Merge pull request #361 from DrChat/misc_fixes

Misc fixes
This commit is contained in:
Ben Vanik 2015-07-21 20:22:00 -07:00
commit a98fa47081
14 changed files with 246 additions and 149 deletions

View File

@ -428,7 +428,6 @@ void Debugger::OnMessage(std::vector<uint8_t> buffer) {
// thread_builder.add_creation_flags(); // thread_builder.add_creation_flags();
thread_builder.add_tls_address(thread->tls_ptr()); thread_builder.add_tls_address(thread->tls_ptr());
thread_builder.add_pcr_address(thread->pcr_ptr()); thread_builder.add_pcr_address(thread->pcr_ptr());
thread_builder.add_thread_state_address(thread->thread_state_ptr());
thread_builder.add_thread_id(thread->thread_id()); thread_builder.add_thread_id(thread->thread_id());
thread_builder.add_name(thread_name_string); thread_builder.add_name(thread_name_string);
thread_builder.add_priority(thread->priority()); thread_builder.add_priority(thread->priority());

View File

@ -345,12 +345,13 @@ bool GL4Shader::CompileProgram(std::string source) {
// Note that we put the translated source first so we get good line numbers. // Note that we put the translated source first so we get good line numbers.
FILE* f = fopen(file_name, "w"); FILE* f = fopen(file_name, "w");
fprintf(f, "%s", translated_disassembly_.c_str()); if (f) {
fprintf(f, "\n\n"); fprintf(f, "%s", translated_disassembly_.c_str());
fprintf(f, "/*\n"); fprintf(f, "/*\n");
fprintf(f, "%s", ucode_disassembly_.c_str()); fprintf(f, "%s", ucode_disassembly_.c_str());
fprintf(f, " */\n"); fprintf(f, " */\n");
fclose(f); fclose(f);
}
} }
program_ = glCreateShaderProgramv(shader_type_ == ShaderType::kVertex program_ = glCreateShaderProgramv(shader_type_ == ShaderType::kVertex

View File

@ -144,6 +144,25 @@ void KernelState::set_process_type(uint32_t value) {
pib->process_type = uint8_t(value); pib->process_type = uint8_t(value);
} }
void KernelState::RegisterTitleTerminateNotification(uint32_t routine,
uint32_t priority) {
TerminateNotification notify;
notify.guest_routine = routine;
notify.priority = priority;
terminate_notifications.push_back(notify);
}
void KernelState::RemoveTitleTerminateNotification(uint32_t routine) {
for (auto it = terminate_notifications.begin();
it != terminate_notifications.end(); it++) {
if (it->guest_routine == routine) {
terminate_notifications.erase(it);
break;
}
}
}
void KernelState::RegisterModule(XModule* module) {} void KernelState::RegisterModule(XModule* module) {}
void KernelState::UnregisterModule(XModule* module) {} void KernelState::UnregisterModule(XModule* module) {}
@ -318,7 +337,21 @@ object_ref<XUserModule> KernelState::LoadUserModule(const char* raw_name) {
void KernelState::TerminateTitle(bool from_guest_thread) { void KernelState::TerminateTitle(bool from_guest_thread) {
std::lock_guard<xe::recursive_mutex> lock(object_mutex_); std::lock_guard<xe::recursive_mutex> lock(object_mutex_);
// First: Kill all guest threads. // First: Call terminate routines
// TODO: These might take arguments
// FIXME: Calling these will send some threads into kernel code and they'll
// hold the lock when terminated! Do we need to wait for all threads to exit?
/*
if (from_guest_thread) {
for (auto routine : terminate_notifications) {
auto thread_state = XThread::GetCurrentThread()->thread_state();
processor()->Execute(thread_state, routine.guest_routine);
}
}
terminate_notifications.clear();
*/
// Second: Kill all guest threads.
for (auto it = threads_by_id_.begin(); it != threads_by_id_.end();) { for (auto it = threads_by_id_.begin(); it != threads_by_id_.end();) {
if (it->second->guest_thread()) { if (it->second->guest_thread()) {
auto thread = it->second; auto thread = it->second;
@ -329,7 +362,7 @@ void KernelState::TerminateTitle(bool from_guest_thread) {
continue; continue;
} }
if (it->second->running()) { if (thread->running()) {
thread->Terminate(0); thread->Terminate(0);
} }
@ -340,7 +373,7 @@ void KernelState::TerminateTitle(bool from_guest_thread) {
} }
} }
// Second: Unload all user modules (including the executable) // Third: Unload all user modules (including the executable)
for (int i = 0; i < user_modules_.size(); i++) { for (int i = 0; i < user_modules_.size(); i++) {
X_STATUS status = user_modules_[i]->Unload(); X_STATUS status = user_modules_[i]->Unload();
assert_true(XSUCCEEDED(status)); assert_true(XSUCCEEDED(status));

View File

@ -79,6 +79,11 @@ struct ProcessInfoBlock {
xe::be<uint32_t> unk_5C; xe::be<uint32_t> unk_5C;
}; };
struct TerminateNotification {
uint32_t guest_routine;
uint32_t priority;
};
class KernelState { class KernelState {
public: public:
KernelState(Emulator* emulator); KernelState(Emulator* emulator);
@ -108,6 +113,9 @@ class KernelState {
return process_info_block_address_; return process_info_block_address_;
} }
void RegisterTitleTerminateNotification(uint32_t routine, uint32_t priority);
void RemoveTitleTerminateNotification(uint32_t routine);
void RegisterModule(XModule* module); void RegisterModule(XModule* module);
void UnregisterModule(XModule* module); void UnregisterModule(XModule* module);
bool IsKernelModule(const char* name); bool IsKernelModule(const char* name);
@ -179,6 +187,7 @@ class KernelState {
object_ref<XUserModule> executable_module_; object_ref<XUserModule> executable_module_;
std::vector<object_ref<XKernelModule>> kernel_modules_; std::vector<object_ref<XKernelModule>> kernel_modules_;
std::vector<object_ref<XUserModule>> user_modules_; std::vector<object_ref<XUserModule>> user_modules_;
std::vector<TerminateNotification> terminate_notifications;
uint32_t process_info_block_address_; uint32_t process_info_block_address_;

View File

@ -106,18 +106,17 @@ uint32_t XThread::GetCurrentThreadHandle() {
return thread->handle(); return thread->handle();
} }
uint32_t XThread::GetCurrentThreadId(const uint8_t* pcr) { uint32_t XThread::GetCurrentThreadId() {
return xe::load_and_swap<uint32_t>(pcr + 0x2D8 + 0x14C); XThread* thread = XThread::GetCurrentThread();
return thread->guest_object<X_KTHREAD>()->thread_id;
} }
uint32_t XThread::last_error() { uint32_t XThread::last_error() {
uint8_t* p = memory()->TranslateVirtual(thread_state_address_); return guest_object<X_KTHREAD>()->last_error;
return xe::load_and_swap<uint32_t>(p + 0x160);
} }
void XThread::set_last_error(uint32_t error_code) { void XThread::set_last_error(uint32_t error_code) {
uint8_t* p = memory()->TranslateVirtual(thread_state_address_); guest_object<X_KTHREAD>()->last_error = error_code;
xe::store_and_swap<uint32_t>(p + 0x160, error_code);
} }
void XThread::set_name(const std::string& name) { void XThread::set_name(const std::string& name) {
@ -129,9 +128,15 @@ void XThread::set_name(const std::string& name) {
} }
} }
uint8_t next_cpu = 0;
uint8_t GetFakeCpuNumber(uint8_t proc_mask) { uint8_t GetFakeCpuNumber(uint8_t proc_mask) {
if (!proc_mask) { if (!proc_mask) {
return 0; // is this reasonable? next_cpu++;
if (next_cpu > 6) {
next_cpu = 0;
}
return next_cpu; // is this reasonable?
} }
assert_false(proc_mask & 0xC0); assert_false(proc_mask & 0xC0);
@ -143,15 +148,12 @@ uint8_t GetFakeCpuNumber(uint8_t proc_mask) {
X_STATUS XThread::Create() { X_STATUS XThread::Create() {
// Thread kernel object // Thread kernel object
// This call will also setup the native pointer for us. // This call will also setup the native pointer for us.
auto guest_object = CreateNative<X_KTHREAD>(sizeof(X_KTHREAD)); auto guest_thread = CreateNative<X_KTHREAD>();
if (!guest_object) { if (!guest_thread) {
XELOGW("Unable to allocate thread object"); XELOGW("Unable to allocate thread object");
return X_STATUS_NO_MEMORY; return X_STATUS_NO_MEMORY;
} }
guest_object->header.type = 6;
StashNative(&guest_object->header, this);
auto module = kernel_state()->GetExecutableModule(); auto module = kernel_state()->GetExecutableModule();
// Allocate thread scratch. // Allocate thread scratch.
@ -210,8 +212,7 @@ X_STATUS XThread::Create() {
// 0x160: last error // 0x160: last error
// So, at offset 0x100 we have a 4b pointer to offset 200, then have the // So, at offset 0x100 we have a 4b pointer to offset 200, then have the
// structure. // structure.
pcr_address_ = memory()->SystemHeapAlloc(0x2D8 + 0xAB0); pcr_address_ = memory()->SystemHeapAlloc(0x2D8);
thread_state_address_ = pcr_address_ + 0x2D8;
if (!pcr_address_) { if (!pcr_address_) {
XELOGW("Unable to allocate thread state block"); XELOGW("Unable to allocate thread state block");
return X_STATUS_NO_MEMORY; return X_STATUS_NO_MEMORY;
@ -232,27 +233,11 @@ X_STATUS XThread::Create() {
uint8_t proc_mask = uint8_t proc_mask =
static_cast<uint8_t>(creation_params_.creation_flags >> 24); static_cast<uint8_t>(creation_params_.creation_flags >> 24);
// Processor Control Region X_KPCR* pcr = memory()->TranslateVirtual<X_KPCR*>(pcr_address_);
struct XPCR {
xe::be<uint32_t> tls_ptr; // 0x0
char unk_04[0x2C]; // 0x4
xe::be<uint32_t> pcr_ptr; // 0x30
char unk_34[0x3C]; // 0x34
xe::be<uint32_t> stack_base_ptr; // 0x70 Stack base address (high addr)
xe::be<uint32_t> stack_end_ptr; // 0x74 Stack end (low addr)
char unk_78[0x88]; // 0x78
xe::be<uint32_t> teb_ptr; // 0x100
char unk_104[0x8]; // 0x104
xe::be<uint8_t> current_cpu; // 0x10C
char unk_10D[0x43]; // 0x10D
xe::be<uint32_t> dpc_active; // 0x150
};
XPCR* pcr = memory()->TranslateVirtual<XPCR*>(pcr_address_);
pcr->tls_ptr = tls_address_; pcr->tls_ptr = tls_address_;
pcr->pcr_ptr = pcr_address_; pcr->pcr_ptr = pcr_address_;
pcr->teb_ptr = thread_state_address_; pcr->current_thread = guest_object();
pcr->stack_base_ptr = pcr->stack_base_ptr =
thread_state_->stack_address() + thread_state_->stack_size(); thread_state_->stack_address() + thread_state_->stack_size();
@ -262,19 +247,16 @@ X_STATUS XThread::Create() {
pcr->dpc_active = 0; // DPC active bool? pcr->dpc_active = 0; // DPC active bool?
// Setup the thread state block (last error/etc). // Setup the thread state block (last error/etc).
// TODO: This is actually a KTHREAD object. Use the one from CreateNative uint8_t* p = memory()->TranslateVirtual(guest_object());
// instead. guest_thread->header.type = 6;
uint8_t* p = memory()->TranslateVirtual(thread_state_address_);
xe::store_and_swap<uint32_t>(p + 0x000, 6);
xe::store_and_swap<uint32_t>(p + 0x008, thread_state_address_ + 0x008);
xe::store_and_swap<uint32_t>(p + 0x00C, thread_state_address_ + 0x008);
xe::store_and_swap<uint32_t>(p + 0x010, thread_state_address_ + 0x010);
xe::store_and_swap<uint32_t>(p + 0x014, thread_state_address_ + 0x010);
xe::store_and_swap<uint32_t>(p + 0x040, thread_state_address_ + 0x018 + 8); xe::store_and_swap<uint32_t>(p + 0x010, guest_object() + 0x010);
xe::store_and_swap<uint32_t>(p + 0x044, thread_state_address_ + 0x018 + 8); xe::store_and_swap<uint32_t>(p + 0x014, guest_object() + 0x010);
xe::store_and_swap<uint32_t>(p + 0x048, thread_state_address_);
xe::store_and_swap<uint32_t>(p + 0x04C, thread_state_address_ + 0x018); xe::store_and_swap<uint32_t>(p + 0x040, guest_object() + 0x018 + 8);
xe::store_and_swap<uint32_t>(p + 0x044, guest_object() + 0x018 + 8);
xe::store_and_swap<uint32_t>(p + 0x048, guest_object());
xe::store_and_swap<uint32_t>(p + 0x04C, guest_object() + 0x018);
xe::store_and_swap<uint16_t>(p + 0x054, 0x102); xe::store_and_swap<uint16_t>(p + 0x054, 0x102);
xe::store_and_swap<uint16_t>(p + 0x056, 1); xe::store_and_swap<uint16_t>(p + 0x056, 1);
@ -283,27 +265,27 @@ X_STATUS XThread::Create() {
xe::store_and_swap<uint32_t>(p + 0x060, thread_state_->stack_address()); xe::store_and_swap<uint32_t>(p + 0x060, thread_state_->stack_address());
xe::store_and_swap<uint32_t>(p + 0x068, tls_address_); xe::store_and_swap<uint32_t>(p + 0x068, tls_address_);
xe::store_and_swap<uint8_t>(p + 0x06C, 0); xe::store_and_swap<uint8_t>(p + 0x06C, 0);
xe::store_and_swap<uint32_t>(p + 0x074, thread_state_address_ + 0x074); xe::store_and_swap<uint32_t>(p + 0x074, guest_object() + 0x074);
xe::store_and_swap<uint32_t>(p + 0x078, thread_state_address_ + 0x074); xe::store_and_swap<uint32_t>(p + 0x078, guest_object() + 0x074);
xe::store_and_swap<uint32_t>(p + 0x07C, thread_state_address_ + 0x07C); xe::store_and_swap<uint32_t>(p + 0x07C, guest_object() + 0x07C);
xe::store_and_swap<uint32_t>(p + 0x080, thread_state_address_ + 0x07C); xe::store_and_swap<uint32_t>(p + 0x080, guest_object() + 0x07C);
xe::store_and_swap<uint32_t>(p + 0x084, xe::store_and_swap<uint32_t>(p + 0x084,
kernel_state_->process_info_block_address()); kernel_state_->process_info_block_address());
xe::store_and_swap<uint8_t>(p + 0x08B, 1); xe::store_and_swap<uint8_t>(p + 0x08B, 1);
// D4 = APC // 0xD4 = APC
// FC = semaphore (ptr, 0, 2) // 0xFC = semaphore (ptr, 0, 2)
// A88 = APC // 0xA88 = APC
// 18 = timer // 0x18 = timer
xe::store_and_swap<uint32_t>(p + 0x09C, 0xFDFFD7FF); xe::store_and_swap<uint32_t>(p + 0x09C, 0xFDFFD7FF);
xe::store_and_swap<uint32_t>( xe::store_and_swap<uint32_t>(
p + 0x0D0, thread_state_->stack_address() + thread_state_->stack_size()); p + 0x0D0, thread_state_->stack_address() + thread_state_->stack_size());
xe::store_and_swap<uint64_t>(p + 0x130, Clock::QueryGuestSystemTime()); xe::store_and_swap<uint64_t>(p + 0x130, Clock::QueryGuestSystemTime());
xe::store_and_swap<uint32_t>(p + 0x144, thread_state_address_ + 0x144); xe::store_and_swap<uint32_t>(p + 0x144, guest_object() + 0x144);
xe::store_and_swap<uint32_t>(p + 0x148, thread_state_address_ + 0x144); xe::store_and_swap<uint32_t>(p + 0x148, guest_object() + 0x144);
xe::store_and_swap<uint32_t>(p + 0x14C, thread_id_); xe::store_and_swap<uint32_t>(p + 0x14C, thread_id_);
xe::store_and_swap<uint32_t>(p + 0x150, creation_params_.start_address); xe::store_and_swap<uint32_t>(p + 0x150, creation_params_.start_address);
xe::store_and_swap<uint32_t>(p + 0x154, thread_state_address_ + 0x154); xe::store_and_swap<uint32_t>(p + 0x154, guest_object() + 0x154);
xe::store_and_swap<uint32_t>(p + 0x158, thread_state_address_ + 0x154); xe::store_and_swap<uint32_t>(p + 0x158, guest_object() + 0x154);
xe::store_and_swap<uint32_t>(p + 0x160, 0); // last error xe::store_and_swap<uint32_t>(p + 0x160, 0); // last error
xe::store_and_swap<uint32_t>(p + 0x16C, creation_params_.creation_flags); xe::store_and_swap<uint32_t>(p + 0x16C, creation_params_.creation_flags);
xe::store_and_swap<uint32_t>(p + 0x17C, 1); xe::store_and_swap<uint32_t>(p + 0x17C, 1);
@ -331,6 +313,7 @@ X_STATUS XThread::Create() {
// Release the self-reference to the thread. // Release the self-reference to the thread.
Release(); Release();
}); });
if (!thread_) { if (!thread_) {
// TODO(benvanik): translate error? // TODO(benvanik): translate error?
XELOGE("CreateThread failed"); XELOGE("CreateThread failed");
@ -520,7 +503,8 @@ void XThread::DeliverAPCs() {
LockApc(); LockApc();
} }
XELOGD("Completed delivery of APC to %.8X", uint32_t(apc->normal_routine)); XELOGD("Completed delivery of APC to %.8X (%.8X, %.8X, %.8X)",
normal_routine, normal_context, arg1, arg2);
// If special, free it. // If special, free it.
if (needs_freeing) { if (needs_freeing) {
@ -614,6 +598,8 @@ void XThread::SetActiveCpu(uint32_t cpu_index) {
} }
X_STATUS XThread::Resume(uint32_t* out_suspend_count) { X_STATUS XThread::Resume(uint32_t* out_suspend_count) {
--guest_object<X_KTHREAD>()->suspend_count;
if (thread_->Resume(out_suspend_count)) { if (thread_->Resume(out_suspend_count)) {
return X_STATUS_SUCCESS; return X_STATUS_SUCCESS;
} else { } else {
@ -622,6 +608,8 @@ X_STATUS XThread::Resume(uint32_t* out_suspend_count) {
} }
X_STATUS XThread::Suspend(uint32_t* out_suspend_count) { X_STATUS XThread::Suspend(uint32_t* out_suspend_count) {
++guest_object<X_KTHREAD>()->suspend_count;
if (thread_->Suspend(out_suspend_count)) { if (thread_->Suspend(out_suspend_count)) {
return X_STATUS_SUCCESS; return X_STATUS_SUCCESS;
} else { } else {

View File

@ -65,13 +65,35 @@ struct XAPC {
} }
}; };
// http://www.nirsoft.net/kernel_struct/vista/KTHREAD.html // Processor Control Region
struct X_KPCR {
xe::be<uint32_t> tls_ptr; // 0x0
char unk_04[0x2C]; // 0x4
xe::be<uint32_t> pcr_ptr; // 0x30
char unk_34[0x3C]; // 0x34
xe::be<uint32_t> stack_base_ptr; // 0x70 Stack base address (high addr)
xe::be<uint32_t> stack_end_ptr; // 0x74 Stack end (low addr)
char unk_78[0x88]; // 0x78
xe::be<uint32_t> current_thread; // 0x100
char unk_104[0x8]; // 0x104
xe::be<uint8_t> current_cpu; // 0x10C
char unk_10D[0x43]; // 0x10D
xe::be<uint32_t> dpc_active; // 0x150
};
struct X_KTHREAD { struct X_KTHREAD {
X_DISPATCH_HEADER header; // 0x0 X_DISPATCH_HEADER header; // 0x0
char unk_04[0xAA0]; // 0x4 char unk_10[0xAC]; // 0x10
uint8_t suspend_count; // 0xBC
char unk_BD[0x8F]; // 0xBD
xe::be<uint32_t> thread_id; // 0x14C
char unk_150[0x10]; // 0x150
xe::be<uint32_t> last_error; // 0x160
char unk_164[0x94C]; // 0x164
// This struct is actually quite long... so uh, not filling this out! // This struct is actually quite long... so uh, not filling this out!
}; };
static_assert_size(X_KTHREAD, 0xAB0);
class XThread : public XObject { class XThread : public XObject {
public: public:
@ -83,11 +105,10 @@ class XThread : public XObject {
static bool IsInThread(XThread* other); static bool IsInThread(XThread* other);
static XThread* GetCurrentThread(); static XThread* GetCurrentThread();
static uint32_t GetCurrentThreadHandle(); static uint32_t GetCurrentThreadHandle();
static uint32_t GetCurrentThreadId(const uint8_t* pcr); static uint32_t GetCurrentThreadId();
uint32_t tls_ptr() const { return tls_address_; } uint32_t tls_ptr() const { return tls_address_; }
uint32_t pcr_ptr() const { return pcr_address_; } uint32_t pcr_ptr() const { return pcr_address_; }
uint32_t thread_state_ptr() const { return thread_state_address_; }
bool guest_thread() const { return guest_thread_; } bool guest_thread() const { return guest_thread_; }
bool running() const { return running_; } bool running() const { return running_; }
@ -149,9 +170,8 @@ class XThread : public XObject {
uint32_t scratch_size_ = 0; uint32_t scratch_size_ = 0;
uint32_t tls_address_ = 0; uint32_t tls_address_ = 0;
uint32_t pcr_address_ = 0; uint32_t pcr_address_ = 0;
uint32_t thread_state_address_ = 0;
cpu::ThreadState* thread_state_ = nullptr; cpu::ThreadState* thread_state_ = nullptr;
bool guest_thread_ = false; // Launched into guest code. bool guest_thread_ = false; // Launched into guest code?
bool running_ = false; bool running_ = false;
std::string name_; std::string name_;
@ -159,7 +179,7 @@ class XThread : public XObject {
int32_t priority_ = 0; int32_t priority_ = 0;
uint32_t affinity_ = 0; uint32_t affinity_ = 0;
std::atomic<uint32_t> irql_; std::atomic<uint32_t> irql_ = 0;
xe::mutex apc_lock_; xe::mutex apc_lock_;
NativeList* apc_list_ = nullptr; NativeList* apc_list_ = nullptr;
}; };

View File

@ -350,6 +350,14 @@ dword_result_t NetDll_XNetGetDebugXnAddr(dword_t caller,
DECLARE_XAM_EXPORT(NetDll_XNetGetDebugXnAddr, DECLARE_XAM_EXPORT(NetDll_XNetGetDebugXnAddr,
ExportTag::kNetworking | ExportTag::kStub); ExportTag::kNetworking | ExportTag::kStub);
// http://www.google.com/patents/WO2008112448A1?cl=en
// Reserves a port for use by system link
dword_result_t NetDll_XNetSetSystemLinkPort(dword_t caller, dword_t port) {
return 1;
}
DECLARE_XAM_EXPORT(NetDll_XNetSetSystemLinkPort,
ExportTag::kNetworking | ExportTag::kStub);
SHIM_CALL NetDll_XNetGetEthernetLinkStatus_shim(PPCContext* ppc_context, SHIM_CALL NetDll_XNetGetEthernetLinkStatus_shim(PPCContext* ppc_context,
KernelState* kernel_state) { KernelState* kernel_state) {
// Games seem to call this before *Startup. If we return 0, they don't even // Games seem to call this before *Startup. If we return 0, they don't even
@ -513,13 +521,25 @@ SHIM_CALL NetDll_accept_shim(PPCContext* ppc_context,
SOCKET ret_socket = accept(socket_handle, &addr, &addrlen); SOCKET ret_socket = accept(socket_handle, &addr, &addrlen);
if (ret_socket == INVALID_SOCKET) { if (ret_socket == INVALID_SOCKET) {
std::memset(SHIM_MEM_ADDR(addr_ptr), 0, sizeof(addr)); if (addr_ptr) {
SHIM_SET_MEM_32(addrlen_ptr, sizeof(addr)); std::memset(SHIM_MEM_ADDR(addr_ptr), 0, sizeof(addr));
}
if (addrlen_ptr) {
SHIM_SET_MEM_32(addrlen_ptr, sizeof(addr));
}
SHIM_SET_RETURN_32(-1); SHIM_SET_RETURN_32(-1);
} else { } else {
assert_true(ret_socket >> 32 == 0); assert_true(ret_socket >> 32 == 0);
StoreSockaddr(addr, SHIM_MEM_ADDR(addr_ptr)); if (addr_ptr) {
SHIM_SET_MEM_32(addrlen_ptr, addrlen); StoreSockaddr(addr, SHIM_MEM_ADDR(addr_ptr));
}
if (addrlen_ptr) {
SHIM_SET_MEM_32(addrlen_ptr, addrlen);
}
SHIM_SET_RETURN_32(static_cast<uint32_t>(ret_socket)); SHIM_SET_RETURN_32(static_cast<uint32_t>(ret_socket));
} }
} }

View File

@ -318,27 +318,25 @@ SHIM_CALL XexGetProcedureAddress_shim(PPCContext* ppc_context,
SHIM_SET_RETURN_32(result); SHIM_SET_RETURN_32(result);
} }
SHIM_CALL ExRegisterTitleTerminateNotification_shim(PPCContext* ppc_context, void AppendParam(StringBuffer& string_buffer,
KernelState* kernel_state) { pointer_t<X_EX_TITLE_TERMINATE_REGISTRATION> reg) {
uint32_t registration_ptr = SHIM_GET_ARG_32(0); string_buffer.AppendFormat("%.8X(%.8X, %.8X)", reg.guest_address(),
uint32_t create = SHIM_GET_ARG_32(1); reg->notification_routine, reg->priority);
}
uint32_t routine = SHIM_MEM_32(registration_ptr + 0);
uint32_t priority = SHIM_MEM_32(registration_ptr + 4);
// list entry flink
// list entry blink
XELOGD("ExRegisterTitleTerminateNotification(%.8X(%.8X, %d), %.1X)",
registration_ptr, routine, priority, create);
void ExRegisterTitleTerminateNotification(
pointer_t<X_EX_TITLE_TERMINATE_REGISTRATION> reg, dword_t create) {
if (create) { if (create) {
// Adding. // Adding.
// TODO(benvanik): add to master list (kernel?). kernel_state()->RegisterTitleTerminateNotification(
reg->notification_routine, reg->priority);
} else { } else {
// Removing. // Removing.
// TODO(benvanik): remove from master list. kernel_state()->RemoveTitleTerminateNotification(reg->notification_routine);
} }
} }
DECLARE_XBOXKRNL_EXPORT(ExRegisterTitleTerminateNotification,
ExportTag::kImplemented);
} // namespace kernel } // namespace kernel
} // namespace xe } // namespace xe
@ -354,6 +352,4 @@ void xe::kernel::xboxkrnl::RegisterModuleExports(
SHIM_SET_MAPPING("xboxkrnl.exe", XexLoadImage, state); SHIM_SET_MAPPING("xboxkrnl.exe", XexLoadImage, state);
SHIM_SET_MAPPING("xboxkrnl.exe", XexUnloadImage, state); SHIM_SET_MAPPING("xboxkrnl.exe", XexUnloadImage, state);
SHIM_SET_MAPPING("xboxkrnl.exe", XexGetProcedureAddress, state); SHIM_SET_MAPPING("xboxkrnl.exe", XexGetProcedureAddress, state);
SHIM_SET_MAPPING("xboxkrnl.exe", ExRegisterTitleTerminateNotification, state);
} }

View File

@ -292,26 +292,22 @@ DECLARE_XBOXKRNL_EXPORT(RtlImageXexHeaderField, ExportTag::kImplemented);
// their embedded data and InitializeCriticalSection will never be called. // their embedded data and InitializeCriticalSection will never be called.
#pragma pack(push, 1) #pragma pack(push, 1)
struct X_RTL_CRITICAL_SECTION { struct X_RTL_CRITICAL_SECTION {
uint8_t unknown00; xe::be<uint8_t> unk_00; // 0x0
uint8_t spin_count_div_256; // * 256 xe::be<uint8_t> spin_count_div_256; // 0x1
uint16_t __padding0; xe::be<uint16_t> __padding0; // 0x2
uint32_t __padding1; xe::be<uint32_t> unk_04; // 0x4 maybe the handle to the event?
// uint32_t unknown04; // maybe the handle to the event? xe::be<uint32_t> queue_head; // 0x8 head of queue, pointing to this offset
uint32_t queue_head; // head of queue, pointing to this offset xe::be<uint32_t> queue_tail; // 0xC tail of queue?
uint32_t queue_tail; // tail of queue? int32_t lock_count; // 0x10 -1 -> 0 on first lock 0x10
int32_t lock_count; // -1 -> 0 on first lock 0x10 xe::be<int32_t> recursion_count; // 0x14 0 -> 1 on first lock 0x14
uint32_t recursion_count; // 0 -> 1 on first lock 0x14 xe::be<uint32_t> owning_thread_id; // 0x18 0 unless locked 0x18
uint32_t owning_thread_id; // 0 unless locked 0x18
}; };
#pragma pack(pop) #pragma pack(pop)
static_assert_size(X_RTL_CRITICAL_SECTION, 28); static_assert_size(X_RTL_CRITICAL_SECTION, 28);
void xeRtlInitializeCriticalSection(X_RTL_CRITICAL_SECTION* cs, void xeRtlInitializeCriticalSection(X_RTL_CRITICAL_SECTION* cs,
uint32_t cs_ptr) { uint32_t cs_ptr) {
// VOID cs->unk_00 = 1;
// _Out_ LPCRITICAL_SECTION lpCriticalSection
cs->unknown00 = 1;
cs->spin_count_div_256 = 0; cs->spin_count_div_256 = 0;
cs->queue_head = cs_ptr + 8; cs->queue_head = cs_ptr + 8;
cs->queue_tail = cs_ptr + 8; cs->queue_tail = cs_ptr + 8;
@ -320,31 +316,22 @@ void xeRtlInitializeCriticalSection(X_RTL_CRITICAL_SECTION* cs,
cs->owning_thread_id = 0; cs->owning_thread_id = 0;
} }
SHIM_CALL RtlInitializeCriticalSection_shim(PPCContext* ppc_context, void RtlInitializeCriticalSection(pointer_t<X_RTL_CRITICAL_SECTION> cs) {
KernelState* kernel_state) { xeRtlInitializeCriticalSection(cs, cs.guest_address());
uint32_t cs_ptr = SHIM_GET_ARG_32(0);
XELOGD("RtlInitializeCriticalSection(%.8X)", cs_ptr);
auto cs = (X_RTL_CRITICAL_SECTION*)SHIM_MEM_ADDR(cs_ptr);
xeRtlInitializeCriticalSection(cs, cs_ptr);
} }
DECLARE_XBOXKRNL_EXPORT(RtlInitializeCriticalSection, ExportTag::kImplemented);
X_STATUS xeRtlInitializeCriticalSectionAndSpinCount(X_RTL_CRITICAL_SECTION* cs, X_STATUS xeRtlInitializeCriticalSectionAndSpinCount(X_RTL_CRITICAL_SECTION* cs,
uint32_t cs_ptr, uint32_t cs_ptr,
uint32_t spin_count) { uint32_t spin_count) {
// NTSTATUS // Spin count is rounded up to 256 intervals then packed in.
// _Out_ LPCRITICAL_SECTION lpCriticalSection,
// _In_ DWORD dwSpinCount
// Spin count is rouned up to 256 intervals then packed in.
// uint32_t spin_count_div_256 = (uint32_t)floor(spin_count / 256.0f + 0.5f); // uint32_t spin_count_div_256 = (uint32_t)floor(spin_count / 256.0f + 0.5f);
uint32_t spin_count_div_256 = (spin_count + 255) >> 8; uint32_t spin_count_div_256 = (spin_count + 255) >> 8;
if (spin_count_div_256 > 255) { if (spin_count_div_256 > 255) {
spin_count_div_256 = 255; spin_count_div_256 = 255;
} }
cs->unknown00 = 1; cs->unk_00 = 1;
cs->spin_count_div_256 = spin_count_div_256; cs->spin_count_div_256 = spin_count_div_256;
cs->queue_head = cs_ptr + 8; cs->queue_head = cs_ptr + 8;
cs->queue_tail = cs_ptr + 8; cs->queue_tail = cs_ptr + 8;
@ -355,19 +342,13 @@ X_STATUS xeRtlInitializeCriticalSectionAndSpinCount(X_RTL_CRITICAL_SECTION* cs,
return X_STATUS_SUCCESS; return X_STATUS_SUCCESS;
} }
SHIM_CALL RtlInitializeCriticalSectionAndSpinCount_shim( dword_result_t RtlInitializeCriticalSectionAndSpinCount(
PPCContext* ppc_context, KernelState* kernel_state) { pointer_t<X_RTL_CRITICAL_SECTION> cs, dword_t spin_count) {
uint32_t cs_ptr = SHIM_GET_ARG_32(0); return xeRtlInitializeCriticalSectionAndSpinCount(cs, cs.guest_address(),
uint32_t spin_count = SHIM_GET_ARG_32(1); spin_count);
XELOGD("RtlInitializeCriticalSectionAndSpinCount(%.8X, %u)", cs_ptr,
spin_count);
auto cs = (X_RTL_CRITICAL_SECTION*)SHIM_MEM_ADDR(cs_ptr);
X_STATUS result =
xeRtlInitializeCriticalSectionAndSpinCount(cs, cs_ptr, spin_count);
SHIM_SET_RETURN_32(result);
} }
DECLARE_XBOXKRNL_EXPORT(RtlInitializeCriticalSectionAndSpinCount,
ExportTag::kImplemented);
SHIM_CALL RtlEnterCriticalSection_shim(PPCContext* ppc_context, SHIM_CALL RtlEnterCriticalSection_shim(PPCContext* ppc_context,
KernelState* kernel_state) { KernelState* kernel_state) {
@ -377,12 +358,11 @@ SHIM_CALL RtlEnterCriticalSection_shim(PPCContext* ppc_context,
// XELOGD("RtlEnterCriticalSection(%.8X)", cs_ptr); // XELOGD("RtlEnterCriticalSection(%.8X)", cs_ptr);
const uint8_t* pcr = SHIM_MEM_ADDR(ppc_context->r[13]); uint32_t thread_id = XThread::GetCurrentThreadId();
uint32_t thread_id = XThread::GetCurrentThreadId(pcr);
auto cs = (X_RTL_CRITICAL_SECTION*)SHIM_MEM_ADDR(cs_ptr); auto cs = (X_RTL_CRITICAL_SECTION*)SHIM_MEM_ADDR(cs_ptr);
uint32_t spin_wait_remaining = cs->spin_count_div_256 * 256; uint32_t spin_wait_remaining = cs->spin_count_div_256 * 256;
spin: spin:
if (xe::atomic_inc(&cs->lock_count) != 0) { if (xe::atomic_inc(&cs->lock_count) != 0) {
// If this thread already owns the CS increment the recursion count. // If this thread already owns the CS increment the recursion count.
@ -419,8 +399,7 @@ SHIM_CALL RtlTryEnterCriticalSection_shim(PPCContext* ppc_context,
// XELOGD("RtlTryEnterCriticalSection(%.8X)", cs_ptr); // XELOGD("RtlTryEnterCriticalSection(%.8X)", cs_ptr);
const uint8_t* pcr = SHIM_MEM_ADDR(ppc_context->r[13]); uint32_t thread_id = XThread::GetCurrentThreadId();
uint32_t thread_id = XThread::GetCurrentThreadId(pcr);
auto cs = (X_RTL_CRITICAL_SECTION*)SHIM_MEM_ADDR(cs_ptr); auto cs = (X_RTL_CRITICAL_SECTION*)SHIM_MEM_ADDR(cs_ptr);
@ -446,16 +425,22 @@ SHIM_CALL RtlLeaveCriticalSection_shim(PPCContext* ppc_context,
// XELOGD("RtlLeaveCriticalSection(%.8X)", cs_ptr); // XELOGD("RtlLeaveCriticalSection(%.8X)", cs_ptr);
// FYI: No need to check if the owning thread is calling this, as that should
// be the only case.
auto cs = (X_RTL_CRITICAL_SECTION*)SHIM_MEM_ADDR(cs_ptr); auto cs = (X_RTL_CRITICAL_SECTION*)SHIM_MEM_ADDR(cs_ptr);
// Drop recursion count - if we are still not zero'ed return. // Drop recursion count - if we are still not zero'ed return.
uint32_t recursion_count = --cs->recursion_count; int32_t recursion_count = --cs->recursion_count;
assert_true(recursion_count > -1);
if (recursion_count) { if (recursion_count) {
assert_true(cs->recursion_count > 0);
xe::atomic_dec(&cs->lock_count); xe::atomic_dec(&cs->lock_count);
return; return;
} }
// Unlock! // Not owned - unlock!
cs->owning_thread_id = 0; cs->owning_thread_id = 0;
if (xe::atomic_dec(&cs->lock_count) != -1) { if (xe::atomic_dec(&cs->lock_count) != -1) {
// There were waiters - wake one of them. // There were waiters - wake one of them.
@ -530,9 +515,6 @@ void xe::kernel::xboxkrnl::RegisterRtlExports(
SHIM_SET_MAPPING("xboxkrnl.exe", RtlMultiByteToUnicodeN, state); SHIM_SET_MAPPING("xboxkrnl.exe", RtlMultiByteToUnicodeN, state);
SHIM_SET_MAPPING("xboxkrnl.exe", RtlUnicodeToMultiByteN, state); SHIM_SET_MAPPING("xboxkrnl.exe", RtlUnicodeToMultiByteN, state);
SHIM_SET_MAPPING("xboxkrnl.exe", RtlInitializeCriticalSection, state);
SHIM_SET_MAPPING("xboxkrnl.exe", RtlInitializeCriticalSectionAndSpinCount,
state);
SHIM_SET_MAPPING("xboxkrnl.exe", RtlEnterCriticalSection, state); SHIM_SET_MAPPING("xboxkrnl.exe", RtlEnterCriticalSection, state);
SHIM_SET_MAPPING("xboxkrnl.exe", RtlTryEnterCriticalSection, state); SHIM_SET_MAPPING("xboxkrnl.exe", RtlTryEnterCriticalSection, state);
SHIM_SET_MAPPING("xboxkrnl.exe", RtlLeaveCriticalSection, state); SHIM_SET_MAPPING("xboxkrnl.exe", RtlLeaveCriticalSection, state);

View File

@ -54,6 +54,7 @@ typedef struct {
xe::be<uint32_t> wait_list_flink; xe::be<uint32_t> wait_list_flink;
xe::be<uint32_t> wait_list_blink; xe::be<uint32_t> wait_list_blink;
} X_DISPATCH_HEADER; } X_DISPATCH_HEADER;
static_assert_size(X_DISPATCH_HEADER, 0x10);
// http://www.nirsoft.net/kernel_struct/vista/OBJECT_HEADER.html // http://www.nirsoft.net/kernel_struct/vista/OBJECT_HEADER.html
struct X_OBJECT_HEADER { struct X_OBJECT_HEADER {
@ -118,6 +119,11 @@ class XObject {
const std::string& name() const { return name_; } const std::string& name() const { return name_; }
uint32_t guest_object() const { return guest_object_ptr_; } uint32_t guest_object() const { return guest_object_ptr_; }
template <typename T>
T* guest_object() {
return memory()->TranslateVirtual<T*>(guest_object_ptr_);
}
void RetainHandle(); void RetainHandle();
bool ReleaseHandle(); bool ReleaseHandle();
void Retain(); void Retain();
@ -157,8 +163,8 @@ class XObject {
void SetNativePointer(uint32_t native_ptr, bool uninitialized = false); void SetNativePointer(uint32_t native_ptr, bool uninitialized = false);
template <typename T> template <typename T>
T* CreateNative(uint32_t size) { T* CreateNative() {
return reinterpret_cast<T*>(CreateNative(size)); return reinterpret_cast<T*>(CreateNative(sizeof(T)));
} }
// Stash native pointer into X_DISPATCH_HEADER // Stash native pointer into X_DISPATCH_HEADER

View File

@ -53,6 +53,9 @@ class Window {
virtual bool is_fullscreen() const { return false; } virtual bool is_fullscreen() const { return false; }
virtual void ToggleFullscreen(bool fullscreen) {} virtual void ToggleFullscreen(bool fullscreen) {}
virtual bool is_bordered() const { return false; }
virtual void SetBordered(bool enabled) {}
bool has_focus() const { return has_focus_; } bool has_focus() const { return has_focus_; }
virtual void set_focus(bool value) { has_focus_ = value; } virtual void set_focus(bool value) { has_focus_ = value; }

View File

@ -159,8 +159,7 @@ bool Win32Window::set_title(const std::wstring& title) {
} }
bool Win32Window::is_fullscreen() const { bool Win32Window::is_fullscreen() const {
DWORD style = GetWindowLong(hwnd_, GWL_STYLE); return fullscreen_;
return (style & WS_OVERLAPPEDWINDOW) != WS_OVERLAPPEDWINDOW;
} }
void Win32Window::ToggleFullscreen(bool fullscreen) { void Win32Window::ToggleFullscreen(bool fullscreen) {
@ -168,6 +167,8 @@ void Win32Window::ToggleFullscreen(bool fullscreen) {
return; return;
} }
fullscreen_ = fullscreen;
DWORD style = GetWindowLong(hwnd_, GWL_STYLE); DWORD style = GetWindowLong(hwnd_, GWL_STYLE);
if (fullscreen) { if (fullscreen) {
// Kill our borders and resize to take up entire primary monitor. // Kill our borders and resize to take up entire primary monitor.
@ -195,6 +196,25 @@ void Win32Window::ToggleFullscreen(bool fullscreen) {
} }
} }
bool Win32Window::is_bordered() const {
DWORD style = GetWindowLong(hwnd_, GWL_STYLE);
return (style & WS_OVERLAPPEDWINDOW) == WS_OVERLAPPEDWINDOW;
}
void Win32Window::SetBordered(bool enabled) {
if (is_fullscreen()) {
// Don't screw with the borders if we're fullscreen.
return;
}
DWORD style = GetWindowLong(hwnd_, GWL_STYLE);
if (enabled) {
SetWindowLong(hwnd_, GWL_STYLE, style | WS_OVERLAPPEDWINDOW);
} else {
SetWindowLong(hwnd_, GWL_STYLE, style & ~WS_OVERLAPPEDWINDOW);
}
}
void Win32Window::set_cursor_visible(bool value) { void Win32Window::set_cursor_visible(bool value) {
if (is_cursor_visible_ == value) { if (is_cursor_visible_ == value) {
return; return;

View File

@ -34,6 +34,9 @@ class Win32Window : public Window {
bool is_fullscreen() const override; bool is_fullscreen() const override;
void ToggleFullscreen(bool fullscreen) override; void ToggleFullscreen(bool fullscreen) override;
bool is_bordered() const override;
void SetBordered(bool enabled) override;
void set_cursor_visible(bool value) override; void set_cursor_visible(bool value) override;
void set_focus(bool value) override; void set_focus(bool value) override;
@ -65,6 +68,7 @@ class Win32Window : public Window {
HWND hwnd_ = nullptr; HWND hwnd_ = nullptr;
bool closing_ = false; bool closing_ = false;
bool fullscreen_ = false;
WINDOWPLACEMENT windowed_pos_; WINDOWPLACEMENT windowed_pos_;
}; };

View File

@ -344,6 +344,22 @@ struct X_SLIST_HEADER {
}; };
static_assert_size(X_SLIST_HEADER, 8); static_assert_size(X_SLIST_HEADER, 8);
// https://msdn.microsoft.com/en-us/library/windows/hardware/ff550671(v=vs.85).aspx
struct X_IO_STATUS_BLOCK {
union {
xe::be<X_STATUS> status;
xe::be<uint32_t> pointer;
};
xe::be<uint32_t> information;
};
struct X_EX_TITLE_TERMINATE_REGISTRATION {
xe::be<uint32_t> notification_routine; // 0x0
xe::be<uint32_t> priority; // 0x4
X_LIST_ENTRY list_entry; // 0x8 ??
};
static_assert_size(X_EX_TITLE_TERMINATE_REGISTRATION, 16);
#pragma pack(pop) #pragma pack(pop)
} // namespace xe } // namespace xe