Merge pull request #526 from DrChat/command_processor_rb

Command Processor RingBuffer Replacement
This commit is contained in:
Ben Vanik 2016-01-30 11:07:27 -08:00
commit 9a09a61874
4 changed files with 313 additions and 241 deletions

View File

@ -17,6 +17,26 @@ namespace xe {
RingBuffer::RingBuffer(uint8_t* buffer, size_t capacity) RingBuffer::RingBuffer(uint8_t* buffer, size_t capacity)
: buffer_(buffer), capacity_(capacity) {} : buffer_(buffer), capacity_(capacity) {}
void RingBuffer::AdvanceRead(size_t count) {
if (read_offset_ + count < capacity_) {
read_offset_ += count;
} else {
size_t left_half = capacity_ - read_offset_;
size_t right_half = count - left_half;
read_offset_ = right_half;
}
}
void RingBuffer::AdvanceWrite(size_t count) {
if (write_offset_ + count < capacity_) {
write_offset_ += count;
} else {
size_t left_half = capacity_ - write_offset_;
size_t right_half = count - left_half;
write_offset_ = right_half;
}
}
RingBuffer::ReadRange RingBuffer::BeginRead(size_t count) { RingBuffer::ReadRange RingBuffer::BeginRead(size_t count) {
count = std::min(count, capacity_); count = std::min(count, capacity_);
if (!count) { if (!count) {
@ -45,6 +65,14 @@ size_t RingBuffer::Read(uint8_t* buffer, size_t count) {
return 0; return 0;
} }
// Sanity check: Make sure we don't read over the write offset.
if (read_offset_ < write_offset_) {
assert_true(read_offset_ + count <= write_offset_);
} else if (read_offset_ + count >= capacity_) {
size_t left_half = capacity_ - read_offset_;
assert_true(count - left_half <= write_offset_);
}
if (read_offset_ + count < capacity_) { if (read_offset_ + count < capacity_) {
std::memcpy(buffer, buffer_ + read_offset_, count); std::memcpy(buffer, buffer_ + read_offset_, count);
read_offset_ += count; read_offset_ += count;
@ -65,6 +93,14 @@ size_t RingBuffer::Write(const uint8_t* buffer, size_t count) {
return 0; return 0;
} }
// Sanity check: Make sure we don't write over the read offset.
if (write_offset_ < read_offset_) {
assert_true(write_offset_ + count <= read_offset_);
} else if (write_offset_ + count >= capacity_) {
size_t left_half = capacity_ - write_offset_;
assert_true(count - left_half <= read_offset_);
}
if (write_offset_ + count < capacity_) { if (write_offset_ + count < capacity_) {
std::memcpy(buffer_ + write_offset_, buffer, count); std::memcpy(buffer_ + write_offset_, buffer, count);
write_offset_ += count; write_offset_ += count;

View File

@ -14,6 +14,9 @@
#include <string> #include <string>
#include <vector> #include <vector>
#include "xenia/base/assert.h"
#include "xenia/base/byte_order.h"
namespace xe { namespace xe {
class RingBuffer { class RingBuffer {
@ -25,6 +28,7 @@ class RingBuffer {
bool empty() const { return read_offset_ == write_offset_; } bool empty() const { return read_offset_ == write_offset_; }
size_t read_offset() const { return read_offset_; } size_t read_offset() const { return read_offset_; }
uintptr_t read_ptr() const { return uintptr_t(buffer_) + read_offset_; }
void set_read_offset(size_t offset) { read_offset_ = offset % capacity_; } void set_read_offset(size_t offset) { read_offset_ = offset % capacity_; }
size_t read_count() const { size_t read_count() const {
if (read_offset_ == write_offset_) { if (read_offset_ == write_offset_) {
@ -37,6 +41,7 @@ class RingBuffer {
} }
size_t write_offset() const { return write_offset_; } size_t write_offset() const { return write_offset_; }
uintptr_t write_ptr() const { return uintptr_t(buffer_) + write_offset_; }
void set_write_offset(size_t offset) { write_offset_ = offset % capacity_; } void set_write_offset(size_t offset) { write_offset_ = offset % capacity_; }
size_t write_count() const { size_t write_count() const {
if (read_offset_ == write_offset_) { if (read_offset_ == write_offset_) {
@ -48,6 +53,9 @@ class RingBuffer {
} }
} }
void AdvanceRead(size_t count);
void AdvanceWrite(size_t count);
struct ReadRange { struct ReadRange {
const uint8_t* first; const uint8_t* first;
size_t first_length; size_t first_length;
@ -63,12 +71,31 @@ class RingBuffer {
return Read(reinterpret_cast<uint8_t*>(buffer), count); return Read(reinterpret_cast<uint8_t*>(buffer), count);
} }
template <typename T>
T Read(bool swap = false) {
static_assert(sizeof(T) <= 8, "Immediate read only supports basic types!");
T imm;
size_t read = Read(reinterpret_cast<uint8_t*>(&imm), sizeof(T));
assert_true(read == sizeof(T));
if (swap) {
imm = xe::byte_swap(imm);
}
return imm;
}
size_t Write(const uint8_t* buffer, size_t count); size_t Write(const uint8_t* buffer, size_t count);
template <typename T> template <typename T>
size_t Write(const T* buffer, size_t count) { size_t Write(const T* buffer, size_t count) {
return Write(reinterpret_cast<const uint8_t*>(buffer), count); return Write(reinterpret_cast<const uint8_t*>(buffer), count);
} }
template <typename T>
size_t Write(T& data) {
return Write(reinterpret_cast<const uint8_t*>(&data), sizeof(T));
}
private: private:
uint8_t* buffer_ = nullptr; uint8_t* buffer_ = nullptr;
size_t capacity_ = 0; size_t capacity_ = 0;

View File

@ -15,6 +15,7 @@
#include "xenia/base/logging.h" #include "xenia/base/logging.h"
#include "xenia/base/math.h" #include "xenia/base/math.h"
#include "xenia/base/profiling.h" #include "xenia/base/profiling.h"
#include "xenia/base/ring_buffer.h"
#include "xenia/gpu/gpu_flags.h" #include "xenia/gpu/gpu_flags.h"
#include "xenia/gpu/graphics_system.h" #include "xenia/gpu/graphics_system.h"
#include "xenia/gpu/sampler_info.h" #include "xenia/gpu/sampler_info.h"
@ -152,8 +153,7 @@ void CommandProcessor::WorkerThreadMain() {
assert_true(read_ptr_index_ != write_ptr_index); assert_true(read_ptr_index_ != write_ptr_index);
// Execute. Note that we handle wraparound transparently. // Execute. Note that we handle wraparound transparently.
ExecutePrimaryBuffer(read_ptr_index_, write_ptr_index); read_ptr_index_ = ExecutePrimaryBuffer(read_ptr_index_, write_ptr_index);
read_ptr_index_ = write_ptr_index;
// TODO(benvanik): use reader->Read_update_freq_ and only issue after moving // TODO(benvanik): use reader->Read_update_freq_ and only issue after moving
// that many indices. // that many indices.
@ -355,57 +355,8 @@ void CommandProcessor::IssueSwap(uint32_t frontbuffer_ptr,
swap_request_handler_(); swap_request_handler_();
} }
class CommandProcessor::RingbufferReader { uint32_t CommandProcessor::ExecutePrimaryBuffer(uint32_t read_index,
public: uint32_t write_index) {
RingbufferReader(uint8_t* membase, uint32_t base_ptr, uint32_t ptr_mask,
uint32_t start_ptr, uint32_t end_ptr)
: membase_(membase),
base_ptr_(base_ptr),
ptr_mask_(ptr_mask),
end_ptr_(end_ptr),
ptr_(start_ptr),
offset_(0) {}
uint32_t ptr() const { return ptr_; }
uint32_t offset() const { return offset_; }
bool can_read() const { return ptr_ != end_ptr_; }
uint32_t Peek() { return xe::load_and_swap<uint32_t>(membase_ + ptr_); }
void CheckRead(uint32_t words) {
assert_true(ptr_ + words * sizeof(uint32_t) <= end_ptr_);
}
uint32_t Read() {
uint32_t value = xe::load_and_swap<uint32_t>(membase_ + ptr_);
Advance(1);
return value;
}
void Advance(uint32_t words) {
offset_ += words;
ptr_ = ptr_ + words * sizeof(uint32_t);
if (ptr_mask_) {
ptr_ = base_ptr_ +
(((ptr_ - base_ptr_) / sizeof(uint32_t)) & ptr_mask_) *
sizeof(uint32_t);
}
}
void Skip(uint32_t words) { Advance(words); }
private:
uint8_t* membase_;
uint32_t base_ptr_;
uint32_t ptr_mask_;
uint32_t end_ptr_;
uint32_t ptr_;
uint32_t offset_;
};
void CommandProcessor::ExecutePrimaryBuffer(uint32_t start_index,
uint32_t end_index) {
SCOPE_profile_cpu_f("gpu"); SCOPE_profile_cpu_f("gpu");
// If we have a pending trace stream open it now. That way we ensure we get // If we have a pending trace stream open it now. That way we ensure we get
@ -421,57 +372,70 @@ void CommandProcessor::ExecutePrimaryBuffer(uint32_t start_index,
} }
// Adjust pointer base. // Adjust pointer base.
uint32_t start_ptr = primary_buffer_ptr_ + start_index * sizeof(uint32_t); uint32_t start_ptr = primary_buffer_ptr_ + read_index * sizeof(uint32_t);
start_ptr = (primary_buffer_ptr_ & ~0x1FFFFFFF) | (start_ptr & 0x1FFFFFFF); start_ptr = (primary_buffer_ptr_ & ~0x1FFFFFFF) | (start_ptr & 0x1FFFFFFF);
uint32_t end_ptr = primary_buffer_ptr_ + end_index * sizeof(uint32_t); uint32_t end_ptr = primary_buffer_ptr_ + write_index * sizeof(uint32_t);
end_ptr = (primary_buffer_ptr_ & ~0x1FFFFFFF) | (end_ptr & 0x1FFFFFFF); end_ptr = (primary_buffer_ptr_ & ~0x1FFFFFFF) | (end_ptr & 0x1FFFFFFF);
trace_writer_.WritePrimaryBufferStart(start_ptr, end_index - start_index); trace_writer_.WritePrimaryBufferStart(start_ptr, write_index - read_index);
// Execute commands! // Execute commands!
uint32_t ptr_mask = (primary_buffer_size_ / sizeof(uint32_t)) - 1; RingBuffer reader(memory_->TranslatePhysical(primary_buffer_ptr_),
RingbufferReader reader(memory_->physical_membase(), primary_buffer_ptr_, primary_buffer_size_);
ptr_mask, start_ptr, end_ptr); reader.set_read_offset(read_index * sizeof(uint32_t));
while (reader.can_read()) { reader.set_write_offset(write_index * sizeof(uint32_t));
ExecutePacket(&reader); do {
} if (!ExecutePacket(&reader)) {
if (end_index > start_index) { // This probably should be fatal - but we're going to continue anyways.
assert_true(reader.offset() == (end_index - start_index)); XELOGE("**** PRIMARY RINGBUFFER: Failed to execute packet.");
} assert_always();
break;
}
} while (reader.read_count());
trace_writer_.WritePrimaryBufferEnd(); trace_writer_.WritePrimaryBufferEnd();
return write_index;
} }
void CommandProcessor::ExecuteIndirectBuffer(uint32_t ptr, uint32_t length) { void CommandProcessor::ExecuteIndirectBuffer(uint32_t ptr, uint32_t count) {
SCOPE_profile_cpu_f("gpu"); SCOPE_profile_cpu_f("gpu");
trace_writer_.WriteIndirectBufferStart(ptr, length * sizeof(uint32_t)); trace_writer_.WriteIndirectBufferStart(ptr, count * sizeof(uint32_t));
// Execute commands! // Execute commands!
uint32_t ptr_mask = 0; RingBuffer reader(memory_->TranslatePhysical(ptr), count * sizeof(uint32_t));
RingbufferReader reader(memory_->physical_membase(), primary_buffer_ptr_, reader.set_write_offset(count * sizeof(uint32_t));
ptr_mask, ptr, ptr + length * sizeof(uint32_t)); do {
while (reader.can_read()) { if (!ExecutePacket(&reader)) {
ExecutePacket(&reader); // Return up a level if we encounter a bad packet.
} XELOGE("**** INDIRECT RINGBUFFER: Failed to execute packet.");
assert_always();
break;
}
} while (reader.read_count());
trace_writer_.WriteIndirectBufferEnd(); trace_writer_.WriteIndirectBufferEnd();
} }
void CommandProcessor::ExecutePacket(uint32_t ptr, uint32_t count) { void CommandProcessor::ExecutePacket(uint32_t ptr, uint32_t count) {
uint32_t ptr_mask = 0; // Execute commands!
RingbufferReader reader(memory_->physical_membase(), primary_buffer_ptr_, RingBuffer reader(memory_->TranslatePhysical(ptr), count * sizeof(uint32_t));
ptr_mask, ptr, ptr + count * sizeof(uint32_t)); reader.set_write_offset(count * sizeof(uint32_t));
while (reader.can_read()) { do {
ExecutePacket(&reader); if (!ExecutePacket(&reader)) {
} XELOGE("**** ExecutePacket: Failed to execute packet.");
assert_always();
break;
}
} while (reader.read_count());
} }
bool CommandProcessor::ExecutePacket(RingbufferReader* reader) { bool CommandProcessor::ExecutePacket(RingBuffer* reader) {
const uint32_t packet = reader->Read(); const uint32_t packet = reader->Read<uint32_t>(true);
const uint32_t packet_type = packet >> 30; const uint32_t packet_type = packet >> 30;
if (packet == 0) { if (packet == 0) {
trace_writer_.WritePacketStart(reader->ptr() - 4, 1); trace_writer_.WritePacketStart(uint32_t(reader->read_ptr() - 4), 1);
trace_writer_.WritePacketEnd(); trace_writer_.WritePacketEnd();
return true; return true;
} }
@ -491,19 +455,23 @@ bool CommandProcessor::ExecutePacket(RingbufferReader* reader) {
} }
} }
bool CommandProcessor::ExecutePacketType0(RingbufferReader* reader, bool CommandProcessor::ExecutePacketType0(RingBuffer* reader, uint32_t packet) {
uint32_t packet) {
// Type-0 packet. // Type-0 packet.
// Write count registers in sequence to the registers starting at // Write count registers in sequence to the registers starting at
// (base_index << 2). // (base_index << 2).
uint32_t count = ((packet >> 16) & 0x3FFF) + 1; uint32_t count = ((packet >> 16) & 0x3FFF) + 1;
trace_writer_.WritePacketStart(reader->ptr() - 4, 1 + count); trace_writer_.WritePacketStart(uint32_t(reader->read_ptr() - 4), 1 + count);
if (reader->read_count() < count * sizeof(uint32_t)) {
XELOGE("ExecutePacketType0 overflow (read count %.8X, packet count %.8X)",
reader->read_count(), count * sizeof(uint32_t));
return false;
}
uint32_t base_index = (packet & 0x7FFF); uint32_t base_index = (packet & 0x7FFF);
uint32_t write_one_reg = (packet >> 15) & 0x1; uint32_t write_one_reg = (packet >> 15) & 0x1;
for (uint32_t m = 0; m < count; m++) { for (uint32_t m = 0; m < count; m++) {
uint32_t reg_data = reader->Read(); uint32_t reg_data = reader->Read<uint32_t>(true);
uint32_t target_index = write_one_reg ? base_index : base_index + m; uint32_t target_index = write_one_reg ? base_index : base_index + m;
WriteRegister(target_index, reg_data); WriteRegister(target_index, reg_data);
} }
@ -512,42 +480,45 @@ bool CommandProcessor::ExecutePacketType0(RingbufferReader* reader,
return true; return true;
} }
bool CommandProcessor::ExecutePacketType1(RingbufferReader* reader, bool CommandProcessor::ExecutePacketType1(RingBuffer* reader, uint32_t packet) {
uint32_t packet) {
// Type-1 packet. // Type-1 packet.
// Contains two registers of data. Type-0 should be more common. // Contains two registers of data. Type-0 should be more common.
trace_writer_.WritePacketStart(reader->ptr() - 4, 3); trace_writer_.WritePacketStart(uint32_t(reader->read_ptr() - 4), 3);
uint32_t reg_index_1 = packet & 0x7FF; uint32_t reg_index_1 = packet & 0x7FF;
uint32_t reg_index_2 = (packet >> 11) & 0x7FF; uint32_t reg_index_2 = (packet >> 11) & 0x7FF;
uint32_t reg_data_1 = reader->Read(); uint32_t reg_data_1 = reader->Read<uint32_t>(true);
uint32_t reg_data_2 = reader->Read(); uint32_t reg_data_2 = reader->Read<uint32_t>(true);
WriteRegister(reg_index_1, reg_data_1); WriteRegister(reg_index_1, reg_data_1);
WriteRegister(reg_index_2, reg_data_2); WriteRegister(reg_index_2, reg_data_2);
trace_writer_.WritePacketEnd(); trace_writer_.WritePacketEnd();
return true; return true;
} }
bool CommandProcessor::ExecutePacketType2(RingbufferReader* reader, bool CommandProcessor::ExecutePacketType2(RingBuffer* reader, uint32_t packet) {
uint32_t packet) {
// Type-2 packet. // Type-2 packet.
// No-op. Do nothing. // No-op. Do nothing.
trace_writer_.WritePacketStart(reader->ptr() - 4, 1); trace_writer_.WritePacketStart(uint32_t(reader->read_ptr() - 4), 1);
trace_writer_.WritePacketEnd(); trace_writer_.WritePacketEnd();
return true; return true;
} }
bool CommandProcessor::ExecutePacketType3(RingbufferReader* reader, bool CommandProcessor::ExecutePacketType3(RingBuffer* reader, uint32_t packet) {
uint32_t packet) {
// Type-3 packet. // Type-3 packet.
uint32_t opcode = (packet >> 8) & 0x7F; uint32_t opcode = (packet >> 8) & 0x7F;
uint32_t count = ((packet >> 16) & 0x3FFF) + 1; uint32_t count = ((packet >> 16) & 0x3FFF) + 1;
auto data_start_offset = reader->offset(); auto data_start_offset = reader->read_offset();
if (reader->read_count() < count * sizeof(uint32_t)) {
XELOGE("ExecutePacketType3 overflow (read count %.8X, packet count %.8X)",
reader->read_count(), count * sizeof(uint32_t));
return false;
}
// To handle nesting behavior when tracing we special case indirect buffers. // To handle nesting behavior when tracing we special case indirect buffers.
if (opcode == PM4_INDIRECT_BUFFER) { if (opcode == PM4_INDIRECT_BUFFER) {
trace_writer_.WritePacketStart(reader->ptr() - 4, 2); trace_writer_.WritePacketStart(uint32_t(reader->read_ptr() - 4), 2);
} else { } else {
trace_writer_.WritePacketStart(reader->ptr() - 4, 1 + count); trace_writer_.WritePacketStart(uint32_t(reader->read_ptr() - 4), 1 + count);
} }
// & 1 == predicate - when set, we do bin check to see if we should execute // & 1 == predicate - when set, we do bin check to see if we should execute
@ -556,7 +527,7 @@ bool CommandProcessor::ExecutePacketType3(RingbufferReader* reader,
if (packet & 1) { if (packet & 1) {
bool any_pass = (bin_select_ & bin_mask_) != 0; bool any_pass = (bin_select_ & bin_mask_) != 0;
if (!any_pass || opcode == PM4_XE_SWAP) { if (!any_pass || opcode == PM4_XE_SWAP) {
reader->Skip(count); reader->AdvanceRead(count * sizeof(uint32_t));
trace_writer_.WritePacketEnd(); trace_writer_.WritePacketEnd();
return true; return true;
} }
@ -589,6 +560,9 @@ bool CommandProcessor::ExecutePacketType3(RingbufferReader* reader,
case PM4_REG_TO_MEM: case PM4_REG_TO_MEM:
result = ExecutePacketType3_REG_TO_MEM(reader, packet, count); result = ExecutePacketType3_REG_TO_MEM(reader, packet, count);
break; break;
case PM4_MEM_WRITE:
result = ExecutePacketType3_MEM_WRITE(reader, packet, count);
break;
case PM4_COND_WRITE: case PM4_COND_WRITE:
result = ExecutePacketType3_COND_WRITE(reader, packet, count); result = ExecutePacketType3_COND_WRITE(reader, packet, count);
break; break;
@ -601,6 +575,10 @@ bool CommandProcessor::ExecutePacketType3(RingbufferReader* reader,
case PM4_EVENT_WRITE_EXT: case PM4_EVENT_WRITE_EXT:
result = ExecutePacketType3_EVENT_WRITE_EXT(reader, packet, count); result = ExecutePacketType3_EVENT_WRITE_EXT(reader, packet, count);
break; break;
case PM4_EVENT_WRITE_ZPD:
reader->AdvanceRead(count * sizeof(uint32_t));
result = true; // TODO
break;
case PM4_DRAW_INDX: case PM4_DRAW_INDX:
result = ExecutePacketType3_DRAW_INDX(reader, packet, count); result = ExecutePacketType3_DRAW_INDX(reader, packet, count);
break; break;
@ -628,25 +606,29 @@ bool CommandProcessor::ExecutePacketType3(RingbufferReader* reader,
case PM4_INVALIDATE_STATE: case PM4_INVALIDATE_STATE:
result = ExecutePacketType3_INVALIDATE_STATE(reader, packet, count); result = ExecutePacketType3_INVALIDATE_STATE(reader, packet, count);
break; break;
case PM4_VIZ_QUERY:
reader->AdvanceRead(count * sizeof(uint32_t));
result = true; // TODO
break;
case PM4_SET_BIN_MASK_LO: { case PM4_SET_BIN_MASK_LO: {
uint32_t value = reader->Read(); uint32_t value = reader->Read<uint32_t>(true);
bin_mask_ = (bin_mask_ & 0xFFFFFFFF00000000ull) | value; bin_mask_ = (bin_mask_ & 0xFFFFFFFF00000000ull) | value;
result = true; result = true;
} break; } break;
case PM4_SET_BIN_MASK_HI: { case PM4_SET_BIN_MASK_HI: {
uint32_t value = reader->Read(); uint32_t value = reader->Read<uint32_t>(true);
bin_mask_ = bin_mask_ =
(bin_mask_ & 0xFFFFFFFFull) | (static_cast<uint64_t>(value) << 32); (bin_mask_ & 0xFFFFFFFFull) | (static_cast<uint64_t>(value) << 32);
result = true; result = true;
} break; } break;
case PM4_SET_BIN_SELECT_LO: { case PM4_SET_BIN_SELECT_LO: {
uint32_t value = reader->Read(); uint32_t value = reader->Read<uint32_t>(true);
bin_select_ = (bin_select_ & 0xFFFFFFFF00000000ull) | value; bin_select_ = (bin_select_ & 0xFFFFFFFF00000000ull) | value;
result = true; result = true;
} break; } break;
case PM4_SET_BIN_SELECT_HI: { case PM4_SET_BIN_SELECT_HI: {
uint32_t value = reader->Read(); uint32_t value = reader->Read<uint32_t>(true);
bin_select_ = bin_select_ =
(bin_select_ & 0xFFFFFFFFull) | (static_cast<uint64_t>(value) << 32); (bin_select_ & 0xFFFFFFFFull) | (static_cast<uint64_t>(value) << 32);
result = true; result = true;
@ -655,50 +637,47 @@ bool CommandProcessor::ExecutePacketType3(RingbufferReader* reader,
// Ignored packets - useful if breaking on the default handler below. // Ignored packets - useful if breaking on the default handler below.
case 0x50: // 0xC0015000 usually 2 words, 0xFFFFFFFF / 0x00000000 case 0x50: // 0xC0015000 usually 2 words, 0xFFFFFFFF / 0x00000000
case 0x51: // 0xC0015100 usually 2 words, 0xFFFFFFFF / 0xFFFFFFFF case 0x51: // 0xC0015100 usually 2 words, 0xFFFFFFFF / 0xFFFFFFFF
reader->Skip(count); reader->AdvanceRead(count * sizeof(uint32_t));
break; result = true;
case 0x00:
// Not a valid opcode. Something's up.
XELOGGPU("Invalid GPU Opcode Detected 0x%x", 0x00);
assert_always();
break; break;
default: default:
XELOGGPU("Not Implemented GPU OPCODE: 0x%X\t\tCOUNT: %d\n", opcode, XELOGGPU("Unimplemented GPU OPCODE: 0x%.2X\t\tCOUNT: %d\n", opcode,
count); count);
reader->Skip(count); reader->AdvanceRead(count * sizeof(uint32_t));
break; break;
} }
trace_writer_.WritePacketEnd(); trace_writer_.WritePacketEnd();
assert_true(reader->offset() == data_start_offset + count); assert_true(reader->read_offset() ==
(data_start_offset + (count * sizeof(uint32_t))) %
reader->capacity());
return result; return result;
} }
bool CommandProcessor::ExecutePacketType3_ME_INIT(RingbufferReader* reader, bool CommandProcessor::ExecutePacketType3_ME_INIT(RingBuffer* reader,
uint32_t packet, uint32_t packet,
uint32_t count) { uint32_t count) {
// initialize CP's micro-engine // initialize CP's micro-engine
reader->Advance(count); reader->AdvanceRead(count * sizeof(uint32_t));
return true; return true;
} }
bool CommandProcessor::ExecutePacketType3_NOP(RingbufferReader* reader, bool CommandProcessor::ExecutePacketType3_NOP(RingBuffer* reader,
uint32_t packet, uint32_t count) { uint32_t packet, uint32_t count) {
// skip N 32-bit words to get to the next packet // skip N 32-bit words to get to the next packet
// No-op, ignore some data. // No-op, ignore some data.
reader->Advance(count); reader->AdvanceRead(count * sizeof(uint32_t));
return true; return true;
} }
bool CommandProcessor::ExecutePacketType3_INTERRUPT(RingbufferReader* reader, bool CommandProcessor::ExecutePacketType3_INTERRUPT(RingBuffer* reader,
uint32_t packet, uint32_t packet,
uint32_t count) { uint32_t count) {
SCOPE_profile_cpu_f("gpu"); SCOPE_profile_cpu_f("gpu");
// generate interrupt from the command stream // generate interrupt from the command stream
uint32_t cpu_mask = reader->Read(); uint32_t cpu_mask = reader->Read<uint32_t>(true);
for (int n = 0; n < 6; n++) { for (int n = 0; n < 6; n++) {
if (cpu_mask & (1 << n)) { if (cpu_mask & (1 << n)) {
graphics_system_->DispatchInterruptCallback(1, n); graphics_system_->DispatchInterruptCallback(1, n);
@ -707,7 +686,7 @@ bool CommandProcessor::ExecutePacketType3_INTERRUPT(RingbufferReader* reader,
return true; return true;
} }
bool CommandProcessor::ExecutePacketType3_XE_SWAP(RingbufferReader* reader, bool CommandProcessor::ExecutePacketType3_XE_SWAP(RingBuffer* reader,
uint32_t packet, uint32_t packet,
uint32_t count) { uint32_t count) {
SCOPE_profile_cpu_f("gpu"); SCOPE_profile_cpu_f("gpu");
@ -718,14 +697,14 @@ bool CommandProcessor::ExecutePacketType3_XE_SWAP(RingbufferReader* reader,
// VdSwap will post this to tell us we need to swap the screen/fire an // VdSwap will post this to tell us we need to swap the screen/fire an
// interrupt. // interrupt.
// 63 words here, but only the first has any data. // 63 words here, but only the first has any data.
uint32_t magic = reader->Read(); uint32_t magic = reader->Read<uint32_t>(true);
assert_true(magic == 'SWAP'); assert_true(magic == 'SWAP');
// TODO(benvanik): only swap frontbuffer ptr. // TODO(benvanik): only swap frontbuffer ptr.
uint32_t frontbuffer_ptr = reader->Read(); uint32_t frontbuffer_ptr = reader->Read<uint32_t>(true);
uint32_t frontbuffer_width = reader->Read(); uint32_t frontbuffer_width = reader->Read<uint32_t>(true);
uint32_t frontbuffer_height = reader->Read(); uint32_t frontbuffer_height = reader->Read<uint32_t>(true);
reader->Advance(count - 4); reader->AdvanceRead((count - 4) * sizeof(uint32_t));
if (swap_mode_ == SwapMode::kNormal) { if (swap_mode_ == SwapMode::kNormal) {
IssueSwap(frontbuffer_ptr, frontbuffer_width, frontbuffer_height); IssueSwap(frontbuffer_ptr, frontbuffer_width, frontbuffer_height);
@ -750,26 +729,27 @@ bool CommandProcessor::ExecutePacketType3_XE_SWAP(RingbufferReader* reader,
return true; return true;
} }
bool CommandProcessor::ExecutePacketType3_INDIRECT_BUFFER( bool CommandProcessor::ExecutePacketType3_INDIRECT_BUFFER(RingBuffer* reader,
RingbufferReader* reader, uint32_t packet, uint32_t count) { uint32_t packet,
uint32_t count) {
// indirect buffer dispatch // indirect buffer dispatch
uint32_t list_ptr = CpuToGpu(reader->Read()); uint32_t list_ptr = CpuToGpu(reader->Read<uint32_t>(true));
uint32_t list_length = reader->Read() & 0xFFFFF; uint32_t list_length = reader->Read<uint32_t>(true) & 0xFFFFF;
ExecuteIndirectBuffer(GpuToCpu(list_ptr), list_length); ExecuteIndirectBuffer(GpuToCpu(list_ptr), list_length);
return true; return true;
} }
bool CommandProcessor::ExecutePacketType3_WAIT_REG_MEM(RingbufferReader* reader, bool CommandProcessor::ExecutePacketType3_WAIT_REG_MEM(RingBuffer* reader,
uint32_t packet, uint32_t packet,
uint32_t count) { uint32_t count) {
SCOPE_profile_cpu_f("gpu"); SCOPE_profile_cpu_f("gpu");
// wait until a register or memory location is a specific value // wait until a register or memory location is a specific value
uint32_t wait_info = reader->Read(); uint32_t wait_info = reader->Read<uint32_t>(true);
uint32_t poll_reg_addr = reader->Read(); uint32_t poll_reg_addr = reader->Read<uint32_t>(true);
uint32_t ref = reader->Read(); uint32_t ref = reader->Read<uint32_t>(true);
uint32_t mask = reader->Read(); uint32_t mask = reader->Read<uint32_t>(true);
uint32_t wait = reader->Read(); uint32_t wait = reader->Read<uint32_t>(true);
bool matched = false; bool matched = false;
do { do {
uint32_t value; uint32_t value;
@ -835,15 +815,14 @@ bool CommandProcessor::ExecutePacketType3_WAIT_REG_MEM(RingbufferReader* reader,
return true; return true;
} }
bool CommandProcessor::ExecutePacketType3_REG_RMW(RingbufferReader* reader, bool CommandProcessor::ExecutePacketType3_REG_RMW(RingBuffer* reader,
uint32_t packet, uint32_t packet,
uint32_t count) { uint32_t count) {
// register read/modify/write // register read/modify/write
// ? (used during shader upload and edram setup) // ? (used during shader upload and edram setup)
uint32_t rmw_info = reader->Read(); uint32_t rmw_info = reader->Read<uint32_t>(true);
uint32_t and_mask = reader->Read(); uint32_t and_mask = reader->Read<uint32_t>(true);
uint32_t or_mask = reader->Read(); uint32_t or_mask = reader->Read<uint32_t>(true);
uint32_t value = register_file_->values[rmw_info & 0x1FFF].u32; uint32_t value = register_file_->values[rmw_info & 0x1FFF].u32;
if ((rmw_info >> 30) & 0x1) { if ((rmw_info >> 30) & 0x1) {
// | reg // | reg
@ -863,14 +842,14 @@ bool CommandProcessor::ExecutePacketType3_REG_RMW(RingbufferReader* reader,
return true; return true;
} }
bool CommandProcessor::ExecutePacketType3_REG_TO_MEM(RingbufferReader* reader, bool CommandProcessor::ExecutePacketType3_REG_TO_MEM(RingBuffer* reader,
uint32_t packet, uint32_t packet,
uint32_t count) { uint32_t count) {
// Copy Register to Memory (?) // Copy Register to Memory (?)
// Count is 2, assuming a Register Addr and a Memory Addr. // Count is 2, assuming a Register Addr and a Memory Addr.
uint32_t reg_addr = reader->Read(); uint32_t reg_addr = reader->Read<uint32_t>(true);
uint32_t mem_addr = reader->Read(); uint32_t mem_addr = reader->Read<uint32_t>(true);
uint32_t reg_val; uint32_t reg_val;
@ -886,16 +865,34 @@ bool CommandProcessor::ExecutePacketType3_REG_TO_MEM(RingbufferReader* reader,
return true; return true;
} }
bool CommandProcessor::ExecutePacketType3_COND_WRITE(RingbufferReader* reader, bool CommandProcessor::ExecutePacketType3_MEM_WRITE(RingBuffer* reader,
uint32_t packet,
uint32_t count) {
uint32_t write_addr = reader->Read<uint32_t>(true);
for (uint32_t i = 0; i < count - 1; i++) {
uint32_t write_data = reader->Read<uint32_t>(true);
auto endianness = static_cast<Endian>(write_addr & 0x3);
auto addr = write_addr & ~0x3;
write_data = GpuSwap(write_data, endianness);
xe::store(memory_->TranslatePhysical(addr), write_data);
trace_writer_.WriteMemoryWrite(CpuToGpu(addr), 4);
write_addr += 4;
}
return true;
}
bool CommandProcessor::ExecutePacketType3_COND_WRITE(RingBuffer* reader,
uint32_t packet, uint32_t packet,
uint32_t count) { uint32_t count) {
// conditional write to memory or register // conditional write to memory or register
uint32_t wait_info = reader->Read(); uint32_t wait_info = reader->Read<uint32_t>(true);
uint32_t poll_reg_addr = reader->Read(); uint32_t poll_reg_addr = reader->Read<uint32_t>(true);
uint32_t ref = reader->Read(); uint32_t ref = reader->Read<uint32_t>(true);
uint32_t mask = reader->Read(); uint32_t mask = reader->Read<uint32_t>(true);
uint32_t write_reg_addr = reader->Read(); uint32_t write_reg_addr = reader->Read<uint32_t>(true);
uint32_t write_data = reader->Read(); uint32_t write_data = reader->Read<uint32_t>(true);
uint32_t value; uint32_t value;
if (wait_info & 0x10) { if (wait_info & 0x10) {
// Memory. // Memory.
@ -953,11 +950,11 @@ bool CommandProcessor::ExecutePacketType3_COND_WRITE(RingbufferReader* reader,
return true; return true;
} }
bool CommandProcessor::ExecutePacketType3_EVENT_WRITE(RingbufferReader* reader, bool CommandProcessor::ExecutePacketType3_EVENT_WRITE(RingBuffer* reader,
uint32_t packet, uint32_t packet,
uint32_t count) { uint32_t count) {
// generate an event that creates a write to memory when completed // generate an event that creates a write to memory when completed
uint32_t initiator = reader->Read(); uint32_t initiator = reader->Read<uint32_t>(true);
// Writeback initiator. // Writeback initiator.
WriteRegister(XE_GPU_REG_VGT_EVENT_INITIATOR, initiator & 0x3F); WriteRegister(XE_GPU_REG_VGT_EVENT_INITIATOR, initiator & 0x3F);
if (count == 1) { if (count == 1) {
@ -965,17 +962,18 @@ bool CommandProcessor::ExecutePacketType3_EVENT_WRITE(RingbufferReader* reader,
} else { } else {
// Write to an address. // Write to an address.
assert_always(); assert_always();
reader->Advance(count - 1); reader->AdvanceRead((count - 1) * sizeof(uint32_t));
} }
return true; return true;
} }
bool CommandProcessor::ExecutePacketType3_EVENT_WRITE_SHD( bool CommandProcessor::ExecutePacketType3_EVENT_WRITE_SHD(RingBuffer* reader,
RingbufferReader* reader, uint32_t packet, uint32_t count) { uint32_t packet,
uint32_t count) {
// generate a VS|PS_done event // generate a VS|PS_done event
uint32_t initiator = reader->Read(); uint32_t initiator = reader->Read<uint32_t>(true);
uint32_t address = reader->Read(); uint32_t address = reader->Read<uint32_t>(true);
uint32_t value = reader->Read(); uint32_t value = reader->Read<uint32_t>(true);
// Writeback initiator. // Writeback initiator.
WriteRegister(XE_GPU_REG_VGT_EVENT_INITIATOR, initiator & 0x3F); WriteRegister(XE_GPU_REG_VGT_EVENT_INITIATOR, initiator & 0x3F);
uint32_t data_value; uint32_t data_value;
@ -994,11 +992,12 @@ bool CommandProcessor::ExecutePacketType3_EVENT_WRITE_SHD(
return true; return true;
} }
bool CommandProcessor::ExecutePacketType3_EVENT_WRITE_EXT( bool CommandProcessor::ExecutePacketType3_EVENT_WRITE_EXT(RingBuffer* reader,
RingbufferReader* reader, uint32_t packet, uint32_t count) { uint32_t packet,
uint32_t count) {
// generate a screen extent event // generate a screen extent event
uint32_t initiator = reader->Read(); uint32_t initiator = reader->Read<uint32_t>(true);
uint32_t address = reader->Read(); uint32_t address = reader->Read<uint32_t>(true);
// Writeback initiator. // Writeback initiator.
WriteRegister(XE_GPU_REG_VGT_EVENT_INITIATOR, initiator & 0x3F); WriteRegister(XE_GPU_REG_VGT_EVENT_INITIATOR, initiator & 0x3F);
auto endianness = static_cast<Endian>(address & 0x3); auto endianness = static_cast<Endian>(address & 0x3);
@ -1020,13 +1019,13 @@ bool CommandProcessor::ExecutePacketType3_EVENT_WRITE_EXT(
return true; return true;
} }
bool CommandProcessor::ExecutePacketType3_DRAW_INDX(RingbufferReader* reader, bool CommandProcessor::ExecutePacketType3_DRAW_INDX(RingBuffer* reader,
uint32_t packet, uint32_t packet,
uint32_t count) { uint32_t count) {
// initiate fetch of index buffer and draw // initiate fetch of index buffer and draw
// dword0 = viz query info // dword0 = viz query info
/*uint32_t dword0 =*/reader->Read(); /*uint32_t dword0 =*/reader->Read<uint32_t>(true);
uint32_t dword1 = reader->Read(); uint32_t dword1 = reader->Read<uint32_t>(true);
uint32_t index_count = dword1 >> 16; uint32_t index_count = dword1 >> 16;
auto prim_type = static_cast<PrimitiveType>(dword1 & 0x3F); auto prim_type = static_cast<PrimitiveType>(dword1 & 0x3F);
bool is_indexed = false; bool is_indexed = false;
@ -1035,8 +1034,8 @@ bool CommandProcessor::ExecutePacketType3_DRAW_INDX(RingbufferReader* reader,
if (src_sel == 0x0) { if (src_sel == 0x0) {
// Indexed draw. // Indexed draw.
is_indexed = true; is_indexed = true;
index_buffer_info.guest_base = reader->Read(); index_buffer_info.guest_base = reader->Read<uint32_t>(true);
uint32_t index_size = reader->Read(); uint32_t index_size = reader->Read<uint32_t>(true);
index_buffer_info.endianness = static_cast<Endian>(index_size >> 30); index_buffer_info.endianness = static_cast<Endian>(index_size >> 30);
index_size &= 0x00FFFFFF; index_size &= 0x00FFFFFF;
bool index_32bit = (dword1 >> 11) & 0x1; bool index_32bit = (dword1 >> 11) & 0x1;
@ -1057,11 +1056,11 @@ bool CommandProcessor::ExecutePacketType3_DRAW_INDX(RingbufferReader* reader,
is_indexed ? &index_buffer_info : nullptr); is_indexed ? &index_buffer_info : nullptr);
} }
bool CommandProcessor::ExecutePacketType3_DRAW_INDX_2(RingbufferReader* reader, bool CommandProcessor::ExecutePacketType3_DRAW_INDX_2(RingBuffer* reader,
uint32_t packet, uint32_t packet,
uint32_t count) { uint32_t count) {
// draw using supplied indices in packet // draw using supplied indices in packet
uint32_t dword0 = reader->Read(); uint32_t dword0 = reader->Read<uint32_t>(true);
uint32_t index_count = dword0 >> 16; uint32_t index_count = dword0 >> 16;
auto prim_type = static_cast<PrimitiveType>(dword0 & 0x3F); auto prim_type = static_cast<PrimitiveType>(dword0 & 0x3F);
uint32_t src_sel = (dword0 >> 6) & 0x3; uint32_t src_sel = (dword0 >> 6) & 0x3;
@ -1070,17 +1069,17 @@ bool CommandProcessor::ExecutePacketType3_DRAW_INDX_2(RingbufferReader* reader,
// bool index_32bit = (dword0 >> 11) & 0x1; // bool index_32bit = (dword0 >> 11) & 0x1;
// uint32_t indices_size = index_count * (index_32bit ? 4 : 2); // uint32_t indices_size = index_count * (index_32bit ? 4 : 2);
// uint32_t index_ptr = reader->ptr(); // uint32_t index_ptr = reader->ptr();
reader->Advance(count - 1); reader->AdvanceRead((count - 1) * sizeof(uint32_t));
return IssueDraw(prim_type, index_count, nullptr); return IssueDraw(prim_type, index_count, nullptr);
} }
bool CommandProcessor::ExecutePacketType3_SET_CONSTANT(RingbufferReader* reader, bool CommandProcessor::ExecutePacketType3_SET_CONSTANT(RingBuffer* reader,
uint32_t packet, uint32_t packet,
uint32_t count) { uint32_t count) {
// load constant into chip and to memory // load constant into chip and to memory
// PM4_REG(reg) ((0x4 << 16) | (GSL_HAL_SUBBLOCK_OFFSET(reg))) // PM4_REG(reg) ((0x4 << 16) | (GSL_HAL_SUBBLOCK_OFFSET(reg)))
// reg - 0x2000 // reg - 0x2000
uint32_t offset_type = reader->Read(); uint32_t offset_type = reader->Read<uint32_t>(true);
uint32_t index = offset_type & 0x7FF; uint32_t index = offset_type & 0x7FF;
uint32_t type = (offset_type >> 16) & 0xFF; uint32_t type = (offset_type >> 16) & 0xFF;
switch (type) { switch (type) {
@ -1101,35 +1100,37 @@ bool CommandProcessor::ExecutePacketType3_SET_CONSTANT(RingbufferReader* reader,
break; break;
default: default:
assert_always(); assert_always();
reader->Skip(count - 1); reader->AdvanceRead((count - 1) * sizeof(uint32_t));
return true; return true;
} }
for (uint32_t n = 0; n < count - 1; n++, index++) { for (uint32_t n = 0; n < count - 1; n++, index++) {
uint32_t data = reader->Read(); uint32_t data = reader->Read<uint32_t>(true);
WriteRegister(index, data); WriteRegister(index, data);
} }
return true; return true;
} }
bool CommandProcessor::ExecutePacketType3_SET_CONSTANT2( bool CommandProcessor::ExecutePacketType3_SET_CONSTANT2(RingBuffer* reader,
RingbufferReader* reader, uint32_t packet, uint32_t count) { uint32_t packet,
uint32_t offset_type = reader->Read(); uint32_t count) {
uint32_t offset_type = reader->Read<uint32_t>(true);
uint32_t index = offset_type & 0xFFFF; uint32_t index = offset_type & 0xFFFF;
for (uint32_t n = 0; n < count - 1; n++, index++) { for (uint32_t n = 0; n < count - 1; n++, index++) {
uint32_t data = reader->Read(); uint32_t data = reader->Read<uint32_t>(true);
WriteRegister(index, data); WriteRegister(index, data);
} }
return true; return true;
} }
bool CommandProcessor::ExecutePacketType3_LOAD_ALU_CONSTANT( bool CommandProcessor::ExecutePacketType3_LOAD_ALU_CONSTANT(RingBuffer* reader,
RingbufferReader* reader, uint32_t packet, uint32_t count) { uint32_t packet,
uint32_t count) {
// load constants from memory // load constants from memory
uint32_t address = reader->Read(); uint32_t address = reader->Read<uint32_t>(true);
address &= 0x3FFFFFFF; address &= 0x3FFFFFFF;
uint32_t offset_type = reader->Read(); uint32_t offset_type = reader->Read<uint32_t>(true);
uint32_t index = offset_type & 0x7FF; uint32_t index = offset_type & 0x7FF;
uint32_t size_dwords = reader->Read(); uint32_t size_dwords = reader->Read<uint32_t>(true);
size_dwords &= 0xFFF; size_dwords &= 0xFFF;
uint32_t type = (offset_type >> 16) & 0xFF; uint32_t type = (offset_type >> 16) & 0xFF;
switch (type) { switch (type) {
@ -1162,24 +1163,26 @@ bool CommandProcessor::ExecutePacketType3_LOAD_ALU_CONSTANT(
} }
bool CommandProcessor::ExecutePacketType3_SET_SHADER_CONSTANTS( bool CommandProcessor::ExecutePacketType3_SET_SHADER_CONSTANTS(
RingbufferReader* reader, uint32_t packet, uint32_t count) { RingBuffer* reader, uint32_t packet, uint32_t count) {
uint32_t offset_type = reader->Read(); uint32_t offset_type = reader->Read<uint32_t>(true);
uint32_t index = offset_type & 0xFFFF; uint32_t index = offset_type & 0xFFFF;
for (uint32_t n = 0; n < count - 1; n++, index++) { for (uint32_t n = 0; n < count - 1; n++, index++) {
uint32_t data = reader->Read(); uint32_t data = reader->Read<uint32_t>(true);
WriteRegister(index, data); WriteRegister(index, data);
} }
return true; return true;
} }
bool CommandProcessor::ExecutePacketType3_IM_LOAD(RingbufferReader* reader, bool CommandProcessor::ExecutePacketType3_IM_LOAD(RingBuffer* reader,
uint32_t packet, uint32_t packet,
uint32_t count) { uint32_t count) {
SCOPE_profile_cpu_f("gpu");
// load sequencer instruction memory (pointer-based) // load sequencer instruction memory (pointer-based)
uint32_t addr_type = reader->Read(); uint32_t addr_type = reader->Read<uint32_t>(true);
auto shader_type = static_cast<ShaderType>(addr_type & 0x3); auto shader_type = static_cast<ShaderType>(addr_type & 0x3);
uint32_t addr = addr_type & ~0x3; uint32_t addr = addr_type & ~0x3;
uint32_t start_size = reader->Read(); uint32_t start_size = reader->Read<uint32_t>(true);
uint32_t start = start_size >> 16; uint32_t start = start_size >> 16;
uint32_t size_dwords = start_size & 0xFFFF; // dwords uint32_t size_dwords = start_size & 0xFFFF; // dwords
assert_true(start == 0); assert_true(start == 0);
@ -1201,20 +1204,24 @@ bool CommandProcessor::ExecutePacketType3_IM_LOAD(RingbufferReader* reader,
return true; return true;
} }
bool CommandProcessor::ExecutePacketType3_IM_LOAD_IMMEDIATE( bool CommandProcessor::ExecutePacketType3_IM_LOAD_IMMEDIATE(RingBuffer* reader,
RingbufferReader* reader, uint32_t packet, uint32_t count) { uint32_t packet,
uint32_t count) {
SCOPE_profile_cpu_f("gpu");
// load sequencer instruction memory (code embedded in packet) // load sequencer instruction memory (code embedded in packet)
uint32_t dword0 = reader->Read(); uint32_t dword0 = reader->Read<uint32_t>(true);
uint32_t dword1 = reader->Read(); uint32_t dword1 = reader->Read<uint32_t>(true);
auto shader_type = static_cast<ShaderType>(dword0); auto shader_type = static_cast<ShaderType>(dword0);
uint32_t start_size = dword1; uint32_t start_size = dword1;
uint32_t start = start_size >> 16; uint32_t start = start_size >> 16;
uint32_t size_dwords = start_size & 0xFFFF; // dwords uint32_t size_dwords = start_size & 0xFFFF; // dwords
assert_true(start == 0); assert_true(start == 0);
reader->CheckRead(size_dwords); assert_true(reader->read_count() >= size_dwords * 4);
auto shader = LoadShader(shader_type, reader->ptr(), assert_true(count - 2 >= size_dwords);
memory_->TranslatePhysical<uint32_t*>(reader->ptr()), auto shader =
size_dwords); LoadShader(shader_type, uint32_t(reader->read_ptr()),
reinterpret_cast<uint32_t*>(reader->read_ptr()), size_dwords);
switch (shader_type) { switch (shader_type) {
case ShaderType::kVertex: case ShaderType::kVertex:
active_vertex_shader_ = shader; active_vertex_shader_ = shader;
@ -1226,14 +1233,15 @@ bool CommandProcessor::ExecutePacketType3_IM_LOAD_IMMEDIATE(
assert_unhandled_case(shader_type); assert_unhandled_case(shader_type);
return false; return false;
} }
reader->Advance(size_dwords); reader->AdvanceRead(size_dwords * sizeof(uint32_t));
return true; return true;
} }
bool CommandProcessor::ExecutePacketType3_INVALIDATE_STATE( bool CommandProcessor::ExecutePacketType3_INVALIDATE_STATE(RingBuffer* reader,
RingbufferReader* reader, uint32_t packet, uint32_t count) { uint32_t packet,
uint32_t count) {
// selective invalidation of state pointers // selective invalidation of state pointers
/*uint32_t mask =*/reader->Read(); /*uint32_t mask =*/reader->Read<uint32_t>(true);
// driver_->InvalidateState(mask); // driver_->InvalidateState(mask);
return true; return true;
} }

View File

@ -19,6 +19,7 @@
#include <string> #include <string>
#include <vector> #include <vector>
#include "xenia/base/ring_buffer.h"
#include "xenia/base/threading.h" #include "xenia/base/threading.h"
#include "xenia/gpu/register_file.h" #include "xenia/gpu/register_file.h"
#include "xenia/gpu/trace_writer.h" #include "xenia/gpu/trace_writer.h"
@ -102,8 +103,6 @@ class CommandProcessor {
bool Restore(ByteStream* stream); bool Restore(ByteStream* stream);
protected: protected:
class RingbufferReader;
struct IndexBufferInfo { struct IndexBufferInfo {
IndexFormat format = IndexFormat::kInt16; IndexFormat format = IndexFormat::kInt16;
Endian endianness = Endian::kUnspecified; Endian endianness = Endian::kUnspecified;
@ -125,56 +124,58 @@ class CommandProcessor {
virtual void PerformSwap(uint32_t frontbuffer_ptr, uint32_t frontbuffer_width, virtual void PerformSwap(uint32_t frontbuffer_ptr, uint32_t frontbuffer_width,
uint32_t frontbuffer_height) = 0; uint32_t frontbuffer_height) = 0;
void ExecutePrimaryBuffer(uint32_t start_index, uint32_t end_index); uint32_t ExecutePrimaryBuffer(uint32_t start_index, uint32_t end_index);
void ExecuteIndirectBuffer(uint32_t ptr, uint32_t length); void ExecuteIndirectBuffer(uint32_t ptr, uint32_t length);
bool ExecutePacket(RingbufferReader* reader); bool ExecutePacket(RingBuffer* reader);
bool ExecutePacketType0(RingbufferReader* reader, uint32_t packet); bool ExecutePacketType0(RingBuffer* reader, uint32_t packet);
bool ExecutePacketType1(RingbufferReader* reader, uint32_t packet); bool ExecutePacketType1(RingBuffer* reader, uint32_t packet);
bool ExecutePacketType2(RingbufferReader* reader, uint32_t packet); bool ExecutePacketType2(RingBuffer* reader, uint32_t packet);
bool ExecutePacketType3(RingbufferReader* reader, uint32_t packet); bool ExecutePacketType3(RingBuffer* reader, uint32_t packet);
bool ExecutePacketType3_ME_INIT(RingbufferReader* reader, uint32_t packet, bool ExecutePacketType3_ME_INIT(RingBuffer* reader, uint32_t packet,
uint32_t count); uint32_t count);
bool ExecutePacketType3_NOP(RingbufferReader* reader, uint32_t packet, bool ExecutePacketType3_NOP(RingBuffer* reader, uint32_t packet,
uint32_t count); uint32_t count);
bool ExecutePacketType3_INTERRUPT(RingbufferReader* reader, uint32_t packet, bool ExecutePacketType3_INTERRUPT(RingBuffer* reader, uint32_t packet,
uint32_t count); uint32_t count);
bool ExecutePacketType3_XE_SWAP(RingbufferReader* reader, uint32_t packet, bool ExecutePacketType3_XE_SWAP(RingBuffer* reader, uint32_t packet,
uint32_t count); uint32_t count);
bool ExecutePacketType3_INDIRECT_BUFFER(RingbufferReader* reader, bool ExecutePacketType3_INDIRECT_BUFFER(RingBuffer* reader, uint32_t packet,
uint32_t packet, uint32_t count); uint32_t count);
bool ExecutePacketType3_WAIT_REG_MEM(RingbufferReader* reader, bool ExecutePacketType3_WAIT_REG_MEM(RingBuffer* reader, uint32_t packet,
uint32_t packet, uint32_t count); uint32_t count);
bool ExecutePacketType3_REG_RMW(RingbufferReader* reader, uint32_t packet, bool ExecutePacketType3_REG_RMW(RingBuffer* reader, uint32_t packet,
uint32_t count); uint32_t count);
bool ExecutePacketType3_REG_TO_MEM(RingbufferReader* reader, uint32_t packet, bool ExecutePacketType3_REG_TO_MEM(RingBuffer* reader, uint32_t packet,
uint32_t count); uint32_t count);
bool ExecutePacketType3_COND_WRITE(RingbufferReader* reader, uint32_t packet, bool ExecutePacketType3_MEM_WRITE(RingBuffer* reader, uint32_t packet,
uint32_t count);
bool ExecutePacketType3_EVENT_WRITE(RingbufferReader* reader, uint32_t packet,
uint32_t count);
bool ExecutePacketType3_EVENT_WRITE_SHD(RingbufferReader* reader,
uint32_t packet, uint32_t count);
bool ExecutePacketType3_EVENT_WRITE_EXT(RingbufferReader* reader,
uint32_t packet, uint32_t count);
bool ExecutePacketType3_DRAW_INDX(RingbufferReader* reader, uint32_t packet,
uint32_t count); uint32_t count);
bool ExecutePacketType3_DRAW_INDX_2(RingbufferReader* reader, uint32_t packet, bool ExecutePacketType3_COND_WRITE(RingBuffer* reader, uint32_t packet,
uint32_t count);
bool ExecutePacketType3_EVENT_WRITE(RingBuffer* reader, uint32_t packet,
uint32_t count); uint32_t count);
bool ExecutePacketType3_SET_CONSTANT(RingbufferReader* reader, bool ExecutePacketType3_EVENT_WRITE_SHD(RingBuffer* reader, uint32_t packet,
uint32_t packet, uint32_t count); uint32_t count);
bool ExecutePacketType3_SET_CONSTANT2(RingbufferReader* reader, bool ExecutePacketType3_EVENT_WRITE_EXT(RingBuffer* reader, uint32_t packet,
uint32_t packet, uint32_t count); uint32_t count);
bool ExecutePacketType3_LOAD_ALU_CONSTANT(RingbufferReader* reader, bool ExecutePacketType3_DRAW_INDX(RingBuffer* reader, uint32_t packet,
uint32_t packet, uint32_t count); uint32_t count);
bool ExecutePacketType3_SET_SHADER_CONSTANTS(RingbufferReader* reader, bool ExecutePacketType3_DRAW_INDX_2(RingBuffer* reader, uint32_t packet,
uint32_t count);
bool ExecutePacketType3_SET_CONSTANT(RingBuffer* reader, uint32_t packet,
uint32_t count);
bool ExecutePacketType3_SET_CONSTANT2(RingBuffer* reader, uint32_t packet,
uint32_t count);
bool ExecutePacketType3_LOAD_ALU_CONSTANT(RingBuffer* reader, uint32_t packet,
uint32_t count);
bool ExecutePacketType3_SET_SHADER_CONSTANTS(RingBuffer* reader,
uint32_t packet, uint32_t count); uint32_t packet, uint32_t count);
bool ExecutePacketType3_IM_LOAD(RingbufferReader* reader, uint32_t packet, bool ExecutePacketType3_IM_LOAD(RingBuffer* reader, uint32_t packet,
uint32_t count); uint32_t count);
bool ExecutePacketType3_IM_LOAD_IMMEDIATE(RingbufferReader* reader, bool ExecutePacketType3_IM_LOAD_IMMEDIATE(RingBuffer* reader,
uint32_t packet, uint32_t count); uint32_t packet, uint32_t count);
bool ExecutePacketType3_INVALIDATE_STATE(RingbufferReader* reader, bool ExecutePacketType3_INVALIDATE_STATE(RingBuffer* reader, uint32_t packet,
uint32_t packet, uint32_t count); uint32_t count);
virtual Shader* LoadShader(ShaderType shader_type, uint32_t guest_address, virtual Shader* LoadShader(ShaderType shader_type, uint32_t guest_address,
const uint32_t* host_address, const uint32_t* host_address,