[D3D12] Experimental write watch implementation for shared memory

This commit is contained in:
Triang3l 2018-09-24 23:18:16 +03:00
parent 005e590c92
commit 6e36101b42
7 changed files with 424 additions and 187 deletions

View File

@ -9,6 +9,9 @@
#include "xenia/cpu/mmio_handler.h" #include "xenia/cpu/mmio_handler.h"
#include <algorithm>
#include <cstring>
#include "xenia/base/assert.h" #include "xenia/base/assert.h"
#include "xenia/base/byte_order.h" #include "xenia/base/byte_order.h"
#include "xenia/base/exception_handler.h" #include "xenia/base/exception_handler.h"
@ -40,6 +43,20 @@ std::unique_ptr<MMIOHandler> MMIOHandler::Install(uint8_t* virtual_membase,
return handler; return handler;
} }
MMIOHandler::MMIOHandler(uint8_t* virtual_membase, uint8_t* physical_membase,
uint8_t* membase_end)
: virtual_membase_(virtual_membase),
physical_membase_(physical_membase),
memory_end_(membase_end) {
system_page_size_log2_ = xe::log2_ceil(uint32_t(xe::memory::page_size()));
uint32_t physical_page_count = (512 * 1024 * 1024) >> system_page_size_log2_;
physical_write_watched_pages_.resize(physical_page_count >> 4);
assert_true(physical_write_watched_pages_.size() != 0);
std::memset(physical_write_watched_pages_.data(), 0,
physical_write_watched_pages_.size() * sizeof(uint64_t));
}
MMIOHandler::~MMIOHandler() { MMIOHandler::~MMIOHandler() {
ExceptionHandler::Uninstall(ExceptionCallbackThunk, this); ExceptionHandler::Uninstall(ExceptionCallbackThunk, this);
@ -214,72 +231,154 @@ void MMIOHandler::CancelAccessWatch(uintptr_t watch_handle) {
delete entry; delete entry;
} }
void MMIOHandler::SetGlobalPhysicalAccessWatch( void* MMIOHandler::RegisterPhysicalWriteWatch(
GlobalAccessWatchCallback callback, void* callback_context) { PhysicalWriteWatchCallback callback, void* callback_context) {
PhysicalWriteWatchEntry* entry = new PhysicalWriteWatchEntry;
entry->callback = callback;
entry->callback_context = callback_context;
auto lock = global_critical_region_.Acquire(); auto lock = global_critical_region_.Acquire();
global_physical_watch_callback_ = callback; physical_write_watches_.push_back(entry);
global_physical_watch_callback_context_ = callback_context;
return entry;
} }
void MMIOHandler::ProtectPhysicalMemory(uint32_t physical_address, void MMIOHandler::UnregisterPhysicalWriteWatch(void* watch_handle) {
uint32_t length, WatchType type, auto entry = reinterpret_cast<PhysicalWriteWatchEntry*>(watch_handle);
bool protect_host_access) {
uint32_t base_address = physical_address & 0x1FFFFFFF;
// Can only protect sizes matching system page size.
// This means we need to round up, which will cause spurious access
// violations and invalidations.
// TODO(benvanik): only invalidate if actually within the region?
length =
xe::round_up(length + (base_address % uint32_t(xe::memory::page_size())),
uint32_t(xe::memory::page_size()));
base_address = base_address - (base_address % xe::memory::page_size());
auto page_access = memory::PageAccess::kNoAccess;
switch (type) {
case kWatchInvalid:
page_access = memory::PageAccess::kReadWrite;
break;
case kWatchWrite:
page_access = memory::PageAccess::kReadOnly;
break;
case kWatchReadWrite:
page_access = memory::PageAccess::kNoAccess;
break;
default:
assert_unhandled_case(type);
break;
}
// Protect the range under all address spaces.
if (protect_host_access) {
memory::Protect(physical_membase_ + base_address, length, page_access,
nullptr);
}
memory::Protect(virtual_membase_ + 0xA0000000 + base_address, length,
page_access, nullptr);
memory::Protect(virtual_membase_ + 0xC0000000 + base_address, length,
page_access, nullptr);
memory::Protect(virtual_membase_ + 0xE0000000 + base_address, length,
page_access, nullptr);
}
void MMIOHandler::UnprotectPhysicalMemory(uint32_t physical_address,
uint32_t length,
bool unprotect_host_access) {
ProtectPhysicalMemory(physical_address, length, kWatchInvalid,
unprotect_host_access);
}
void MMIOHandler::InvalidateRange(uint32_t physical_address, size_t length) {
auto lock = global_critical_region_.Acquire(); auto lock = global_critical_region_.Acquire();
auto it = std::find(physical_write_watches_.begin(),
physical_write_watches_.end(), entry);
assert_false(it == physical_write_watches_.end());
if (it != physical_write_watches_.end()) {
physical_write_watches_.erase(it);
}
delete entry;
}
void MMIOHandler::ProtectAndWatchPhysicalMemory(
uint32_t physical_address_and_heap, uint32_t length) {
// Bits to set in 16-bit blocks to mark that the pages are protected.
uint64_t block_heap_mask;
if (physical_address_and_heap >= 0xE0000000) {
block_heap_mask = 0x4444444444444444ull;
} else if (physical_address_and_heap >= 0xC0000000) {
block_heap_mask = 0x2222222222222222ull;
} else if (physical_address_and_heap >= 0xA0000000) {
block_heap_mask = 0x1111111111111111ull;
} else {
assert_always();
return;
}
uint32_t heap_relative_address = physical_address_and_heap & 0x1FFFFFFF;
length = std::min(length, 0x20000000u - heap_relative_address);
if (length == 0) {
return;
}
uint32_t page_first = heap_relative_address >> system_page_size_log2_;
uint32_t page_last =
(heap_relative_address + length - 1) >> system_page_size_log2_;
uint32_t block_first = page_first >> 4;
uint32_t block_last = page_last >> 4;
auto lock = global_critical_region_.Acquire();
// Set the bits indicating that the pages are watched and access violations
// there are intentional.
for (uint32_t i = block_first; i <= block_last; ++i) {
uint64_t block_set_bits = block_heap_mask;
if (i == block_first) {
block_set_bits &= ~((1ull << ((page_first & 15) * 4)) - 1);
}
if (i == block_last && (page_last & 15) != 15) {
block_set_bits &= (1ull << (((page_last & 15) + 1) * 4)) - 1;
}
physical_write_watched_pages_[i] |= block_set_bits;
}
// Protect only in one range (due to difficulties synchronizing protection
// levels between those ranges).
memory::Protect(virtual_membase_ + (physical_address_and_heap & ~0x1FFFFFFF) +
(page_first << system_page_size_log2_),
(page_last - page_first + 1) << system_page_size_log2_,
memory::PageAccess::kReadOnly, nullptr);
}
void MMIOHandler::InvalidateRange(uint32_t physical_address_and_heap,
uint32_t length, bool unprotect) {
uint32_t heap_relative_address = physical_address_and_heap & 0x1FFFFFFF;
length = std::min(length, 0x20000000u - heap_relative_address);
if (length == 0) {
return;
}
auto lock = global_critical_region_.Acquire();
// Trigger the new (per-page) watches and unwatch the pages.
if (physical_address_and_heap >= 0xA0000000) {
uint32_t heap_address = physical_address_and_heap & ~0x1FFFFFFF;
uint64_t heap_bit;
if (heap_address >= 0xE0000000) {
heap_bit = 1 << 2;
} else if (heap_address >= 0xC0000000) {
heap_bit = 1 << 1;
} else {
heap_bit = 1 << 0;
}
uint32_t page_first = heap_relative_address >> system_page_size_log2_;
uint32_t page_last =
(heap_relative_address + length - 1) >> system_page_size_log2_;
uint32_t range_start = UINT32_MAX;
for (uint32_t i = page_first; i <= page_last; ++i) {
uint64_t page_heap_bit = heap_bit << ((i & 15) * 4);
if (physical_write_watched_pages_[i >> 4] & page_heap_bit) {
if (range_start == UINT32_MAX) {
range_start = i;
}
physical_write_watched_pages_[i >> 4] &= ~page_heap_bit;
} else {
if (range_start != UINT32_MAX) {
for (auto it = physical_write_watches_.begin();
it != physical_write_watches_.end(); ++it) {
auto entry = *it;
entry->callback(entry->callback_context, range_start, i - 1);
}
if (unprotect) {
memory::Protect(virtual_membase_ + heap_address +
(range_start << system_page_size_log2_),
(i - range_start) << system_page_size_log2_,
xe::memory::PageAccess::kReadWrite, nullptr);
}
range_start = UINT32_MAX;
}
}
}
if (range_start != UINT32_MAX) {
for (auto it = physical_write_watches_.begin();
it != physical_write_watches_.end(); ++it) {
auto entry = *it;
entry->callback(entry->callback_context, range_start, page_last);
if (unprotect) {
memory::Protect(virtual_membase_ + heap_address +
(range_start << system_page_size_log2_),
(page_last - range_start + 1)
<< system_page_size_log2_,
xe::memory::PageAccess::kReadWrite, nullptr);
}
}
}
}
// Trigger the legacy (per-range) watches.
for (auto it = access_watches_.begin(); it != access_watches_.end();) { for (auto it = access_watches_.begin(); it != access_watches_.end();) {
auto entry = *it; auto entry = *it;
if ((entry->address <= physical_address && if ((entry->address <= heap_relative_address &&
entry->address + entry->length > physical_address) || entry->address + entry->length > heap_relative_address) ||
(entry->address >= physical_address && (entry->address >= heap_relative_address &&
entry->address < physical_address + length)) { entry->address < heap_relative_address + length)) {
// This watch lies within the range. End it. // This watch lies within the range. End it.
FireAccessWatch(entry); FireAccessWatch(entry);
it = access_watches_.erase(it); it = access_watches_.erase(it);
@ -316,17 +415,43 @@ bool MMIOHandler::IsRangeWatched(uint32_t physical_address, size_t length) {
return false; return false;
} }
bool MMIOHandler::CheckAccessWatch(uint32_t physical_address) { bool MMIOHandler::CheckAccessWatch(uint32_t physical_address,
auto lock = global_critical_region_.Acquire(); uint32_t heap_address) {
bool hit = false;
if (global_physical_watch_callback_ != nullptr) { // Trigger new (per-page) access watches.
if (global_physical_watch_callback_(global_physical_watch_callback_context_, if (heap_address >= 0xA0000000) {
physical_address)) { uint32_t page_index = physical_address >> system_page_size_log2_;
return true; // Check the watch only for the virtual memory mapping it was triggered in,
// because as guest protection levels may be different for different
// mappings of the physical memory, it's difficult to synchronize protection
// between the mappings.
uint64_t heap_bit;
if (heap_address >= 0xE0000000) {
heap_bit = 1 << 2;
} else if (heap_address >= 0xC0000000) {
heap_bit = 1 << 1;
} else {
heap_bit = 1 << 0;
}
heap_bit <<= (page_index & 15) * 4;
if (physical_write_watched_pages_[page_index >> 4] & heap_bit) {
hit = true;
memory::Protect(virtual_membase_ + heap_address +
(page_index << system_page_size_log2_),
size_t(1) << system_page_size_log2_,
xe::memory::PageAccess::kReadWrite, nullptr);
physical_write_watched_pages_[page_index >> 4] &= ~heap_bit;
for (auto it = physical_write_watches_.begin();
it != physical_write_watches_.end(); ++it) {
auto entry = *it;
entry->callback(entry->callback_context, page_index, page_index);
}
} }
} }
bool hit = false; // Trigger legacy (per-range) access watches.
auto lock = global_critical_region_.Acquire();
for (auto it = access_watches_.begin(); it != access_watches_.end();) { for (auto it = access_watches_.begin(); it != access_watches_.end();) {
auto entry = *it; auto entry = *it;
if (entry->address <= physical_address && if (entry->address <= physical_address &&
@ -539,14 +664,17 @@ bool MMIOHandler::ExceptionCallback(Exception* ex) {
} }
if (!range) { if (!range) {
auto fault_address = reinterpret_cast<uint8_t*>(ex->fault_address()); auto fault_address = reinterpret_cast<uint8_t*>(ex->fault_address());
uint32_t guest_address = 0; uint32_t guest_address, guest_heap_address;
if (fault_address >= virtual_membase_ && if (fault_address >= virtual_membase_ &&
fault_address < physical_membase_) { fault_address < physical_membase_) {
// Faulting on a virtual address. // Faulting on a virtual address.
guest_address = static_cast<uint32_t>(ex->fault_address()) & 0x1FFFFFFF; guest_address = static_cast<uint32_t>(ex->fault_address()) & 0x1FFFFFFF;
guest_heap_address =
static_cast<uint32_t>(ex->fault_address()) & ~0x1FFFFFFF;
} else { } else {
// Faulting on a physical address. // Faulting on a physical address.
guest_address = static_cast<uint32_t>(ex->fault_address()); guest_address = static_cast<uint32_t>(ex->fault_address());
guest_heap_address = 0;
} }
// HACK: Recheck if the pages are still protected (race condition - another // HACK: Recheck if the pages are still protected (race condition - another
@ -564,7 +692,9 @@ bool MMIOHandler::ExceptionCallback(Exception* ex) {
// Access is not found within any range, so fail and let the caller handle // Access is not found within any range, so fail and let the caller handle
// it (likely by aborting). // it (likely by aborting).
return CheckAccessWatch(guest_address); // TODO(Triang3l): Don't call for the host physical memory view when legacy
// watches are removed.
return CheckAccessWatch(guest_address, guest_heap_address);
} }
auto rip = ex->pc(); auto rip = ex->pc();

View File

@ -30,7 +30,9 @@ typedef void (*MMIOWriteCallback)(void* ppc_context, void* callback_context,
uint32_t addr, uint32_t value); uint32_t addr, uint32_t value);
typedef void (*AccessWatchCallback)(void* context_ptr, void* data_ptr, typedef void (*AccessWatchCallback)(void* context_ptr, void* data_ptr,
uint32_t address); uint32_t address);
typedef bool (*GlobalAccessWatchCallback)(void* context_ptr, uint32_t address); typedef void (*PhysicalWriteWatchCallback)(void* context_ptr,
uint32_t page_first,
uint32_t page_last);
struct MMIORange { struct MMIORange {
uint32_t address; uint32_t address;
@ -70,22 +72,69 @@ class MMIOHandler {
// either written to or read from, depending on the watch type. These fire as // either written to or read from, depending on the watch type. These fire as
// soon as a read/write happens, and only fire once. // soon as a read/write happens, and only fire once.
// These watches may be spuriously fired if memory is accessed nearby. // These watches may be spuriously fired if memory is accessed nearby.
// TODO(Triang3l): This is legacy currently used only to support the old
// Vulkan graphics layer. Remove and use WatchPhysicalMemoryWrite instead.
uintptr_t AddPhysicalAccessWatch(uint32_t guest_address, size_t length, uintptr_t AddPhysicalAccessWatch(uint32_t guest_address, size_t length,
WatchType type, AccessWatchCallback callback, WatchType type, AccessWatchCallback callback,
void* callback_context, void* callback_data); void* callback_context, void* callback_data);
void CancelAccessWatch(uintptr_t watch_handle); void CancelAccessWatch(uintptr_t watch_handle);
void SetGlobalPhysicalAccessWatch(GlobalAccessWatchCallback callback, // Physical memory write watching, allowing subsystems to invalidate cached
void* callback_context); // data that depends on memory contents.
void ProtectPhysicalMemory(uint32_t physical_address, uint32_t length, //
WatchType type, bool protect_host_access); // Placing a watch simply marks the pages (of the system page size) as
void UnprotectPhysicalMemory(uint32_t physical_address, uint32_t length, // watched, individual watched ranges (or which specific subscribers are
bool unprotect_host_access); // watching specific pages) are not stored. Because of this, callbacks may be
// triggered multiple times for a single range, and for any watched page every
// registered callbacks is triggered. This is a very simple one-shot method
// for use primarily for cache invalidation - there may be spurious firing,
// for example, if the game only changes the protection level without writing
// anything.
//
// A range of pages can be watched at any time, but pages are only unwatched
// when watches are triggered (since multiple subscribers can depend on the
// same memory, and one subscriber shouldn't interfere with another).
//
// Callbacks can be triggered for one page (if the guest just stores words) or
// for multiple pages (for file reading, protection level changes).
//
// Only guest physical memory mappings are watched - the host-only mapping is
// not protected so it can be used to bypass the write protection (for file
// reads, for example - in this case, watches are triggered manually).
//
// Ranges passed to ProtectAndWatchPhysicalMemory must not contain read-only
// or inaccessible pages - this must be checked externally! Otherwise the MMIO
// handler will make them read-only, but when a read is attempted, it will
// make them read-write!
//
// IMPORTANT NOTE: When a watch is triggered, the watched page is unprotected
// ***ONLY IN THE HEAP WHERE THE ADDRESS IS LOCATED***! Since different
// virtual memory mappings of physical memory can have different protection
// levels for the same pages, and watches must not be placed on read-only or
// totally inaccessible pages, there are significant difficulties with
// synchronizing all the three ranges.
//
// TODO(Triang3l): Allow the callbacks to unwatch regions larger than one page
// (for instance, 64 KB) so there are less access violations. All callbacks
// must agree to unwatch larger ranges because in some cases (like regions
// near the locations that render targets have been resolved to) it is
// necessary to invalidate only a single page and none more.
void* RegisterPhysicalWriteWatch(PhysicalWriteWatchCallback callback,
void* callback_context);
void UnregisterPhysicalWriteWatch(void* watch_handle);
// Force-protects the range in ***ONE SPECIFIC HEAP***, either 0xA0000000,
// 0xC0000000 or 0xE0000000, depending on the higher bits of the address.
void ProtectAndWatchPhysicalMemory(uint32_t physical_address_and_heap,
uint32_t length);
// Fires and clears any access watches that overlap this range. // Fires and clears any write watches that overlap this range in one heap.
void InvalidateRange(uint32_t physical_address, size_t length); // Unprotecting can be inhibited if this is called right before applying
// different protection to the same range.
void InvalidateRange(uint32_t physical_address_and_heap, uint32_t length,
bool unprotect = true);
// Returns true if /all/ of this range is watched. // Returns true if /all/ of this range is watched.
// TODO(Triang3l): Remove when legacy watches are removed.
bool IsRangeWatched(uint32_t physical_address, size_t length); bool IsRangeWatched(uint32_t physical_address, size_t length);
protected: protected:
@ -98,18 +147,22 @@ class MMIOHandler {
void* callback_data; void* callback_data;
}; };
struct PhysicalWriteWatchEntry {
PhysicalWriteWatchCallback callback;
void* callback_context;
};
MMIOHandler(uint8_t* virtual_membase, uint8_t* physical_membase, MMIOHandler(uint8_t* virtual_membase, uint8_t* physical_membase,
uint8_t* membase_end) uint8_t* membase_end);
: virtual_membase_(virtual_membase),
physical_membase_(physical_membase),
memory_end_(membase_end) {}
static bool ExceptionCallbackThunk(Exception* ex, void* data); static bool ExceptionCallbackThunk(Exception* ex, void* data);
bool ExceptionCallback(Exception* ex); bool ExceptionCallback(Exception* ex);
void FireAccessWatch(AccessWatchEntry* entry); void FireAccessWatch(AccessWatchEntry* entry);
void ClearAccessWatch(AccessWatchEntry* entry); void ClearAccessWatch(AccessWatchEntry* entry);
bool CheckAccessWatch(uint32_t guest_address); bool CheckAccessWatch(uint32_t guest_address, uint32_t guest_heap_address);
uint32_t system_page_size_log2_;
uint8_t* virtual_membase_; uint8_t* virtual_membase_;
uint8_t* physical_membase_; uint8_t* physical_membase_;
@ -120,8 +173,13 @@ class MMIOHandler {
xe::global_critical_region global_critical_region_; xe::global_critical_region global_critical_region_;
// TODO(benvanik): data structure magic. // TODO(benvanik): data structure magic.
std::list<AccessWatchEntry*> access_watches_; std::list<AccessWatchEntry*> access_watches_;
GlobalAccessWatchCallback global_physical_watch_callback_ = nullptr; std::vector<PhysicalWriteWatchEntry*> physical_write_watches_;
void* global_physical_watch_callback_context_; // For each page, there are 4 bits (16 pages in each word):
// 0 - whether the page is protected in A0000000.
// 1 - whether the page is protected in C0000000.
// 2 - whether the page is protected in E0000000.
// 3 - unused, always zero.
std::vector<uint64_t> physical_write_watched_pages_;
static MMIOHandler* global_handler_; static MMIOHandler* global_handler_;
}; };

View File

@ -33,7 +33,6 @@ SharedMemory::SharedMemory(D3D12CommandProcessor* command_processor,
assert_true(page_bitmap_length != 0); assert_true(page_bitmap_length != 0);
valid_pages_.resize(page_bitmap_length); valid_pages_.resize(page_bitmap_length);
protected_pages_.resize(page_bitmap_length);
} }
SharedMemory::~SharedMemory() { Shutdown(); } SharedMemory::~SharedMemory() { Shutdown(); }
@ -69,19 +68,20 @@ bool SharedMemory::Initialize() {
std::memset(valid_pages_.data(), 0, valid_pages_.size() * sizeof(uint64_t)); std::memset(valid_pages_.data(), 0, valid_pages_.size() * sizeof(uint64_t));
std::memset(protected_pages_.data(), 0,
protected_pages_.size() * sizeof(uint64_t));
upload_buffer_pool_ = upload_buffer_pool_ =
std::make_unique<ui::d3d12::UploadBufferPool>(context, 4 * 1024 * 1024); std::make_unique<ui::d3d12::UploadBufferPool>(context, 4 * 1024 * 1024);
memory_->SetGlobalPhysicalAccessWatch(MemoryWriteCallbackThunk, this); physical_write_watch_handle_ =
memory_->RegisterPhysicalWriteWatch(MemoryWriteCallbackThunk, this);
return true; return true;
} }
void SharedMemory::Shutdown() { void SharedMemory::Shutdown() {
memory_->SetGlobalPhysicalAccessWatch(nullptr, nullptr); if (physical_write_watch_handle_ != nullptr) {
memory_->UnregisterPhysicalWriteWatch(physical_write_watch_handle_);
physical_write_watch_handle_ = nullptr;
}
upload_buffer_pool_.reset(); upload_buffer_pool_.reset();
@ -294,6 +294,7 @@ bool SharedMemory::RequestRange(uint32_t start, uint32_t length) {
return false; return false;
} }
uint32_t upload_buffer_pages = upload_buffer_size >> page_size_log2_; uint32_t upload_buffer_pages = upload_buffer_size >> page_size_log2_;
// No mutex holding here!
MakeRangeValid(upload_range_start, upload_buffer_pages); MakeRangeValid(upload_range_start, upload_buffer_pages);
std::memcpy( std::memcpy(
upload_buffer_mapping, upload_buffer_mapping,
@ -310,22 +311,12 @@ bool SharedMemory::RequestRange(uint32_t start, uint32_t length) {
return true; return true;
} }
void SharedMemory::RangeWrittenByGPU(uint32_t start, uint32_t length) { void SharedMemory::FireWatches(uint32_t page_first, uint32_t page_last) {
start &= kAddressMask; uint32_t bucket_first = page_first << page_size_log2_ >> kWatchBucketSizeLog2;
if (length == 0 || start >= kBufferSize) { uint32_t bucket_last = page_last << page_size_log2_ >> kWatchBucketSizeLog2;
return;
}
length = std::min(length, kBufferSize - start);
uint32_t end = start + length - 1;
uint32_t page_first = start >> page_size_log2_;
uint32_t page_last = end >> page_size_log2_;
uint32_t bucket_first = start >> kWatchBucketSizeLog2;
uint32_t bucket_last = end >> kWatchBucketSizeLog2;
std::lock_guard<std::recursive_mutex> lock(validity_mutex_); std::lock_guard<std::recursive_mutex> lock(validity_mutex_);
// Trigger modification callbacks so, for instance, resolved data is loaded to
// the texture.
for (uint32_t i = bucket_first; i <= bucket_last; ++i) { for (uint32_t i = bucket_first; i <= bucket_last; ++i) {
WatchNode* node = watch_buckets_[i]; WatchNode* node = watch_buckets_[i];
while (node != nullptr) { while (node != nullptr) {
@ -340,9 +331,25 @@ void SharedMemory::RangeWrittenByGPU(uint32_t start, uint32_t length) {
} }
} }
} }
}
void SharedMemory::RangeWrittenByGPU(uint32_t start, uint32_t length) {
start &= kAddressMask;
if (length == 0 || start >= kBufferSize) {
return;
}
length = std::min(length, kBufferSize - start);
uint32_t end = start + length - 1;
uint32_t page_first = start >> page_size_log2_;
uint32_t page_last = end >> page_size_log2_;
// Trigger modification callbacks so, for instance, resolved data is loaded to
// the texture.
FireWatches(page_first, page_last);
// Mark the range as valid (so pages are not reuploaded until modified by the // Mark the range as valid (so pages are not reuploaded until modified by the
// CPU) and protect it so the CPU can reuse it. // CPU) and watch it so the CPU can reuse it and this will be caught.
// No mutex holding here!
MakeRangeValid(page_first, page_last - page_first + 1); MakeRangeValid(page_first, page_last - page_first + 1);
} }
@ -356,23 +363,23 @@ void SharedMemory::MakeRangeValid(uint32_t valid_page_first,
uint32_t valid_block_first = valid_page_first >> 6; uint32_t valid_block_first = valid_page_first >> 6;
uint32_t valid_block_last = valid_page_last >> 6; uint32_t valid_block_last = valid_page_last >> 6;
std::lock_guard<std::recursive_mutex> lock(validity_mutex_); {
std::lock_guard<std::recursive_mutex> lock(validity_mutex_);
for (uint32_t i = valid_block_first; i <= valid_block_last; ++i) { for (uint32_t i = valid_block_first; i <= valid_block_last; ++i) {
uint64_t valid_bits = UINT64_MAX; uint64_t valid_bits = UINT64_MAX;
if (i == valid_block_first) { if (i == valid_block_first) {
valid_bits &= ~((1ull << (valid_page_first & 63)) - 1); valid_bits &= ~((1ull << (valid_page_first & 63)) - 1);
}
if (i == valid_block_last && (valid_page_last & 63) != 63) {
valid_bits &= (1ull << ((valid_page_last & 63) + 1)) - 1;
}
valid_pages_[i] |= valid_bits;
} }
if (i == valid_block_last && (valid_page_last & 63) != 63) {
valid_bits &= (1ull << ((valid_page_last & 63) + 1)) - 1;
}
valid_pages_[i] |= valid_bits;
protected_pages_[i] |= valid_bits;
} }
memory_->ProtectPhysicalMemory( memory_->WatchPhysicalMemoryWrite(valid_page_first << page_size_log2_,
valid_page_first << page_size_log2_, valid_page_count << page_size_log2_, valid_page_count << page_size_log2_);
cpu::MMIOHandler::WatchType::kWatchWrite, false);
} }
void SharedMemory::UnlinkWatchRange(WatchRange* range) { void SharedMemory::UnlinkWatchRange(WatchRange* range) {
@ -454,44 +461,32 @@ void SharedMemory::GetRangesToUpload(uint32_t request_page_first,
} }
} }
bool SharedMemory::MemoryWriteCallbackThunk(void* context_ptr, void SharedMemory::MemoryWriteCallbackThunk(void* context_ptr,
uint32_t address) { uint32_t page_first,
SharedMemory* shared_memory = reinterpret_cast<SharedMemory*>(context_ptr); uint32_t page_last) {
return shared_memory->MemoryWriteCallback(address); reinterpret_cast<SharedMemory*>(context_ptr)
->MemoryWriteCallback(page_first, page_last);
} }
bool SharedMemory::MemoryWriteCallback(uint32_t address) { void SharedMemory::MemoryWriteCallback(uint32_t page_first,
uint32_t page_index = (address & kAddressMask) >> page_size_log2_; uint32_t page_last) {
uint32_t block_index = page_index >> 6; uint32_t block_first = page_first >> 6;
uint64_t page_bit = 1ull << (page_index & 63); uint32_t block_last = page_last >> 6;
std::lock_guard<std::recursive_mutex> lock(validity_mutex_); std::lock_guard<std::recursive_mutex> lock(validity_mutex_);
if (!(protected_pages_[block_index] & page_bit)) { for (uint32_t i = block_first; i <= block_last; ++i) {
return false; uint64_t invalidate_bits = UINT64_MAX;
} if (i == block_first) {
invalidate_bits &= ~((1ull << (page_first & 63)) - 1);
valid_pages_[block_index] &= ~page_bit;
// Trigger watch callbacks.
WatchNode* node =
watch_buckets_[page_index << page_size_log2_ >> kWatchBucketSizeLog2];
while (node != nullptr) {
WatchRange* range = node->range;
// Store the next node now since when the callback is triggered, the links
// will be broken.
node = node->bucket_node_next;
if (page_index >= range->page_first && page_index <= range->page_last) {
range->callback(range->callback_context, range->callback_data,
range->callback_argument);
UnlinkWatchRange(range);
} }
if (i == block_last && (page_last & 63) != 63) {
invalidate_bits &= (1ull << ((page_last & 63) + 1)) - 1;
}
valid_pages_[i] &= ~invalidate_bits;
} }
memory_->UnprotectPhysicalMemory(page_index << page_size_log2_, FireWatches(page_first, page_last);
1 << page_size_log2_, false);
protected_pages_[block_index] &= ~page_bit;
return true;
} }
void SharedMemory::TransitionBuffer(D3D12_RESOURCE_STATES new_state) { void SharedMemory::TransitionBuffer(D3D12_RESOURCE_STATES new_state) {

View File

@ -93,6 +93,10 @@ class SharedMemory {
void CreateRawUAV(D3D12_CPU_DESCRIPTOR_HANDLE handle); void CreateRawUAV(D3D12_CPU_DESCRIPTOR_HANDLE handle);
private: private:
// Mark the memory range as updated and protect it. The validity mutex must
// NOT be held when calling!!!
void MakeRangeValid(uint32_t valid_page_first, uint32_t valid_page_count);
D3D12CommandProcessor* command_processor_; D3D12CommandProcessor* command_processor_;
Memory* memory_; Memory* memory_;
@ -121,6 +125,9 @@ class SharedMemory {
// Total physical page count. // Total physical page count.
uint32_t page_count_; uint32_t page_count_;
// Handle of the physical memory write callback.
void* physical_write_watch_handle_ = nullptr;
// Mutex between the exception handler and the command processor, to be locked // Mutex between the exception handler and the command processor, to be locked
// when checking or updating validity of pages/ranges. // when checking or updating validity of pages/ranges.
std::recursive_mutex validity_mutex_; std::recursive_mutex validity_mutex_;
@ -131,14 +138,11 @@ class SharedMemory {
// Bit vector containing whether physical memory system pages are up to date. // Bit vector containing whether physical memory system pages are up to date.
std::vector<uint64_t> valid_pages_; std::vector<uint64_t> valid_pages_;
// Mark the memory range as updated and protect it.
void MakeRangeValid(uint32_t valid_page_first, uint32_t valid_page_count);
// Whether each physical page is protected by the GPU code (after uploading).
std::vector<uint64_t> protected_pages_;
// Memory access callback. // Memory access callback.
static bool MemoryWriteCallbackThunk(void* context_ptr, uint32_t address); static void MemoryWriteCallbackThunk(void* context_ptr, uint32_t page_first,
bool MemoryWriteCallback(uint32_t address); uint32_t page_last);
void MemoryWriteCallback(uint32_t page_first, uint32_t page_last);
struct WatchNode; struct WatchNode;
// Watched range placed by other GPU subsystems. // Watched range placed by other GPU subsystems.
@ -187,6 +191,8 @@ class SharedMemory {
uint32_t watch_node_current_pool_allocated_ = 0; uint32_t watch_node_current_pool_allocated_ = 0;
WatchRange* watch_range_first_free_ = nullptr; WatchRange* watch_range_first_free_ = nullptr;
WatchNode* watch_node_first_free_ = nullptr; WatchNode* watch_node_first_free_ = nullptr;
// Triggers the watches, removing them when triggered.
void FireWatches(uint32_t page_first, uint32_t page_last);
// Unlinks and frees the range and its nodes. Call this with the mutex locked. // Unlinks and frees the range and its nodes. Call this with the mutex locked.
void UnlinkWatchRange(WatchRange* range); void UnlinkWatchRange(WatchRange* range);

View File

@ -169,9 +169,8 @@ dword_result_t NtReadFile(dword_t file_handle, dword_t event_handle,
// some games NtReadFile() directly into texture memory // some games NtReadFile() directly into texture memory
// TODO(rick): better checking of physical address // TODO(rick): better checking of physical address
if (buffer.guest_address() >= 0xA0000000) { if (buffer.guest_address() >= 0xA0000000) {
auto heap = kernel_memory()->LookupHeap(buffer.guest_address());
cpu::MMIOHandler::global_handler()->InvalidateRange( cpu::MMIOHandler::global_handler()->InvalidateRange(
heap->GetPhysicalAddress(buffer.guest_address()), buffer_length); buffer.guest_address(), buffer_length);
} }
// Synchronous. // Synchronous.

View File

@ -412,22 +412,21 @@ void Memory::CancelAccessWatch(uintptr_t watch_handle) {
mmio_handler_->CancelAccessWatch(watch_handle); mmio_handler_->CancelAccessWatch(watch_handle);
} }
void Memory::SetGlobalPhysicalAccessWatch( void* Memory::RegisterPhysicalWriteWatch(
cpu::GlobalAccessWatchCallback callback, void* callback_context) { cpu::PhysicalWriteWatchCallback callback, void* callback_context) {
mmio_handler_->SetGlobalPhysicalAccessWatch(callback, callback_context); return mmio_handler_->RegisterPhysicalWriteWatch(callback, callback_context);
} }
void Memory::ProtectPhysicalMemory(uint32_t physical_address, uint32_t length, void Memory::UnregisterPhysicalWriteWatch(void* watch_handle) {
cpu::MMIOHandler::WatchType type, mmio_handler_->UnregisterPhysicalWriteWatch(watch_handle);
bool protect_host_access) {
mmio_handler_->ProtectPhysicalMemory(physical_address, length, type,
protect_host_access);
} }
void Memory::UnprotectPhysicalMemory(uint32_t physical_address, uint32_t length, void Memory::WatchPhysicalMemoryWrite(uint32_t physical_address,
bool unprotect_host_access) { uint32_t length) {
mmio_handler_->UnprotectPhysicalMemory(physical_address, length, // Watch independently in all three mappings.
unprotect_host_access); heaps_.vA0000000.WatchWrite(physical_address, length, mmio_handler_.get());
heaps_.vC0000000.WatchWrite(physical_address, length, mmio_handler_.get());
heaps_.vE0000000.WatchWrite(physical_address, length, mmio_handler_.get());
} }
uint32_t Memory::SystemHeapAlloc(uint32_t size, uint32_t alignment, uint32_t Memory::SystemHeapAlloc(uint32_t size, uint32_t alignment,
@ -1363,8 +1362,8 @@ bool PhysicalHeap::Release(uint32_t base_address, uint32_t* out_region_size) {
uint32_t parent_base_address = GetPhysicalAddress(base_address); uint32_t parent_base_address = GetPhysicalAddress(base_address);
uint32_t region_size = 0; uint32_t region_size = 0;
if (QuerySize(base_address, &region_size)) { if (QuerySize(base_address, &region_size)) {
cpu::MMIOHandler::global_handler()->InvalidateRange(parent_base_address, cpu::MMIOHandler::global_handler()->InvalidateRange(
region_size); base_address, region_size, !FLAGS_protect_on_release);
} }
if (!parent_heap_->Release(parent_base_address, out_region_size)) { if (!parent_heap_->Release(parent_base_address, out_region_size)) {
@ -1378,10 +1377,11 @@ bool PhysicalHeap::Release(uint32_t base_address, uint32_t* out_region_size) {
bool PhysicalHeap::Protect(uint32_t address, uint32_t size, uint32_t protect, bool PhysicalHeap::Protect(uint32_t address, uint32_t size, uint32_t protect,
uint32_t* old_protect) { uint32_t* old_protect) {
auto global_lock = global_critical_region_.Acquire(); auto global_lock = global_critical_region_.Acquire();
uint32_t parent_address = GetPhysicalAddress(address);
cpu::MMIOHandler::global_handler()->InvalidateRange(parent_address, size);
if (!parent_heap_->Protect(parent_address, size, protect, old_protect)) { cpu::MMIOHandler::global_handler()->InvalidateRange(address, size, false);
if (!parent_heap_->Protect(GetPhysicalAddress(address), size, protect,
old_protect)) {
XELOGE("PhysicalHeap::Protect failed due to parent heap failure"); XELOGE("PhysicalHeap::Protect failed due to parent heap failure");
return false; return false;
} }
@ -1389,4 +1389,47 @@ bool PhysicalHeap::Protect(uint32_t address, uint32_t size, uint32_t protect,
return BaseHeap::Protect(address, size, protect); return BaseHeap::Protect(address, size, protect);
} }
void PhysicalHeap::WatchWrite(uint32_t address, uint32_t size,
cpu::MMIOHandler* mmio_handler) {
address &= 0x1FFFFFFF;
if (address >= heap_size_) {
// E0000000 is not exactly 512 MB long.
return;
}
size = std::min(size, heap_size_ - address);
if (size == 0) {
return;
}
uint32_t system_page_size = uint32_t(xe::memory::page_size());
uint32_t system_page_first = address / system_page_size;
uint32_t system_page_last = (address + size - 1) / system_page_size;
auto global_lock = global_critical_region_.Acquire();
// Watch all writable pages of the system page size within the requested
// range.
uint32_t range_start = UINT32_MAX;
for (uint32_t i = system_page_first; i <= system_page_last; ++i) {
if (page_table_[i * system_page_size / page_size_].current_protect &
kMemoryProtectWrite) {
if (range_start == UINT32_MAX) {
range_start = i;
}
} else {
if (range_start != UINT32_MAX) {
mmio_handler->ProtectAndWatchPhysicalMemory(
heap_base_ + range_start * system_page_size,
(i - range_start) * system_page_size);
range_start = UINT32_MAX;
}
}
}
if (range_start != UINT32_MAX) {
mmio_handler->ProtectAndWatchPhysicalMemory(
heap_base_ + range_start * system_page_size,
(system_page_last - range_start + 1) * system_page_size);
}
}
} // namespace xe } // namespace xe

View File

@ -215,6 +215,9 @@ class PhysicalHeap : public BaseHeap {
bool Protect(uint32_t address, uint32_t size, uint32_t protect, bool Protect(uint32_t address, uint32_t size, uint32_t protect,
uint32_t* old_protect = nullptr) override; uint32_t* old_protect = nullptr) override;
void WatchWrite(uint32_t address, uint32_t size,
cpu::MMIOHandler* mmio_handler);
protected: protected:
VirtualHeap* parent_heap_; VirtualHeap* parent_heap_;
}; };
@ -319,23 +322,26 @@ class Memory {
// Cancels a write watch requested with AddPhysicalAccessWatch. // Cancels a write watch requested with AddPhysicalAccessWatch.
void CancelAccessWatch(uintptr_t watch_handle); void CancelAccessWatch(uintptr_t watch_handle);
// Sets the default access watch callback for physical memory, which has a // Registers a global callback for physical memory writes. See
// higher priority than watches - if it returns true, watches won't be // cpu/mmio_handler.h for more details about physical memory write watches.
// triggered. void* RegisterPhysicalWriteWatch(cpu::PhysicalWriteWatchCallback callback,
void SetGlobalPhysicalAccessWatch(cpu::GlobalAccessWatchCallback callback, void* callback_context);
void* callback_context);
// Protects a physical memory range without adding a watch, primarily for use // Unregisters a physical memory write watch previously added with
// with the global physical access watch. // RegisterPhysicalWriteWatch.
void ProtectPhysicalMemory(uint32_t physical_address, uint32_t length, void UnregisterPhysicalWriteWatch(void* watch_handle);
cpu::MMIOHandler::WatchType type,
bool protect_host_access);
// Unprotects a physical memory range previously protected using // Enables watching of the specified memory range, snapped to system page
// ProtectPhysicalMemory, primarily for use with the global physical access // boundaries. When something is written to a watched range (or when the
// watch. // protection of it changes), the registered watch callbacks are triggered for
void UnprotectPhysicalMemory(uint32_t physical_address, uint32_t length, // the page (or pages, for file reads and protection changes) where something
bool unprotect_host_access); // has been written to. This protects physical memory only under
// virtual_membase_, so writing to physical_membase_ can be written to bypass
// the protection placed by the watches. Read-only and inaccessible pages are
// silently ignored, only attempts to write to read-write pages will trigger
// watch callbacks.
// AVOID CALLING WITH MUTEXES LOCKED!!!
void WatchPhysicalMemoryWrite(uint32_t physical_address, uint32_t length);
// Allocates virtual memory from the 'system' heap. // Allocates virtual memory from the 'system' heap.
// System memory is kept separate from game memory but is still accessible // System memory is kept separate from game memory but is still accessible