201,7 +264,7 @@ uint32_t xe_memory_search_aligned(xe_memory_ref memory, size_t start,
matched++; matched++;
} }
if (matched == value_count) { if (matched == value_count) {
return (uint32_t)((uint8_t*)p - (uint8_t*)memory->ptr); return (uint32_t)((uint8_t*)p - memory->mapping_base);
} }
} }
p++; p++;
@ -215,12 +278,19 @@ void xe_memory_heap_dump_handler(
size_t heap_guard_size = FLAGS_heap_guard_pages * 4096; size_t heap_guard_size = FLAGS_heap_guard_pages * 4096;
uint64_t start_addr = (uint64_t)start + heap_guard_size; uint64_t start_addr = (uint64_t)start + heap_guard_size;
uint64_t end_addr = (uint64_t)end - heap_guard_size; uint64_t end_addr = (uint64_t)end - heap_guard_size;
uint32_t guest_start = (uint32_t)(start_addr - (uintptr_t)memory->ptr); uint32_t guest_start =
uint32_t guest_end = (uint32_t)(end_addr - (uintptr_t)memory->ptr); (uint32_t)(start_addr - (uintptr_t)memory->mapping_base);
XELOGI(" - %.8X-%.8X (%9db) %.16llX-%.16llX - %9db used", uint32_t guest_end =
guest_start, guest_end, (guest_end - guest_start), (uint32_t)(end_addr - (uintptr_t)memory->mapping_base);
start_addr, end_addr, if (used_bytes > 0) {
used_bytes); XELOGI(" - %.8X-%.8X (%10db) %.16llX-%.16llX - %9db used",
guest_start, guest_end, (guest_end - guest_start),
start_addr, end_addr,
used_bytes);
} else {
XELOGI(" - %.16llX-%.16llX - %9db used",
start_addr, end_addr, used_bytes);
}
} }
void xe_memory_heap_dump(xe_memory_ref memory) { void xe_memory_heap_dump(xe_memory_ref memory) {
XELOGI("xe_memory_heap_dump:"); XELOGI("xe_memory_heap_dump:");
@ -272,7 +342,7 @@ uint32_t xe_memory_heap_alloc(
if (!p) { if (!p) {
return 0; return 0;
} }
return (uint32_t)((uintptr_t)p - (uintptr_t)memory->ptr); return (uint32_t)((uintptr_t)p - (uintptr_t)memory->mapping_base);
} else { } else {
if (base_address >= XE_MEMORY_HEAP_LOW && if (base_address >= XE_MEMORY_HEAP_LOW &&
base_address < XE_MEMORY_HEAP_HIGH) { base_address < XE_MEMORY_HEAP_HIGH) {
@ -281,8 +351,7 @@ uint32_t xe_memory_heap_alloc(
return 0; return 0;
} }
uint8_t* p = (uint8_t*)memory->ptr + base_address; uint8_t* p = memory->mapping_base + base_address;
#if XE_PLATFORM(WIN32)
// TODO(benvanik): check if address range is in use with a query. // TODO(benvanik): check if address range is in use with a query.
void* pv = VirtualAlloc(p, size, MEM_COMMIT, PAGE_READWRITE); void* pv = VirtualAlloc(p, size, MEM_COMMIT, PAGE_READWRITE);
@ -291,9 +360,6 @@ uint32_t xe_memory_heap_alloc(
XEASSERTALWAYS(); XEASSERTALWAYS();
return 0; return 0;
} }
#else
#error ?
#endif // WIN32
return base_address; return base_address;
} }
@ -301,7 +367,7 @@ uint32_t xe_memory_heap_alloc(
int xe_memory_heap_free( int xe_memory_heap_free(
xe_memory_ref memory, uint32_t address, uint32_t size) { xe_memory_ref memory, uint32_t address, uint32_t size) {
uint8_t* p = (uint8_t*)memory->ptr + address; uint8_t* p = memory->mapping_base + address;
if (address >= XE_MEMORY_HEAP_LOW && address < XE_MEMORY_HEAP_HIGH) { if (address >= XE_MEMORY_HEAP_LOW && address < XE_MEMORY_HEAP_HIGH) {
// Heap allocated address. // Heap allocated address.
size_t heap_guard_size = FLAGS_heap_guard_pages * 4096; size_t heap_guard_size = FLAGS_heap_guard_pages * 4096;
@ -326,16 +392,12 @@ int xe_memory_heap_free(
return (uint32_t)real_size; return (uint32_t)real_size;
} else { } else {
// A placed address. Decommit. // A placed address. Decommit.
#if XE_PLATFORM(WIN32)
return VirtualFree(p, size, MEM_DECOMMIT) ? 0 : 1; return VirtualFree(p, size, MEM_DECOMMIT) ? 0 : 1;
#else
#error decommit
#endif // WIN32
} }
} }
bool xe_memory_is_valid(xe_memory_ref memory, uint32_t address) { bool xe_memory_is_valid(xe_memory_ref memory, uint32_t address) {
uint8_t* p = (uint8_t*)memory->ptr + address; uint8_t* p = memory->mapping_base + address;
if (address >= XE_MEMORY_HEAP_LOW && address < XE_MEMORY_HEAP_HIGH) { if (address >= XE_MEMORY_HEAP_LOW && address < XE_MEMORY_HEAP_HIGH) {
// Within heap range, ask dlmalloc. // Within heap range, ask dlmalloc.
size_t heap_guard_size = FLAGS_heap_guard_pages * 4096; size_t heap_guard_size = FLAGS_heap_guard_pages * 4096;
@ -349,12 +411,11 @@ bool xe_memory_is_valid(xe_memory_ref memory, uint32_t address) {
int xe_memory_protect( int xe_memory_protect(
xe_memory_ref memory, uint32_t address, uint32_t size, uint32_t access) { xe_memory_ref memory, uint32_t address, uint32_t size, uint32_t access) {
uint8_t* p = (uint8_t*)memory->ptr + address; uint8_t* p = memory->mapping_base + address;
size_t heap_guard_size = FLAGS_heap_guard_pages * 4096; size_t heap_guard_size = FLAGS_heap_guard_pages * 4096;
p += heap_guard_size; p += heap_guard_size;
#if XE_PLATFORM(WIN32)
DWORD new_protect = 0; DWORD new_protect = 0;
if (access & XE_MEMORY_ACCESS_WRITE) { if (access & XE_MEMORY_ACCESS_WRITE) {
new_protect = PAGE_READWRITE; new_protect = PAGE_READWRITE;
@ -365,14 +426,4 @@ int xe_memory_protect(
} }
DWORD old_protect; DWORD old_protect;
return VirtualProtect(p, size, new_protect, &old_protect) == TRUE ? 0 : 1; return VirtualProtect(p, size, new_protect, &old_protect) == TRUE ? 0 : 1;
#else
int prot = 0;
if (access & XE_MEMORY_ACCESS_READ) {
prot = PROT_READ;
}
if (access & XE_MEMORY_ACCESS_WRITE) {
prot = PROT_WRITE;
}
return mprotect(p, size, prot);
#endif // WIN32
} }

View File

@ -27,7 +27,6 @@ xe_memory_ref xe_memory_create(xe_memory_options_t options);
xe_memory_ref xe_memory_retain(xe_memory_ref memory); xe_memory_ref xe_memory_retain(xe_memory_ref memory);
void xe_memory_release(xe_memory_ref memory); void xe_memory_release(xe_memory_ref memory);
size_t xe_memory_get_length(xe_memory_ref memory);
uint8_t *xe_memory_addr(xe_memory_ref memory, size_t guest_addr = 0); uint8_t *xe_memory_addr(xe_memory_ref memory, size_t guest_addr = 0);
void xe_memory_copy(xe_memory_ref memory, void xe_memory_copy(xe_memory_ref memory,

View File

@ -145,9 +145,10 @@ int Processor::LoadRawBinary(const xechar_t* path, uint32_t start_address) {
int result_code = 1; int result_code = 1;
// Place the data into memory at the desired address. // Place the data into memory at the desired address.
XEEXPECTZERO(xe_copy_memory(xe_memory_addr(memory_, start_address), XEEXPECTNOTZERO(xe_memory_heap_alloc(
xe_memory_get_length(memory_), memory_, start_address, (uint32_t)length, 0));
addr, length)); XEEXPECTZERO(xe_copy_memory(
xe_memory_addr(memory_, start_address), length, addr, length));
char name_a[XE_MAX_PATH]; char name_a[XE_MAX_PATH];
XEEXPECTTRUE(xestrnarrow(name_a, XECOUNT(name_a), name)); XEEXPECTTRUE(xestrnarrow(name_a, XECOUNT(name_a), name));
@ -172,6 +173,7 @@ int Processor::LoadRawBinary(const xechar_t* path, uint32_t start_address) {
result_code = 0; result_code = 0;
XECLEANUP: XECLEANUP:
if (result_code) { if (result_code) {
xe_memory_heap_free(memory_, start_address, (uint32_t)length);
delete exec_module; delete exec_module;
} }
xe_mmap_release(mmap); xe_mmap_release(mmap);