Partial frame support.

This commit is contained in:
Dr. Chat 2015-08-29 20:57:42 -05:00
parent d8ed66c336
commit 6c83b35003
7 changed files with 518 additions and 330 deletions

View File

@ -14,6 +14,7 @@
#include "xenia/apu/xma_decoder.h" #include "xenia/apu/xma_decoder.h"
#include "xenia/apu/xma_helpers.h" #include "xenia/apu/xma_helpers.h"
#include "xenia/base/bit_stream.h"
#include "xenia/base/logging.h" #include "xenia/base/logging.h"
#include "xenia/base/ring_buffer.h" #include "xenia/base/ring_buffer.h"
#include "xenia/profiling.h" #include "xenia/profiling.h"
@ -87,6 +88,8 @@ int XmaContext::Setup(uint32_t id, Memory* memory, uint32_t guest_ptr) {
context_->extradata_size = sizeof(extra_data_); context_->extradata_size = sizeof(extra_data_);
context_->extradata = reinterpret_cast<uint8_t*>(&extra_data_); context_->extradata = reinterpret_cast<uint8_t*>(&extra_data_);
partial_frame_buffer_.resize(2048);
// Current frame stuff whatever // Current frame stuff whatever
// samples per frame * 2 max channels * output bytes // samples per frame * 2 max channels * output bytes
current_frame_ = new uint8_t[kSamplesPerFrame * kBytesPerSample * 2]; current_frame_ = new uint8_t[kSamplesPerFrame * kBytesPerSample * 2];
@ -98,11 +101,11 @@ int XmaContext::Setup(uint32_t id, Memory* memory, uint32_t guest_ptr) {
} }
void XmaContext::Work() { void XmaContext::Work() {
std::lock_guard<xe::mutex> lock(lock_);
if (!is_allocated() || !is_enabled()) { if (!is_allocated() || !is_enabled()) {
return; return;
} }
std::lock_guard<xe::mutex> lock(lock_);
set_is_enabled(false); set_is_enabled(false);
auto context_ptr = memory()->TranslateVirtual(guest_ptr()); auto context_ptr = memory()->TranslateVirtual(guest_ptr());
@ -117,10 +120,11 @@ void XmaContext::Enable() {
auto context_ptr = memory()->TranslateVirtual(guest_ptr()); auto context_ptr = memory()->TranslateVirtual(guest_ptr());
XMA_CONTEXT_DATA data(context_ptr); XMA_CONTEXT_DATA data(context_ptr);
XELOGAPU("XmaContext: kicking context %d (%d/%d bits)", id(), XELOGAPU("XmaContext: kicking context %d (buffer %d %d/%d bits)", id(),
data.input_buffer_read_offset, (data.input_buffer_0_packet_count + data.current_buffer, data.input_buffer_read_offset,
data.input_buffer_1_packet_count) * (data.current_buffer == 0 ? data.input_buffer_0_packet_count
kBytesPerPacket * 8); : data.input_buffer_1_packet_count) *
kBytesPerPacket * 8);
data.Store(context_ptr); data.Store(context_ptr);
@ -142,8 +146,6 @@ void XmaContext::Clear() {
std::lock_guard<xe::mutex> lock(lock_); std::lock_guard<xe::mutex> lock(lock_);
XELOGAPU("XmaContext: reset context %d", id()); XELOGAPU("XmaContext: reset context %d", id());
DiscardPacket();
auto context_ptr = memory()->TranslateVirtual(guest_ptr()); auto context_ptr = memory()->TranslateVirtual(guest_ptr());
XMA_CONTEXT_DATA data(context_ptr); XMA_CONTEXT_DATA data(context_ptr);
@ -171,8 +173,6 @@ void XmaContext::Release() {
set_is_allocated(false); set_is_allocated(false);
auto context_ptr = memory()->TranslateVirtual(guest_ptr()); auto context_ptr = memory()->TranslateVirtual(guest_ptr());
std::memset(context_ptr, 0, sizeof(XMA_CONTEXT_DATA)); // Zero it. std::memset(context_ptr, 0, sizeof(XMA_CONTEXT_DATA)); // Zero it.
DiscardPacket();
} }
int XmaContext::GetSampleRate(int id) { int XmaContext::GetSampleRate(int id) {
@ -190,6 +190,83 @@ int XmaContext::GetSampleRate(int id) {
return 0; return 0;
} }
size_t XmaContext::SavePartial(uint8_t* packet, uint32_t frame_offset_bits,
size_t frame_size_bits, bool append) {
uint8_t* buff = partial_frame_buffer_.data();
BitStream stream(packet, 2048 * 8);
stream.SetOffset(frame_offset_bits);
if (!append) {
// Reset the buffer.
// TODO: Probably not necessary.
std::memset(buff, 0, partial_frame_buffer_.size());
size_t copy_bits = (2048 * 8) - frame_offset_bits;
size_t copy_offset = stream.Copy(buff, copy_bits);
partial_frame_offset_bits_ = copy_bits;
partial_frame_start_offset_bits_ = copy_offset;
return copy_bits;
} else {
size_t copy_bits = frame_size_bits - partial_frame_offset_bits_;
size_t copy_offset = stream.Copy(
buff +
((partial_frame_offset_bits_ + partial_frame_start_offset_bits_) /
8),
copy_bits);
partial_frame_offset_bits_ += copy_bits;
return copy_bits;
}
}
bool XmaContext::ValidFrameOffset(uint8_t* block, size_t size_bytes,
size_t frame_offset_bits) {
uint32_t packet_num =
GetFramePacketNumber(block, size_bytes, frame_offset_bits);
uint8_t* packet = block + (packet_num * kBytesPerPacket);
size_t relative_offset_bits = frame_offset_bits % (kBytesPerPacket * 8);
uint32_t first_frame_offset = xma::GetPacketFrameOffset(packet);
if (first_frame_offset == -1) {
// Packet only contains a partial frame, so no frames can start here.
return false;
}
BitStream stream(packet, kBytesPerPacket * 8);
stream.SetOffset(first_frame_offset);
while (true) {
if (stream.offset_bits() == relative_offset_bits) {
return true;
}
if (stream.BitsRemaining() < 15) {
// Not enough room for another frame header.
return false;
}
uint64_t size = stream.Read(15);
if ((size - 15) > stream.BitsRemaining()) {
// Last frame.
return false;
} else if (size == 0x7FFF) {
// Invalid frame (and last of this packet)
return false;
}
stream.Advance(size - 16);
// Read the trailing bit to see if frames follow
if (stream.Read(1) == 0) {
break;
}
}
return false;
}
void XmaContext::DecodePackets(XMA_CONTEXT_DATA* data) { void XmaContext::DecodePackets(XMA_CONTEXT_DATA* data) {
SCOPE_profile_cpu_f("apu"); SCOPE_profile_cpu_f("apu");
@ -203,22 +280,16 @@ void XmaContext::DecodePackets(XMA_CONTEXT_DATA* data) {
// 32bit header (big endian) // 32bit header (big endian)
// Frames are the smallest thing the SPUs can decode. // Frames are the smallest thing the SPUs can decode.
// They usually can span packets (libav handles this) // They can and usually will span packets.
// Sample rates (data.sample_rate): // Sample rates (data.sample_rate):
// 0 - 24 kHz ? // 0 - 24 kHz
// 1 - 32 kHz // 1 - 32 kHz
// 2 - 44.1 kHz ? // 2 - 44.1 kHz
// 3 - 48 kHz ? // 3 - 48 kHz
// SPUs also support stereo decoding. (data.is_stereo) // SPUs also support stereo decoding. (data.is_stereo)
// Quick die if there's no data.
if (!data->input_buffer_0_valid && !data->input_buffer_1_valid) {
XELOGAPU("Context %d: No valid input buffers!", id());
return;
}
// Check the output buffer - we cannot decode anything else if it's // Check the output buffer - we cannot decode anything else if it's
// unavailable. // unavailable.
if (!data->output_buffer_valid) { if (!data->output_buffer_valid) {
@ -236,25 +307,28 @@ void XmaContext::DecodePackets(XMA_CONTEXT_DATA* data) {
// Translate pointers for future use. // Translate pointers for future use.
// Sometimes the game will use rolling input buffers. If they do, we cannot // Sometimes the game will use rolling input buffers. If they do, we cannot
// assume they form a complete block! In addition, the buffers DO NOT have // assume they form a complete block! In addition, the buffers DO NOT have
// to be sequential! // to be contiguous!
// (bit.trip runner 2 does this)
// TODO: Collect partial frames into a buffer if the game uses rolling buffers,
// and present the full frame to libav when we get it.
uint8_t* in0 = data->input_buffer_0_valid uint8_t* in0 = data->input_buffer_0_valid
? memory()->TranslatePhysical(data->input_buffer_0_ptr) ? memory()->TranslatePhysical(data->input_buffer_0_ptr)
: nullptr; : nullptr;
uint8_t* in1 = data->input_buffer_1_valid uint8_t* in1 = data->input_buffer_1_valid
? memory()->TranslatePhysical(data->input_buffer_1_ptr) ? memory()->TranslatePhysical(data->input_buffer_1_ptr)
: nullptr; : nullptr;
uint8_t* current_input_buffer = in0; uint8_t* current_input_buffer = data->current_buffer ? in1 : in0;
XELOGAPU("Processing context %d (offset %d, buffer %d, ptr %.8X)", id(),
data->input_buffer_read_offset, data->current_buffer,
current_input_buffer);
size_t input_buffer_0_size = size_t input_buffer_0_size =
data->input_buffer_0_packet_count * kBytesPerPacket; data->input_buffer_0_packet_count * kBytesPerPacket;
size_t input_buffer_1_size = size_t input_buffer_1_size =
data->input_buffer_1_packet_count * kBytesPerPacket; data->input_buffer_1_packet_count * kBytesPerPacket;
size_t input_total_size = input_buffer_0_size + input_buffer_1_size;
size_t current_input_size = size_t current_input_size =
data->current_buffer ? input_buffer_1_size : input_buffer_0_size; data->current_buffer ? input_buffer_1_size : input_buffer_0_size;
size_t input_total_size = input_buffer_0_size + input_buffer_1_size; size_t current_input_packet_count = current_input_size / kBytesPerPacket;
// Output buffers are in raw PCM samples, 256 bytes per block. // Output buffers are in raw PCM samples, 256 bytes per block.
// Output buffer is a ring buffer. We need to write from the write offset // Output buffer is a ring buffer. We need to write from the write offset
@ -272,14 +346,10 @@ void XmaContext::DecodePackets(XMA_CONTEXT_DATA* data) {
output_rb.set_write_offset(output_write_offset); output_rb.set_write_offset(output_write_offset);
size_t output_remaining_bytes = output_rb.write_count(); size_t output_remaining_bytes = output_rb.write_count();
bool output_written = false;
// Decode until we can't write any more data. // Decode until we can't write any more data.
while (output_remaining_bytes > 0) { while (output_remaining_bytes > 0) {
if (!data->input_buffer_0_valid && !data->input_buffer_1_valid) {
// Out of data.
break;
}
int num_channels = data->is_stereo ? 2 : 1; int num_channels = data->is_stereo ? 2 : 1;
// Check if we have part of a frame waiting (and the game hasn't jumped // Check if we have part of a frame waiting (and the game hasn't jumped
@ -289,7 +359,10 @@ void XmaContext::DecodePackets(XMA_CONTEXT_DATA* data) {
size_t to_write = std::min( size_t to_write = std::min(
output_remaining_bytes, output_remaining_bytes,
((size_t)kBytesPerFrame * num_channels - current_frame_pos_)); ((size_t)kBytesPerFrame * num_channels - current_frame_pos_));
output_rb.Write(current_frame_, to_write); output_rb.Write(current_frame_ + current_frame_pos_, to_write);
output_written = true;
XELOGAPU("XmaContext %d: wrote out %d bytes of left-over samples", id(),
to_write);
current_frame_pos_ += to_write; current_frame_pos_ += to_write;
if (current_frame_pos_ >= kBytesPerFrame * num_channels) { if (current_frame_pos_ >= kBytesPerFrame * num_channels) {
@ -301,48 +374,189 @@ void XmaContext::DecodePackets(XMA_CONTEXT_DATA* data) {
continue; continue;
} }
if (!data->input_buffer_0_valid && !data->input_buffer_1_valid) {
// Out of data.
break;
}
if (data->input_buffer_read_offset == 0) {
// Invalid offset. Go ahead and set it.
uint32_t offset = xma::GetPacketFrameOffset(current_input_buffer);
if (offset == -1) {
// No more frames.
if (data->current_buffer == 0) {
data->input_buffer_0_valid = 0;
data->input_buffer_read_offset = 0;
data->current_buffer++;
} else if (data->current_buffer == 1) {
data->input_buffer_1_valid = 0;
data->input_buffer_read_offset = 0;
data->current_buffer--;
}
// Die if we have no partial saved.
if (!partial_frame_saved_) {
return;
}
} else {
data->input_buffer_read_offset = offset;
}
}
if (!ValidFrameOffset(current_input_buffer, current_input_size,
data->input_buffer_read_offset)) {
XELOGAPU("XmaContext %d: Invalid read offset %d!", id(),
data->input_buffer_read_offset);
if (data->current_buffer == 0) {
data->current_buffer = 1;
data->input_buffer_0_valid = 0;
} else if (data->current_buffer == 1) {
data->current_buffer = 0;
data->input_buffer_1_valid = 0;
}
data->input_buffer_read_offset = 0;
return;
}
// Check if we need to save a partial frame.
if (data->input_buffer_read_offset != 0 && !partial_frame_saved_ &&
GetFramePacketNumber(current_input_buffer, current_input_size,
data->input_buffer_read_offset) ==
current_input_packet_count - 1) {
BitStream stream(current_input_buffer, current_input_size * 8);
stream.SetOffset(data->input_buffer_read_offset);
if (stream.BitsRemaining() >= 15) {
uint64_t frame_size = stream.Read(15);
if (data->input_buffer_read_offset + frame_size >=
current_input_size * 8 &&
frame_size != 0x7FFF) {
uint32_t rel_offset = data->input_buffer_read_offset % (2048 * 8);
// Frame is cut off! Save and exit.
partial_frame_saved_ = true;
partial_frame_size_known_ = true;
partial_frame_total_size_bits_ = frame_size;
SavePartial(
current_input_buffer + (current_input_packet_count - 1) * 2048,
rel_offset, frame_size, false);
}
} else {
// Header cut in half :/
uint32_t rel_offset = data->input_buffer_read_offset % (2048 * 8);
partial_frame_saved_ = true;
partial_frame_size_known_ = false;
SavePartial(
current_input_buffer + (current_input_packet_count - 1) * 2048,
rel_offset, 0, false);
}
if (partial_frame_saved_) {
XELOGAPU("XmaContext %d: saved a partial frame", id());
if (data->current_buffer == 0) {
data->input_buffer_0_valid = 0;
data->input_buffer_read_offset = 0;
data->current_buffer++;
} else if (data->current_buffer == 1) {
data->input_buffer_1_valid = 0;
data->input_buffer_read_offset = 0;
data->current_buffer--;
}
return;
}
}
if (partial_frame_saved_ && !partial_frame_size_known_) {
// Append the rest of the header.
size_t offset = SavePartial(current_input_buffer, 32, 15, true);
// Read the frame size.
BitStream stream(partial_frame_buffer_.data(),
15 + partial_frame_start_offset_bits_);
stream.SetOffset(partial_frame_start_offset_bits_);
uint64_t size = stream.Read(15);
partial_frame_size_known_ = true;
partial_frame_total_size_bits_ = size;
// Now append the rest of the frame.
SavePartial(current_input_buffer, 32 + (uint32_t)offset, size, true);
} else if (partial_frame_saved_) {
// Append the rest of the frame.
SavePartial(current_input_buffer, 32, partial_frame_total_size_bits_,
true);
}
// Prepare the decoder. Reinitialize if any parameters have changed.
PrepareDecoder(current_input_buffer, current_input_size, data->sample_rate,
num_channels);
bool partial = false;
size_t bit_offset = data->input_buffer_read_offset;
if (partial_frame_saved_) {
XELOGAPU("XmaContext %d: processing saved partial frame", id());
packet_->data = partial_frame_buffer_.data();
packet_->size = (int)partial_frame_buffer_.size();
bit_offset = partial_frame_start_offset_bits_;
partial = true;
partial_frame_saved_ = false;
} else {
packet_->data = current_input_buffer;
packet_->size = (int)current_input_size;
}
int invalid_frame = 0; // invalid frame? int invalid_frame = 0; // invalid frame?
int got_frame = 0; // successfully decoded a frame? int got_frame = 0; // successfully decoded a frame?
int frame_size = 0; int frame_size = 0;
packet_->data = current_input_buffer; int len =
packet_->size = (int)current_input_size; xma2_decode_frame(context_, packet_, decoded_frame_, &got_frame,
PrepareDecoder(in0, current_input_size, data->sample_rate, num_channels); &invalid_frame, &frame_size, !partial, bit_offset);
int len = xma2_decode_frame(context_, packet_, decoded_frame_, &got_frame, if (!partial && len == 0) {
&invalid_frame, &frame_size, 1, // Got the last frame of a packet. Advance the read offset to the next
data->input_buffer_read_offset); // packet.
if (invalid_frame) { uint32_t packet_number =
// Invalid frame/packet: length header is 0x7FFF GetFramePacketNumber(current_input_buffer, current_input_size,
// Sometimes there's frames in the middle of the stream flagged as data->input_buffer_read_offset);
// invalid. if (packet_number == current_input_packet_count - 1) {
// Double-check to make sure we're not in the middle. // Last packet.
uint32_t frame_byte_offset = data->input_buffer_read_offset >> 3; if (data->current_buffer == 0) {
uint32_t packet_number = frame_byte_offset / 2048; data->input_buffer_0_valid = 0;
if (packet_number < data->input_buffer_0_packet_count - 1) { data->input_buffer_read_offset = 0;
// Okay. Skip to the beginning of the next packet. data->current_buffer = 1;
packet_number++; } else if (data->current_buffer == 1) {
data->input_buffer_read_offset = (packet_number * 2048 * 8) + 32; data->input_buffer_1_valid = 0;
continue; data->input_buffer_read_offset = 0;
} data->current_buffer = 0;
// Last frame of the block. Swap buffers if necessary.
if (data->current_buffer == 0) {
if (data->input_buffer_1_valid) {
data->current_buffer++;
} else {
// End of input.
data->input_buffer_read_offset = input_total_size * 8;
} }
data->input_buffer_0_valid = 0;
return;
} else { } else {
// End of input. // Advance the read offset.
data->current_buffer = 0; packet_number++;
data->input_buffer_1_valid = 0; uint8_t* packet = current_input_buffer + (packet_number * 2048);
data->input_buffer_read_offset = input_total_size * 8; uint32_t first_frame_offset = xma::GetPacketFrameOffset(packet);
return; if (first_frame_offset == -1) {
// Invalid packet (only contained a frame partial). Out of input.
if (data->current_buffer == 0) {
data->input_buffer_0_valid = 0;
data->current_buffer = 1;
} else if (data->current_buffer == 1) {
data->input_buffer_1_valid = 0;
data->current_buffer = 0;
}
data->input_buffer_read_offset = 0;
} else {
data->input_buffer_read_offset =
packet_number * 2048 * 8 + first_frame_offset;
}
} }
} else if (got_frame && len > 0) { }
if (got_frame) {
// Valid frame. // Valid frame.
// Check and see if we need to loop back to any spot. // Check and see if we need to loop back to any spot.
if (data->loop_count > 0 && if (data->loop_count > 0 &&
@ -352,53 +566,28 @@ void XmaContext::DecodePackets(XMA_CONTEXT_DATA* data) {
if (data->loop_count < 255) { if (data->loop_count < 255) {
data->loop_count--; data->loop_count--;
} }
} else { } else if (!partial && len > 0) {
data->input_buffer_read_offset += len; data->input_buffer_read_offset += len;
if (data->current_buffer == 0 &&
data->input_buffer_read_offset > input_buffer_0_size * 8) {
// Overflow? Setup next buffer.
data->current_buffer++;
data->input_buffer_0_valid = 0;
} else if (data->input_buffer_read_offset > input_total_size * 8) {
// Overflow! The game will fix up the read offset.
data->current_buffer = 0;
data->input_buffer_0_valid = 0;
data->input_buffer_1_valid = 0;
}
} }
} } else if (len < 0) {
// Did not get frame
if ((len < 0 || !got_frame) && frame_size != 0) { XELOGAPU("libav failed to decode a frame!");
// Oh no! Skip the frame and hope everything works. if (frame_size && frame_size != 0x7FFF) {
data->input_buffer_read_offset += frame_size; data->input_buffer_read_offset += frame_size;
data->input_buffer_read_offset = (uint32_t)xma2_correct_frame_offset( } else {
in0, input_buffer_0_size, data->input_buffer_read_offset); data->input_buffer_0_valid = 0;
data->input_buffer_1_valid = 0;
continue; }
} else if (len < 0 || !got_frame) {
// Did not get frame and could not get frame size.
data->input_buffer_0_valid = 0;
data->input_buffer_1_valid = 0;
return; return;
} }
// Sometimes we may run up to <15 bits before the next packet. If this
// happens, we need to automatically advance to the next frame.
// We'll ask the XMA2 decoder to do this for us, since it's more qualified.
data->input_buffer_read_offset = (uint32_t)xma2_correct_frame_offset(
in0, input_buffer_0_size, data->input_buffer_read_offset);
last_input_read_pos_ = data->input_buffer_read_offset; last_input_read_pos_ = data->input_buffer_read_offset;
if (data->input_buffer_read_offset == 0) {
// Invalid offset. Out of data.
data->input_buffer_0_valid = 0;
data->input_buffer_1_valid = 0;
}
// Copy to the output buffer.
// Successfully decoded a frame.
size_t written_bytes = 0;
if (got_frame) { if (got_frame) {
// Successfully decoded a frame.
// Copy to the output buffer.
size_t written_bytes = 0;
#ifdef DEBUG #ifdef DEBUG
// Validity checks. // Validity checks.
if (decoded_frame_->nb_samples > kSamplesPerFrame) { if (decoded_frame_->nb_samples > kSamplesPerFrame) {
@ -419,7 +608,7 @@ void XmaContext::DecodePackets(XMA_CONTEXT_DATA* data) {
#endif #endif
// Convert the frame. // Convert the frame.
ConvertFrame((const float**)decoded_frame_->data, context_->channels, ConvertFrame((const uint8_t**)decoded_frame_->data, context_->channels,
decoded_frame_->nb_samples, current_frame_); decoded_frame_->nb_samples, current_frame_);
current_frame_pos_ = 0; current_frame_pos_ = 0;
@ -435,15 +624,18 @@ void XmaContext::DecodePackets(XMA_CONTEXT_DATA* data) {
written_bytes = kBytesPerFrame * num_channels; written_bytes = kBytesPerFrame * num_channels;
} }
}
output_remaining_bytes -= written_bytes; output_written = true;
data->output_buffer_write_offset = output_rb.write_offset() / 256; output_remaining_bytes -= written_bytes;
data->output_buffer_write_offset = output_rb.write_offset() / 256;
}
} }
// The game will kick us again with a new output buffer later. // The game will kick us again with a new output buffer later.
// It's important that we only invalidate this if we actually wrote to it!! // It's important that we only invalidate this if we actually wrote to it!!
data->output_buffer_valid = 0; if (output_written) {
data->output_buffer_valid = 0;
}
} }
uint32_t XmaContext::GetFramePacketNumber(uint8_t* block, size_t size, uint32_t XmaContext::GetFramePacketNumber(uint8_t* block, size_t size,
@ -490,7 +682,7 @@ int XmaContext::PrepareDecoder(uint8_t* block, size_t size, int sample_rate,
return 0; return 0;
} }
bool XmaContext::ConvertFrame(const float** samples, int num_channels, bool XmaContext::ConvertFrame(const uint8_t** samples, int num_channels,
int num_samples, uint8_t* output_buffer) { int num_samples, uint8_t* output_buffer) {
// Loop through every sample, convert and drop it into the output array. // Loop through every sample, convert and drop it into the output array.
// If more than one channel, we need to interleave the samples from each // If more than one channel, we need to interleave the samples from each
@ -500,7 +692,7 @@ bool XmaContext::ConvertFrame(const float** samples, int num_channels,
for (int i = 0; i < num_samples; i++) { for (int i = 0; i < num_samples; i++) {
for (int j = 0; j < num_channels; j++) { for (int j = 0; j < num_channels; j++) {
// Select the appropriate array based on the current channel. // Select the appropriate array based on the current channel.
auto sample_array = samples[j]; auto sample_array = reinterpret_cast<const float*>(samples[j]);
// Raw sample should be within [-1, 1]. // Raw sample should be within [-1, 1].
// Clamp it, just in case. // Clamp it, just in case.
@ -516,216 +708,5 @@ bool XmaContext::ConvertFrame(const float** samples, int num_channels,
return true; return true;
} }
int XmaContext::StartPacket(XMA_CONTEXT_DATA* data) {
// Translate pointers for future use.
uint8_t* in0 = data->input_buffer_0_valid
? memory()->TranslatePhysical(data->input_buffer_0_ptr)
: nullptr;
uint8_t* in1 = data->input_buffer_1_valid
? memory()->TranslatePhysical(data->input_buffer_1_ptr)
: nullptr;
int sample_rate = GetSampleRate(data->sample_rate);
int channels = data->is_stereo ? 2 : 1;
// See if we've finished with the input.
// Block count is in packets, so expand by packet size.
uint32_t input_size_0_bytes = data->input_buffer_0_valid
? (data->input_buffer_0_packet_count) * 2048
: 0;
uint32_t input_size_1_bytes = data->input_buffer_1_valid
? (data->input_buffer_1_packet_count) * 2048
: 0;
// Total input size
uint32_t input_size_bytes = input_size_0_bytes + input_size_1_bytes;
// Calculate the first frame offset we need to decode.
uint32_t frame_offset_bits = (data->input_buffer_read_offset % (2048 * 8));
// Input read offset is in bits. Typically starts at 32 (4 bytes).
// "Sequence" offset - used internally for WMA Pro decoder.
// Just the read offset.
// NOTE: Read offset may not be at the first frame in a packet!
uint32_t packet_offset_bytes = (data->input_buffer_read_offset & ~0x7FF) / 8;
if (packet_offset_bytes % 2048 != 0) {
packet_offset_bytes -= packet_offset_bytes % 2048;
}
uint32_t input_remaining_bytes = input_size_bytes - packet_offset_bytes;
if (packet_offset_bytes >= input_size_bytes) {
// No more data available and no packet prepared.
return -1;
}
// Setup input offset and input buffer.
uint32_t input_offset_bytes = packet_offset_bytes;
auto input_buffer = in0;
if (packet_offset_bytes >= input_size_0_bytes && input_size_1_bytes) {
// Size overlap, select input buffer 1.
// TODO(DrChat): This needs testing.
input_offset_bytes -= input_size_0_bytes;
input_buffer = in1;
}
// Still have data to read.
auto packet = input_buffer + input_offset_bytes;
assert_true(input_offset_bytes % 2048 == 0);
PreparePacket(packet, packet_offset_bytes, kBytesPerPacket, sample_rate,
channels);
data->input_buffer_read_offset += kBytesPerPacket * 8;
input_remaining_bytes -= kBytesPerPacket;
if (input_remaining_bytes <= 0) {
// Used the last of the data but prepared a packet.
return 0;
}
return input_remaining_bytes;
}
int XmaContext::PreparePacket(uint8_t* input, size_t seq_offset, size_t size,
int sample_rate, int channels) {
if (size != kBytesPerPacket) {
// Invalid packet size!
assert_always();
return 1;
}
if (packet_->size > 0 || current_frame_pos_ != frame_samples_size_) {
// Haven't finished parsing another packet.
return 1;
}
// Packet metadata is always 1 for XMA2
assert_true((input[2] & 0x7) == 1);
packet_->data = input;
packet_->size = (int)size;
// Re-initialize the context with new sample rate and channels.
if (context_->sample_rate != sample_rate || context_->channels != channels) {
// We have to reopen the codec so it'll realloc whatever data it needs.
// TODO(DrChat): Find a better way.
avcodec_close(context_);
context_->sample_rate = sample_rate;
context_->channels = channels;
extra_data_.channel_mask =
channels == 2 ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO;
if (avcodec_open2(context_, codec_, NULL) < 0) {
XELOGE("XmaContext: Failed to reopen libav context");
return 1;
}
}
return 0;
}
void XmaContext::DiscardPacket() {
if (packet_->size > 0 || current_frame_pos_ != frame_samples_size_) {
packet_->data = 0;
packet_->size = 0;
current_frame_pos_ = frame_samples_size_;
}
}
int XmaContext::DecodePacket(uint8_t* output, size_t output_offset,
size_t output_size, size_t* read_bytes) {
size_t to_copy = 0;
size_t original_offset = output_offset;
if (read_bytes) {
*read_bytes = 0;
}
// We're holding onto an already-decoded frame. Copy it out.
if (current_frame_pos_ != frame_samples_size_) {
to_copy = std::min(output_size, frame_samples_size_ - current_frame_pos_);
memcpy(output + output_offset, current_frame_ + current_frame_pos_,
to_copy);
current_frame_pos_ += to_copy;
output_size -= to_copy;
output_offset += to_copy;
}
while (output_size > 0 && packet_->size > 0) {
int got_frame = 0;
// Decode the current frame.
int len =
avcodec_decode_audio4(context_, decoded_frame_, &got_frame, packet_);
if (len < 0) {
// Error in codec (bad sample rate or something).
return len;
}
if (read_bytes) {
*read_bytes += len;
}
// Offset by decoded length.
packet_->size -= len;
packet_->data += len;
packet_->dts = packet_->pts = AV_NOPTS_VALUE;
// Successfully decoded a frame.
if (got_frame) {
// Validity checks.
if (decoded_frame_->nb_samples > kSamplesPerFrame) {
return -2;
} else if (context_->sample_fmt != AV_SAMPLE_FMT_FLTP) {
return -3;
}
// Check the returned buffer size.
if (av_samples_get_buffer_size(NULL, context_->channels,
decoded_frame_->nb_samples,
context_->sample_fmt, 1) !=
context_->channels * decoded_frame_->nb_samples * sizeof(float)) {
return -4;
}
// Loop through every sample, convert and drop it into the output array.
// If more than one channel, the game wants the samples from each channel
// interleaved next to each other.
uint32_t o = 0;
for (int i = 0; i < decoded_frame_->nb_samples; i++) {
for (int j = 0; j < context_->channels; j++) {
// Select the appropriate array based on the current channel.
auto sample_array = reinterpret_cast<float*>(decoded_frame_->data[j]);
// Raw sample should be within [-1, 1].
// Clamp it, just in case.
float raw_sample = xe::saturate(sample_array[i]);
// Convert the sample and output it in big endian.
float scaled_sample = raw_sample * ((1 << 15) - 1);
int sample = static_cast<int>(scaled_sample);
xe::store_and_swap<uint16_t>(&current_frame_[o++ * 2],
sample & 0xFFFF);
}
}
current_frame_pos_ = 0;
// Total size of the frame's samples.
// Magic number 2 is sizeof an output sample.
frame_samples_size_ = context_->channels * decoded_frame_->nb_samples * 2;
to_copy = std::min(output_size, (size_t)(frame_samples_size_));
std::memcpy(output + output_offset, current_frame_, to_copy);
current_frame_pos_ += to_copy;
output_size -= to_copy;
output_offset += to_copy;
}
}
// Return number of bytes written.
return static_cast<int>(output_offset - original_offset);
}
} // namespace apu } // namespace apu
} // namespace xe } // namespace xe

View File

@ -167,12 +167,14 @@ class XmaContext {
private: private:
static int GetSampleRate(int id); static int GetSampleRate(int id);
size_t SavePartial(uint8_t* packet, uint32_t frame_offset_bits, size_t frame_size_bits, bool append);
bool ValidFrameOffset(uint8_t* block, size_t size_bytes, size_t frame_offset_bits);
void DecodePackets(XMA_CONTEXT_DATA* data); void DecodePackets(XMA_CONTEXT_DATA* data);
uint32_t GetFramePacketNumber(uint8_t* block, size_t size, size_t bit_offset); uint32_t GetFramePacketNumber(uint8_t* block, size_t size, size_t bit_offset);
int PrepareDecoder(uint8_t* block, size_t size, int sample_rate, int PrepareDecoder(uint8_t* block, size_t size, int sample_rate,
int channels); int channels);
bool ConvertFrame(const float** samples, int num_channels, int num_samples, bool ConvertFrame(const uint8_t** samples, int num_channels, int num_samples,
uint8_t* output_buffer); uint8_t* output_buffer);
int StartPacket(XMA_CONTEXT_DATA* data); int StartPacket(XMA_CONTEXT_DATA* data);
@ -199,6 +201,13 @@ class XmaContext {
AVPacket* packet_ = nullptr; AVPacket* packet_ = nullptr;
WmaProExtraData extra_data_; WmaProExtraData extra_data_;
bool partial_frame_saved_ = false;
bool partial_frame_size_known_ = false;
size_t partial_frame_total_size_bits_ = 0;
size_t partial_frame_start_offset_bits_ = 0;
size_t partial_frame_offset_bits_ = 0; // blah internal don't use this
std::vector<uint8_t> partial_frame_buffer_;
// If we didn't finish writing a frame to the output buffer, this is the offset. // If we didn't finish writing a frame to the output buffer, this is the offset.
size_t current_frame_pos_ = 0; size_t current_frame_pos_ = 0;
uint32_t last_input_read_pos_ = 0; // Last seen read buffer pos uint32_t last_input_read_pos_ = 0; // Last seen read buffer pos

View File

@ -82,7 +82,7 @@ void av_log_callback(void* avcl, int level, const char* fmt, va_list va) {
StringBuffer buff; StringBuffer buff;
buff.AppendVarargs(fmt, va); buff.AppendVarargs(fmt, va);
xe::LogLineVarargs(level_char, "libav: %s", buff.GetString()); xe::LogLineFormat(level_char, "libav: %s", buff.GetString());
} }
X_STATUS XmaDecoder::Setup(kernel::KernelState* kernel_state) { X_STATUS XmaDecoder::Setup(kernel::KernelState* kernel_state) {
@ -113,7 +113,7 @@ X_STATUS XmaDecoder::Setup(kernel::KernelState* kernel_state) {
} }
registers_.next_context = 1; registers_.next_context = 1;
//worker_running_ = true; worker_running_ = true;
worker_thread_ = kernel::object_ref<kernel::XHostThread>( worker_thread_ = kernel::object_ref<kernel::XHostThread>(
new kernel::XHostThread(kernel_state, 128 * 1024, 0, [this]() { new kernel::XHostThread(kernel_state, 128 * 1024, 0, [this]() {
WorkerThreadMain(); WorkerThreadMain();
@ -131,6 +131,11 @@ void XmaDecoder::WorkerThreadMain() {
for (uint32_t n = 0; n < kContextCount; n++) { for (uint32_t n = 0; n < kContextCount; n++) {
XmaContext& context = contexts_[n]; XmaContext& context = contexts_[n];
context.Work(); context.Work();
// TODO: Need thread safety to do this.
// Probably not too important though.
//registers_.current_context = n;
//registers_.next_context = (n + 1) % kContextCount;
} }
} }
} }
@ -209,7 +214,6 @@ uint32_t XmaDecoder::ReadRegister(uint32_t addr) {
// number // number
registers_.current_context = registers_.next_context; registers_.current_context = registers_.next_context;
registers_.next_context = (registers_.next_context + 1) % kContextCount; registers_.next_context = (registers_.next_context + 1) % kContextCount;
value = registers_.current_context;
} }
value = xe::byte_swap(value); value = xe::byte_swap(value);
@ -240,7 +244,6 @@ void XmaDecoder::WriteRegister(uint32_t addr, uint32_t value) {
uint32_t context_id = base_context_id + i; uint32_t context_id = base_context_id + i;
XmaContext& context = contexts_[context_id]; XmaContext& context = contexts_[context_id];
context.Enable(); context.Enable();
context.Work();
} }
} }

View File

@ -25,7 +25,12 @@ uint32_t GetPacketFrameCount(uint8_t* packet) {
// Get the first frame offset in bits // Get the first frame offset in bits
uint32_t GetPacketFrameOffset(uint8_t* packet) { uint32_t GetPacketFrameOffset(uint8_t* packet) {
return (uint16_t)((packet[0] << 13) | (packet[1] << 5) | (packet[2] >> 3)) + 32; uint32_t val = (uint16_t)(((packet[0] & 0x3) << 13) | (packet[1] << 5) | (packet[2] >> 3));
if (val == 0x7FFF) {
return -1;
} else {
return val + 32;
}
} }
uint32_t GetPacketMetadata(uint8_t* packet) { uint32_t GetPacketMetadata(uint8_t* packet) {

View File

@ -0,0 +1,143 @@
/**
******************************************************************************
* Xenia : Xbox 360 Emulator Research Project *
******************************************************************************
* Copyright 2015 Ben Vanik. All rights reserved. *
* Released under the BSD license - see LICENSE in the root for more details. *
******************************************************************************
*/
#include "xenia/base/bit_stream.h"
#include <algorithm>
#include "xenia/base/assert.h"
#include "xenia/base/byte_order.h"
namespace xe {
BitStream::BitStream(uint8_t* buffer, size_t size_in_bits)
: buffer_(buffer), size_bits_(size_in_bits) {}
BitStream::~BitStream() {}
void BitStream::SetOffset(size_t offset_bits) {
assert_false(offset_bits > size_bits_);
offset_bits_ = std::min(offset_bits, size_bits_);
}
size_t BitStream::BitsRemaining() { return size_bits_ - offset_bits_; }
uint64_t BitStream::Peek(size_t num_bits) {
// FYI: The reason we can't copy more than 57 bits is:
// 57 = 7 * 8 + 1 - that can only span a maximum of 8 bytes.
// We can't read in 9 bytes (easily), so we limit it.
assert_false(num_bits > 57);
assert_false(offset_bits_ + num_bits > size_bits_);
size_t offset_bytes = offset_bits_ >> 3;
size_t rel_offset_bits = offset_bits_ - (offset_bytes << 3);
// offset -->
// ..[junk]..| target bits |....[junk].............
uint64_t bits = *(uint64_t*)(buffer_ + offset_bytes);
// We need the data in little endian.
// TODO: Have a flag specifying endianness of data?
bits = xe::byte_swap(bits);
// Shift right
// .....[junk]........| target bits |
bits >>= 64 - (rel_offset_bits + num_bits);
// AND with mask
// ...................| target bits |
bits &= (1 << num_bits) - 1;
return bits;
}
uint64_t BitStream::Read(size_t num_bits) {
uint64_t val = Peek(num_bits);
Advance(num_bits);
return val;
}
// TODO: This is totally not tested!
bool BitStream::Write(uint64_t val, size_t num_bits) {
assert_false(num_bits > 57);
assert_false(offset_bits_ + num_bits >= size_bits_);
size_t offset_bytes = offset_bits_ >> 3;
size_t rel_offset_bits = offset_bits_ - (offset_bytes << 3);
// Construct a mask
uint64_t mask = (1 << num_bits) - 1;
mask <<= 64 - (rel_offset_bits + num_bits);
mask = ~mask;
// Shift the value left into position.
val <<= 64 - (rel_offset_bits + num_bits);
// offset ----->
// ....[junk]...| target bits w/ junk |....[junk]......
uint64_t bits = *(uint64_t*)(buffer_ + offset_bytes);
// AND with mask
// ....[junk]...| target bits (0) |........[junk]......
bits &= mask;
// OR with val
// ....[junk]...| target bits (val) |......[junk]......
bits |= val;
// Store into the bitstream.
*(uint64_t*)(buffer_ + offset_bytes) = bits;
// Advance the bitstream forward.
Advance(num_bits);
return true;
}
size_t BitStream::Copy(uint8_t* dest_buffer, size_t num_bits) {
size_t offset_bytes = offset_bits_ >> 3;
size_t rel_offset_bits = offset_bits_ - (offset_bytes << 3);
size_t bits_left = num_bits;
size_t out_offset_bytes = 0;
// First: Copy the first few bits up to a byte boundary.
if (rel_offset_bits) {
uint64_t bits = Peek(8 - rel_offset_bits);
dest_buffer[out_offset_bytes] |= (uint8_t)bits;
bits_left -= 8 - rel_offset_bits;
Advance(8 - rel_offset_bits);
out_offset_bytes++;
}
// Second: Use memcpy for the bytes left.
if (bits_left >= 8) {
std::memcpy(dest_buffer + out_offset_bytes,
buffer_ + offset_bytes + out_offset_bytes, bits_left / 8);
out_offset_bytes += (bits_left / 8);
Advance((bits_left / 8) * 8);
bits_left -= (bits_left / 8) * 8;
}
// Third: Copy the last few bits.
if (bits_left) {
uint64_t bits = Peek(bits_left);
bits <<= 8 - bits_left;
dest_buffer[out_offset_bytes] |= (uint8_t)bits;
Advance(bits_left);
}
// Return the bit offset to the copied bits.
return rel_offset_bits;
}
void BitStream::Advance(size_t num_bits) { SetOffset(offset_bits_ + num_bits); }
} // namespace xe

View File

@ -0,0 +1,44 @@
/**
******************************************************************************
* Xenia : Xbox 360 Emulator Research Project *
******************************************************************************
* Copyright 2015 Ben Vanik. All rights reserved. *
* Released under the BSD license - see LICENSE in the root for more details. *
******************************************************************************
*/
#ifndef XENIA_BASE_BIT_STREAM_H_
#define XENIA_BASE_BIT_STREAM_H_
#include <cstdint>
namespace xe {
class BitStream {
public:
BitStream(uint8_t* buffer, size_t size_in_bits);
~BitStream();
const uint8_t* buffer() const { return buffer_; }
uint8_t* buffer() { return buffer_; }
size_t offset_bits() const { return offset_bits_; }
size_t size_bits() const { return size_bits_; }
void Advance(size_t num_bits);
void SetOffset(size_t offset_bits);
size_t BitsRemaining();
// Note: num_bits MUST be in the range 0-57 (inclusive)
uint64_t Peek(size_t num_bits);
uint64_t Read(size_t num_bits);
bool Write(uint64_t val, size_t num_bits); // TODO: Not tested!
size_t Copy(uint8_t* dest_buffer, size_t num_bits);
private:
uint8_t* buffer_ = nullptr;
size_t offset_bits_ = 0;
size_t size_bits_ = 0;
};
} // namespace xe
#endif // XENIA_BASE_BIT_STREAM_H_

3
third_party/libav.lua vendored Normal file
View File

@ -0,0 +1,3 @@
group("third_party")
include("libav/libavcodec/premake5.lua")
include("libav/libavutil/premake5.lua")