base: threading_linux: Stub out several synchronization constructs

This commit is contained in:
Doug Johnson 2017-07-10 02:00:52 -06:00
parent 03091d1b71
commit b143b91fbb
2 changed files with 283 additions and 9 deletions

View File

@ -15,7 +15,6 @@
namespace xe { namespace xe {
namespace threading { namespace threading {
void MaybeYield() { pthread_yield(); }
} // namespace threading } // namespace threading
} // namespace xe } // namespace xe

View File

@ -15,12 +15,18 @@
#include <pthread.h> #include <pthread.h>
#include <sys/syscall.h> #include <sys/syscall.h>
#include <sys/types.h> #include <sys/types.h>
#include <sys/time.h>
#include <time.h> #include <time.h>
#include <unistd.h> #include <unistd.h>
namespace xe { namespace xe {
namespace threading { namespace threading {
//TODO(dougvj)
void EnableAffinityConfiguration() {
}
// uint64_t ticks() { return mach_absolute_time(); } // uint64_t ticks() { return mach_absolute_time(); }
uint32_t current_thread_system_id() { uint32_t current_thread_system_id() {
@ -32,7 +38,16 @@ void set_name(const std::string& name) {
} }
void set_name(std::thread::native_handle_type handle, const std::string& name) { void set_name(std::thread::native_handle_type handle, const std::string& name) {
pthread_setname_np(pthread_self(), name.c_str()); pthread_setname_np(handle, name.c_str());
}
void MaybeYield() {
pthread_yield();
__sync_synchronize();
}
void SyncMemory() {
__sync_synchronize();
} }
void Sleep(std::chrono::microseconds duration) { void Sleep(std::chrono::microseconds duration) {
@ -42,11 +57,133 @@ void Sleep(std::chrono::microseconds duration) {
// TODO(benvanik): spin while rmtp >0? // TODO(benvanik): spin while rmtp >0?
} }
template <typename T> //TODO(dougvj) Not sure how to implement the equivalent of this on POSIX.
class PosixHandle : public T { SleepResult AlertableSleep(std::chrono::microseconds duration) {
sleep(duration.count() / 1000);
return SleepResult::kSuccess;
}
//TODO(dougvj) We can probably wrap this with pthread_key_t but the type of
//TlsHandle probably needs to be refactored
TlsHandle AllocateTlsHandle() {
assert_always();
}
bool FreeTlsHandle(TlsHandle handle) { return true; }
uintptr_t GetTlsValue(TlsHandle handle) {
assert_always();
}
bool SetTlsValue(TlsHandle handle, uintptr_t value) {
assert_always();
}
//TODO(dougvj)
class PosixHighResolutionTimer : public HighResolutionTimer {
public: public:
explicit PosixHandle(pthread_t handle) : handle_(handle) {} PosixHighResolutionTimer(std::function<void()> callback)
~PosixHandle() override {} : callback_(callback) {}
~PosixHighResolutionTimer() override {
}
bool Initialize(std::chrono::milliseconds period) {
assert_always();
return false;
}
private:
std::function<void()> callback_;
};
std::unique_ptr<HighResolutionTimer> HighResolutionTimer::CreateRepeating(
std::chrono::milliseconds period, std::function<void()> callback) {
auto timer = std::make_unique<PosixHighResolutionTimer>(std::move(callback));
if (!timer->Initialize(period)) {
return nullptr;
}
return std::unique_ptr<HighResolutionTimer>(timer.release());
}
// TODO(dougvj) There really is no native POSIX handle for a single wait/signal
// construct pthreads is at a lower level with more handles for such a mechanism
// This simple wrapper class could function as our handle, but probably needs
// some more functionality
class PosixCondition {
public:
PosixCondition(): signal_(false) {
pthread_mutex_init(&mutex_, NULL);
pthread_cond_init(&cond_, NULL);
}
~PosixCondition() {
pthread_mutex_destroy(&mutex_);
pthread_cond_destroy(&cond_);
}
void Signal() {
pthread_mutex_lock(&mutex_);
signal_ = true;
pthread_cond_broadcast(&cond_);
pthread_mutex_unlock(&mutex_);
}
void Reset() {
pthread_mutex_lock(&mutex_);
signal_ = false;
pthread_mutex_unlock(&mutex_);
}
bool Wait(unsigned int timeout_ms) {
//Assume 0 means no timeout, not instant timeout
if (timeout_ms == 0) {
Wait();
}
struct timespec time_to_wait;
struct timeval now;
gettimeofday(&now, NULL);
//Add the number of seconds we want to wait to the current time
time_to_wait.tv_sec = now.tv_sec + (timeout_ms/1000);
//Add the number of nanoseconds we want to wait to the current nanosecond
//stride
long nsec = (now.tv_usec+(timeout_ms % 1000)) * 1000;
//If we overflowed the nanosecond count then we add a second
time_to_wait.tv_sec += nsec/1000000000UL;
//We only add nanoseconds within the 1 second stride
time_to_wait.tv_nsec = nsec % 1000000000UL;
pthread_mutex_lock(&mutex_);
while(!signal_) {
int status = pthread_cond_timedwait(&cond_, &mutex_, &time_to_wait);
if (status == ETIMEDOUT)
return false; //We timed out
}
pthread_mutex_unlock(&mutex_);
return true; //We didn't time out
}
bool Wait() {
pthread_mutex_lock(&mutex_);
while(!signal_) {
pthread_cond_wait(&cond_, &mutex_);
}
pthread_mutex_unlock(&mutex_);
return true; //Did not time out;
}
private:
bool signal_;
pthread_cond_t cond_;
pthread_mutex_t mutex_;
};
//Native posix thread handle
template <typename T>
class PosixThreadHandle : public T {
public:
explicit PosixThreadHandle(pthread_t handle) : handle_(handle) {}
~PosixThreadHandle() override {}
protected: protected:
void* native_handle() const override { void* native_handle() const override {
@ -56,13 +193,136 @@ class PosixHandle : public T {
pthread_t handle_; pthread_t handle_;
}; };
class PosixThread : public PosixHandle<Thread> { //This is wraps a condition object as our handle because posix has no single
//native handle for higher level concurrency constructs such as semaphores
template <typename T>
class PosixConditionHandle : public T {
public: public:
explicit PosixThread(pthread_t handle) : PosixHandle(handle) {} ~PosixConditionHandle() override {}
protected:
void* native_handle() const override {
return reinterpret_cast<void*>(const_cast<PosixCondition*>(&handle_));
}
PosixCondition handle_;
};
// TODO(dougvj)
WaitResult Wait(WaitHandle* wait_handle, bool is_alertable,
std::chrono::milliseconds timeout) {
assert_always();
return WaitResult::kFailed;
}
// TODO(dougvj)
WaitResult SignalAndWait(WaitHandle* wait_handle_to_signal,
WaitHandle* wait_handle_to_wait_on, bool is_alertable,
std::chrono::milliseconds timeout) {
assert_always();
return WaitResult::kFailed;
}
// TODO(dougvj)
std::pair<WaitResult, size_t> WaitMultiple(WaitHandle* wait_handles[],
size_t wait_handle_count,
bool wait_all, bool is_alertable,
std::chrono::milliseconds timeout) {
assert_always();
return std::pair<WaitResult, size_t>(WaitResult::kFailed, 0);
}
//TODO(dougvj)
class PosixEvent: public PosixConditionHandle<Event> {
public:
PosixEvent(bool initial_state, int auto_reset) { assert_always(); }
~PosixEvent() override = default;
void Set() override { assert_always(); }
void Reset() override { assert_always(); }
void Pulse() override { assert_always(); }
private:
PosixCondition condition_;
};
std::unique_ptr<Event> Event::CreateManualResetEvent(bool initial_state) {
return std::make_unique<PosixEvent>(PosixEvent(initial_state, false));
}
std::unique_ptr<Event> Event::CreateAutoResetEvent(bool initial_state) {
return std::make_unique<PosixEvent>(PosixEvent(initial_state, true));
}
//TODO(dougvj)
class PosixSemaphore : public PosixConditionHandle<Semaphore> {
public:
PosixSemaphore(int initial_count, int maximum_count) { assert_always(); }
~PosixSemaphore() override = default;
bool Release(int release_count, int* out_previous_count) override {
assert_always();
return false;
}
};
std::unique_ptr<Semaphore> Semaphore::Create(int initial_count,
int maximum_count) {
return std::make_unique<PosixSemaphore>(initial_count, maximum_count);
}
//TODO(dougvj)
class PosixMutant : public PosixConditionHandle<Mutant> {
public:
PosixMutant(bool initial_owner) {
assert_always();
}
~PosixMutant() = default;
bool Release() override { assert_always(); return false; }
private:
};
std::unique_ptr<Mutant> Mutant::Create(bool initial_owner) {
return std::make_unique<PosixMutant>(initial_owner);
}
//TODO(dougvj)
class PosixTimer : public PosixConditionHandle<Timer> {
public:
PosixTimer(bool manual_reset) { assert_always(); }
~PosixTimer() = default;
bool SetOnce(std::chrono::nanoseconds due_time,
std::function<void()> opt_callback) override {
assert_always();
return false;
}
bool SetRepeating(std::chrono::nanoseconds due_time,
std::chrono::milliseconds period,
std::function<void()> opt_callback) override {
assert_always();
return false;
}
bool Cancel() override {
assert_always();
return false;
}
};
std::unique_ptr<Timer> Timer::CreateManualResetTimer() {
return std::make_unique<PosixTimer>(true);
}
std::unique_ptr<Timer> Timer::CreateSynchronizationTimer() {
return std::make_unique<PosixTimer>(false);
}
class PosixThread : public PosixThreadHandle<Thread> {
public:
explicit PosixThread(pthread_t handle) : PosixThreadHandle(handle) {}
~PosixThread() = default; ~PosixThread() = default;
void set_name(std::string name) override { void set_name(std::string name) override {
// TODO(DrChat) pthread_setname_np(handle_, name.c_str());
} }
uint32_t system_id() const override { return 0; } uint32_t system_id() const override { return 0; }
@ -141,5 +401,20 @@ std::unique_ptr<Thread> Thread::Create(CreationParameters params,
return std::unique_ptr<PosixThread>(new PosixThread(handle)); return std::unique_ptr<PosixThread>(new PosixThread(handle));
} }
Thread* Thread::GetCurrentThread() {
if (current_thread_) {
return current_thread_.get();
}
pthread_t handle = pthread_self();
current_thread_ = std::make_unique<PosixThread>(handle);
return current_thread_.get();
}
void Thread::Exit(int exit_code) {
pthread_exit(reinterpret_cast<void*>(exit_code));
}
} // namespace threading } // namespace threading
} // namespace xe } // namespace xe