Fix Vulkan texture drawing.

This commit is contained in:
Dr. Chat 2016-03-08 17:57:04 -06:00
parent af7fc20c38
commit 4e27539709
4 changed files with 310 additions and 202 deletions

View File

@ -164,33 +164,37 @@ void SpirvShaderTranslator::StartTranslation() {
push_constants_type, "push_consts");
// Texture bindings
Id samplers_t = b.makeSamplerType();
Id img_t[] = {
b.makeImageType(float_type_, spv::Dim::Dim1D, false, false, false, 1,
spv::ImageFormat::ImageFormatUnknown),
b.makeImageType(float_type_, spv::Dim::Dim2D, false, false, false, 1,
spv::ImageFormat::ImageFormatUnknown),
b.makeImageType(float_type_, spv::Dim::Dim3D, false, false, false, 1,
spv::ImageFormat::ImageFormatUnknown),
b.makeImageType(float_type_, spv::Dim::DimCube, false, false, false, 1,
spv::ImageFormat::ImageFormatUnknown)};
Id tex_t[] = {b.makeSampledImageType(b.makeImageType(
float_type_, spv::Dim::Dim1D, false, false, false, 1,
spv::ImageFormat::ImageFormatUnknown)),
b.makeSampledImageType(b.makeImageType(
float_type_, spv::Dim::Dim2D, false, false, false, 1,
spv::ImageFormat::ImageFormatUnknown)),
b.makeSampledImageType(b.makeImageType(
float_type_, spv::Dim::Dim3D, false, false, false, 1,
spv::ImageFormat::ImageFormatUnknown)),
b.makeSampledImageType(b.makeImageType(
float_type_, spv::Dim::DimCube, false, false, false, 1,
spv::ImageFormat::ImageFormatUnknown))};
Id samplers_a = b.makeArrayType(samplers_t, b.makeUintConstant(32), 0);
Id img_a_t[] = {b.makeArrayType(img_t[0], b.makeUintConstant(32), 0),
b.makeArrayType(img_t[1], b.makeUintConstant(32), 0),
b.makeArrayType(img_t[2], b.makeUintConstant(32), 0),
b.makeArrayType(img_t[3], b.makeUintConstant(32), 0)};
// Id samplers_a = b.makeArrayType(sampler_t, b.makeUintConstant(32), 0);
Id tex_a_t[] = {b.makeArrayType(tex_t[0], b.makeUintConstant(32), 0),
b.makeArrayType(tex_t[1], b.makeUintConstant(32), 0),
b.makeArrayType(tex_t[2], b.makeUintConstant(32), 0),
b.makeArrayType(tex_t[3], b.makeUintConstant(32), 0)};
samplers_ = b.createVariable(spv::StorageClass::StorageClassUniformConstant,
samplers_a, "samplers");
b.addDecoration(samplers_, spv::Decoration::DecorationDescriptorSet, 1);
b.addDecoration(samplers_, spv::Decoration::DecorationBinding, 0);
// TODO(DrChat): See texture_cache.cc - do we need separate samplers here?
// samplers_ =
// b.createVariable(spv::StorageClass::StorageClassUniformConstant,
// samplers_a, "samplers");
// b.addDecoration(samplers_, spv::Decoration::DecorationDescriptorSet, 1);
// b.addDecoration(samplers_, spv::Decoration::DecorationBinding, 0);
for (int i = 0; i < 4; i++) {
img_[i] = b.createVariable(spv::StorageClass::StorageClassUniformConstant,
img_a_t[i],
xe::format_string("images%dD", i + 1).c_str());
b.addDecoration(img_[i], spv::Decoration::DecorationDescriptorSet, 1);
b.addDecoration(img_[i], spv::Decoration::DecorationBinding, i + 1);
tex_[i] = b.createVariable(spv::StorageClass::StorageClassUniformConstant,
tex_a_t[i],
xe::format_string("textures%dD", i + 1).c_str());
b.addDecoration(tex_[i], spv::Decoration::DecorationDescriptorSet, 1);
b.addDecoration(tex_[i], spv::Decoration::DecorationBinding, i + 1);
}
// Interpolators.
@ -674,25 +678,15 @@ void SpirvShaderTranslator::ProcessTextureFetchInstruction(
switch (instr.opcode) {
case FetchOpcode::kTextureFetch: {
auto image_index = b.makeUintConstant(instr.operands[1].storage_index);
auto image_ptr =
auto texture_index = b.makeUintConstant(instr.operands[1].storage_index);
auto texture_ptr =
b.createAccessChain(spv::StorageClass::StorageClassUniformConstant,
img_[dim_idx], std::vector<Id>({image_index}));
auto sampler_ptr =
b.createAccessChain(spv::StorageClass::StorageClassUniformConstant,
samplers_, std::vector<Id>({image_index}));
auto image = b.createLoad(image_ptr);
auto sampler = b.createLoad(sampler_ptr);
assert(b.isImageType(b.getTypeId(image)));
assert(b.isSamplerType(b.getTypeId(sampler)));
auto sampled_image_type = b.makeSampledImageType(b.getImageType(image));
auto tex = b.createBinOp(spv::Op::OpSampledImage, sampled_image_type,
image, sampler);
tex_[dim_idx], std::vector<Id>({texture_index}));
auto texture = b.createLoad(texture_ptr);
spv::Builder::TextureParameters params = {0};
params.coords = src;
params.sampler = tex;
params.sampler = texture;
dest = b.createTextureCall(spv::NoPrecision, vec4_float_type_, false,
false, false, false, false, params);
} break;
@ -1741,10 +1735,18 @@ void SpirvShaderTranslator::StoreToResult(Id source_value_id,
auto n_dst = b.getNumTypeComponents(storage_type);
assert_true(n_el < n_dst);
constituents.push_back(source_value_id);
for (int i = n_el; i < n_dst; i++) {
// Pad with zeroes.
constituents.push_back(b.makeFloatConstant(0.f));
if (n_el == 1) {
// Smear scalar.
for (int i = 0; i < n_dst; i++) {
constituents.push_back(source_value_id);
}
} else {
// FIXME: This may not work as intended.
constituents.push_back(source_value_id);
for (int i = n_el; i < n_dst; i++) {
// Pad with zeroes.
constituents.push_back(b.makeFloatConstant(0.f));
}
}
source_value_id =

View File

@ -122,7 +122,7 @@ class SpirvShaderTranslator : public ShaderTranslator {
spv::Id interpolators_ = 0;
spv::Id frag_outputs_ = 0;
spv::Id samplers_ = 0;
spv::Id img_[4] = {0}; // Images {1D, 2D, 3D, Cube}
spv::Id tex_[4] = {0}; // Images {1D, 2D, 3D, Cube}
// Map of {binding -> {offset -> spv input}}
std::map<uint32_t, std::map<uint32_t, spv::Id>> vertex_binding_map_;

View File

@ -42,7 +42,7 @@ TextureCache::TextureCache(RegisterFile* register_file,
VkDescriptorPoolSize pool_sizes[2];
pool_sizes[0].type = VK_DESCRIPTOR_TYPE_SAMPLER;
pool_sizes[0].descriptorCount = 32;
pool_sizes[1].type = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE;
pool_sizes[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
pool_sizes[1].descriptorCount = 32;
descriptor_pool_info.poolSizeCount = 2;
descriptor_pool_info.pPoolSizes = pool_sizes;
@ -63,7 +63,7 @@ TextureCache::TextureCache(RegisterFile* register_file,
for (int i = 0; i < 4; ++i) {
auto& texture_binding = bindings[1 + i];
texture_binding.binding = 1 + i;
texture_binding.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE;
texture_binding.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
texture_binding.descriptorCount = kMaxTextureSamplers;
texture_binding.stageFlags =
VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT;
@ -94,35 +94,37 @@ TextureCache::TextureCache(RegisterFile* register_file,
err =
vkCreateBuffer(*device_, &staging_buffer_info, nullptr, &staging_buffer_);
CheckResult(err, "vkCreateBuffer");
if (err == VK_SUCCESS) {
VkMemoryRequirements staging_buffer_reqs;
vkGetBufferMemoryRequirements(*device_, staging_buffer_,
&staging_buffer_reqs);
staging_buffer_mem_ = device_->AllocateMemory(staging_buffer_reqs);
assert_not_null(staging_buffer_mem_);
err = vkBindBufferMemory(*device_, staging_buffer_, staging_buffer_mem_, 0);
CheckResult(err, "vkBindBufferMemory");
// Upload a grid into the staging buffer.
uint32_t* gpu_data = nullptr;
err =
vkMapMemory(*device_, staging_buffer_mem_, 0, staging_buffer_info.size,
0, reinterpret_cast<void**>(&gpu_data));
CheckResult(err, "vkMapMemory");
int width = 2048;
int height = 2048;
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
gpu_data[y * width + x] =
((y % 32 < 16) ^ (x % 32 >= 16)) ? 0xFF0000FF : 0xFFFFFFFF;
}
}
vkUnmapMemory(*device_, staging_buffer_mem_);
if (err != VK_SUCCESS) {
// This isn't good.
assert_always();
return;
}
VkMemoryRequirements staging_buffer_reqs;
vkGetBufferMemoryRequirements(*device_, staging_buffer_,
&staging_buffer_reqs);
staging_buffer_mem_ = device_->AllocateMemory(staging_buffer_reqs);
assert_not_null(staging_buffer_mem_);
err = vkBindBufferMemory(*device_, staging_buffer_, staging_buffer_mem_, 0);
CheckResult(err, "vkBindBufferMemory");
// Upload a grid into the staging buffer.
uint32_t* gpu_data = nullptr;
err = vkMapMemory(*device_, staging_buffer_mem_, 0, staging_buffer_info.size,
0, reinterpret_cast<void**>(&gpu_data));
CheckResult(err, "vkMapMemory");
int width = 2048;
int height = 2048;
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
gpu_data[y * width + x] =
((y % 32 < 16) ^ (x % 32 >= 16)) ? 0xFF0000FF : 0xFFFFFFFF;
}
}
vkUnmapMemory(*device_, staging_buffer_mem_);
}
TextureCache::~TextureCache() {
@ -131,9 +133,141 @@ TextureCache::~TextureCache() {
vkDestroyDescriptorPool(*device_, descriptor_pool_, nullptr);
}
TextureCache::Texture* TextureCache::AllocateTexture(
const TextureInfo& texture_info) {
// Create an image first.
VkImageCreateInfo image_info = {};
image_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
switch (texture_info.dimension) {
case Dimension::k1D:
image_info.imageType = VK_IMAGE_TYPE_1D;
break;
case Dimension::k2D:
image_info.imageType = VK_IMAGE_TYPE_2D;
break;
case Dimension::k3D:
image_info.imageType = VK_IMAGE_TYPE_3D;
break;
case Dimension::kCube:
image_info.imageType = VK_IMAGE_TYPE_2D;
image_info.flags |= VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
break;
default:
assert_unhandled_case(texture_info.dimension);
return nullptr;
}
// TODO: Format
image_info.format = VK_FORMAT_R8G8B8A8_UNORM;
image_info.extent = {texture_info.width + 1, texture_info.height + 1,
texture_info.depth + 1};
image_info.mipLevels = 1;
image_info.arrayLayers = 1;
image_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_info.usage = VK_IMAGE_USAGE_SAMPLED_BIT |
VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
VK_IMAGE_USAGE_TRANSFER_DST_BIT;
image_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
image_info.queueFamilyIndexCount = 0;
image_info.pQueueFamilyIndices = nullptr;
image_info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
VkImage image;
auto err = vkCreateImage(*device_, &image_info, nullptr, &image);
CheckResult(err, "vkCreateImage");
VkMemoryRequirements mem_requirements;
vkGetImageMemoryRequirements(*device_, image, &mem_requirements);
// TODO: Use a circular buffer or something else to allocate this memory.
// The device has a limited amount (around 64) of memory allocations that we
// can make.
// Now that we have the size, back the image with GPU memory.
auto memory = device_->AllocateMemory(mem_requirements, 0);
if (!memory) {
// Crap.
assert_always();
vkDestroyImage(*device_, image, nullptr);
return nullptr;
}
err = vkBindImageMemory(*device_, image, memory, 0);
CheckResult(err, "vkBindImageMemory");
auto texture = new Texture();
texture->format = image_info.format;
texture->image = image;
texture->image_layout = image_info.initialLayout;
texture->image_memory = memory;
texture->memory_offset = 0;
texture->memory_size = mem_requirements.size;
texture->texture_info = texture_info;
// Create a default view, just for kicks.
VkImageViewCreateInfo view_info;
view_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
view_info.pNext = nullptr;
view_info.flags = 0;
view_info.image = image;
view_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
view_info.format = image_info.format;
view_info.components = {
VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B,
VK_COMPONENT_SWIZZLE_A,
};
view_info.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
VkImageView view;
err = vkCreateImageView(*device_, &view_info, nullptr, &view);
CheckResult(err, "vkCreateImageView");
if (err == VK_SUCCESS) {
auto texture_view = std::make_unique<TextureView>();
texture_view->texture = texture;
texture_view->view = view;
texture->views.push_back(std::move(texture_view));
}
return texture;
}
bool TextureCache::FreeTexture(Texture* texture) {
// TODO(DrChat)
return false;
}
TextureCache::Texture* TextureCache::DemandResolveTexture(
const TextureInfo& texture_info, TextureFormat format,
uint32_t* out_offset_x, uint32_t* out_offset_y) {
// Check to see if we've already used a texture at this location.
auto texture = LookupAddress(
texture_info.guest_address, texture_info.size_2d.block_width,
texture_info.size_2d.block_height, format, out_offset_x, out_offset_y);
if (texture) {
return texture;
}
// Check resolve textures.
for (auto it = resolve_textures_.begin(); it != resolve_textures_.end();
++it) {
texture = (*it).get();
if (texture_info.guest_address == texture->texture_info.guest_address &&
texture_info.size_2d.logical_width ==
texture->texture_info.size_2d.logical_width &&
texture_info.size_2d.logical_height ==
texture->texture_info.size_2d.logical_height) {
// Exact match.
return texture;
}
}
// No texture at this location. Make a new one.
texture = AllocateTexture(texture_info);
resolve_textures_.push_back(std::unique_ptr<Texture>(texture));
return texture;
}
TextureCache::Texture* TextureCache::Demand(const TextureInfo& texture_info,
VkCommandBuffer command_buffer) {
// Run a tight loop to scan for an existing texture.
// Run a tight loop to scan for an exact match existing texture.
auto texture_hash = texture_info.hash();
for (auto it = textures_.find(texture_hash); it != textures_.end(); ++it) {
if (it->second->texture_info == texture_info) {
@ -141,15 +275,25 @@ TextureCache::Texture* TextureCache::Demand(const TextureInfo& texture_info,
}
}
// Though we didn't find an exact match, that doesn't mean we're out of the
// woods yet. This texture could either be a portion of another texture or
// vice versa. Check for overlap before uploading.
for (auto it = textures_.begin(); it != textures_.end(); ++it) {
// Check resolve textures.
for (auto it = resolve_textures_.begin(); it != resolve_textures_.end();
++it) {
auto texture = (*it).get();
if (texture_info.guest_address == texture->texture_info.guest_address &&
texture_info.size_2d.logical_width ==
texture->texture_info.size_2d.logical_width &&
texture_info.size_2d.logical_height ==
texture->texture_info.size_2d.logical_height) {
// Exact match.
// TODO: Lazy match
texture->texture_info = texture_info;
textures_[texture_hash] = std::move(*it);
}
}
if (!command_buffer) {
// Texture not found and no command buffer was passed allowing us to upload
// a new one.
// Texture not found and no command buffer was passed, preventing us from
// uploading a new one.
return nullptr;
}
@ -167,6 +311,12 @@ TextureCache::Texture* TextureCache::Demand(const TextureInfo& texture_info,
return nullptr;
}
// Though we didn't find an exact match, that doesn't mean we're out of the
// woods yet. This texture could either be a portion of another texture or
// vice versa. Copy any overlapping textures into this texture.
for (auto it = textures_.begin(); it != textures_.end(); ++it) {
}
textures_[texture_hash] = std::unique_ptr<Texture>(texture);
return texture;
@ -199,7 +349,7 @@ TextureCache::Sampler* TextureCache::Demand(const SamplerInfo& sampler_info) {
sampler_create_info.anisotropyEnable = VK_FALSE;
sampler_create_info.maxAnisotropy = 1.0f;
sampler_create_info.compareEnable = VK_FALSE;
sampler_create_info.compareOp = VK_COMPARE_OP_ALWAYS;
sampler_create_info.compareOp = VK_COMPARE_OP_NEVER;
sampler_create_info.minLod = 0.0f;
sampler_create_info.maxLod = 0.0f;
sampler_create_info.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK;
@ -220,95 +370,21 @@ TextureCache::Sampler* TextureCache::Demand(const SamplerInfo& sampler_info) {
return sampler;
}
TextureCache::Texture* TextureCache::AllocateTexture(TextureInfo texture_info) {
// Create an image first.
VkImageCreateInfo image_info = {};
image_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
switch (texture_info.dimension) {
case Dimension::k1D:
image_info.imageType = VK_IMAGE_TYPE_1D;
break;
case Dimension::k2D:
image_info.imageType = VK_IMAGE_TYPE_2D;
break;
case Dimension::k3D:
image_info.imageType = VK_IMAGE_TYPE_3D;
break;
case Dimension::kCube:
image_info.imageType = VK_IMAGE_TYPE_2D;
image_info.flags |= VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
break;
default:
assert_unhandled_case(texture_info.dimension);
return nullptr;
TextureCache::Texture* TextureCache::LookupAddress(
uint32_t guest_address, uint32_t width, uint32_t height,
TextureFormat format, uint32_t* offset_x, uint32_t* offset_y) {
for (auto it = textures_.begin(); it != textures_.end(); ++it) {
const auto& texture_info = it->second->texture_info;
if (texture_info.guest_address == guest_address &&
texture_info.dimension == Dimension::k2D &&
texture_info.size_2d.input_width == width &&
texture_info.size_2d.input_height == height) {
return it->second.get();
}
}
// TODO: Format
image_info.format = VK_FORMAT_R8G8B8A8_UNORM;
image_info.extent = {texture_info.width + 1, texture_info.height + 1,
texture_info.depth + 1};
image_info.mipLevels = 1;
image_info.arrayLayers = 1;
image_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_info.usage =
VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
image_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
image_info.queueFamilyIndexCount = 0;
image_info.pQueueFamilyIndices = nullptr;
image_info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
VkImage image;
auto err = vkCreateImage(*device_, &image_info, nullptr, &image);
CheckResult(err, "vkCreateImage");
VkMemoryRequirements mem_requirements;
vkGetImageMemoryRequirements(*device_, image, &mem_requirements);
// TODO: Use a circular buffer or something else to allocate this memory.
// The device has a limited amount (around 64) of memory allocations that we
// can make.
// Now that we have the size, back the image with GPU memory.
auto memory = device_->AllocateMemory(mem_requirements, 0);
err = vkBindImageMemory(*device_, image, memory, 0);
CheckResult(err, "vkBindImageMemory");
auto texture = new Texture();
texture->format = image_info.format;
texture->image = image;
texture->memory_offset = 0;
texture->memory_size = mem_requirements.size;
texture->texture_info = texture_info;
texture->texture_memory = memory;
// Create a default view, just for kicks.
VkImageViewCreateInfo view_info;
view_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
view_info.pNext = nullptr;
view_info.flags = 0;
view_info.image = image;
view_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
view_info.format = image_info.format;
view_info.components = {
VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B,
VK_COMPONENT_SWIZZLE_A,
};
view_info.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
VkImageView view;
err = vkCreateImageView(*device_, &view_info, nullptr, &view);
CheckResult(err, "vkCreateImageView");
if (err == VK_SUCCESS) {
auto texture_view = std::make_unique<TextureView>();
texture_view->texture = texture;
texture_view->view = view;
texture->views.push_back(std::move(texture_view));
}
return texture;
}
bool TextureCache::FreeTexture(Texture* texture) {
// TODO(DrChat)
return false;
// TODO: Try to match at an offset.
return nullptr;
}
bool TextureCache::UploadTexture2D(VkCommandBuffer command_buffer,
@ -359,8 +435,8 @@ bool TextureCache::UploadTexture2D(VkCommandBuffer command_buffer,
// For now, just transfer the grid we uploaded earlier into the texture.
VkBufferImageCopy copy_region;
copy_region.bufferOffset = 0;
copy_region.bufferRowLength = 0;
copy_region.bufferImageHeight = 0;
copy_region.bufferRowLength = 2048;
copy_region.bufferImageHeight = 2048;
copy_region.imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1};
copy_region.imageOffset = {0, 0, 0};
copy_region.imageExtent = {dest->texture_info.width + 1,
@ -378,6 +454,7 @@ bool TextureCache::UploadTexture2D(VkCommandBuffer command_buffer,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, 0, 0, nullptr, 0,
nullptr, 1, &barrier);
dest->image_layout = barrier.newLayout;
return true;
}
@ -427,6 +504,8 @@ VkDescriptorSet TextureCache::PrepareTextureSet(
VkWriteDescriptorSet descriptor_writes[4];
std::memset(descriptor_writes, 0, sizeof(descriptor_writes));
uint32_t descriptor_write_count = 0;
/*
// TODO(DrChat): Do we really need to separate samplers and images here?
if (update_set_info->sampler_write_count) {
auto& sampler_write = descriptor_writes[descriptor_write_count++];
sampler_write.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
@ -438,6 +517,7 @@ VkDescriptorSet TextureCache::PrepareTextureSet(
sampler_write.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLER;
sampler_write.pImageInfo = update_set_info->sampler_infos;
}
*/
if (update_set_info->image_1d_write_count) {
auto& image_write = descriptor_writes[descriptor_write_count++];
image_write.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
@ -446,7 +526,7 @@ VkDescriptorSet TextureCache::PrepareTextureSet(
image_write.dstBinding = 1;
image_write.dstArrayElement = 0;
image_write.descriptorCount = update_set_info->image_1d_write_count;
image_write.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE;
image_write.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
image_write.pImageInfo = update_set_info->image_1d_infos;
}
if (update_set_info->image_2d_write_count) {
@ -457,7 +537,7 @@ VkDescriptorSet TextureCache::PrepareTextureSet(
image_write.dstBinding = 2;
image_write.dstArrayElement = 0;
image_write.descriptorCount = update_set_info->image_2d_write_count;
image_write.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE;
image_write.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
image_write.pImageInfo = update_set_info->image_2d_infos;
}
if (update_set_info->image_3d_write_count) {
@ -468,7 +548,7 @@ VkDescriptorSet TextureCache::PrepareTextureSet(
image_write.dstBinding = 3;
image_write.dstArrayElement = 0;
image_write.descriptorCount = update_set_info->image_3d_write_count;
image_write.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE;
image_write.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
image_write.pImageInfo = update_set_info->image_3d_infos;
}
if (update_set_info->image_cube_write_count) {
@ -479,7 +559,7 @@ VkDescriptorSet TextureCache::PrepareTextureSet(
image_write.dstBinding = 4;
image_write.dstArrayElement = 0;
image_write.descriptorCount = update_set_info->image_cube_write_count;
image_write.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE;
image_write.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
image_write.pImageInfo = update_set_info->image_cube_infos;
}
if (descriptor_write_count) {
@ -542,14 +622,11 @@ bool TextureCache::SetupTextureBinding(UpdateSetInfo* update_set_info,
trace_writer_->WriteMemoryRead(texture_info.guest_address,
texture_info.input_length);
auto& sampler_write =
update_set_info->sampler_infos[update_set_info->sampler_write_count++];
sampler_write.sampler = sampler->sampler;
auto& image_write =
update_set_info->image_2d_infos[update_set_info->image_2d_write_count++];
image_write.imageView = texture->views[0]->view;
image_write.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
image_write.sampler = sampler->sampler;
return true;
}

View File

@ -28,6 +28,30 @@ namespace vulkan {
//
class TextureCache {
public:
struct TextureView;
// This represents an uploaded Vulkan texture.
struct Texture {
TextureInfo texture_info;
std::vector<std::unique_ptr<TextureView>> views;
// True if we know all info about this texture, false otherwise.
// (e.g. we resolve to system memory and may not know the full details about
// this texture)
bool full_texture;
VkFormat format;
VkImage image;
VkImageLayout image_layout;
VkDeviceMemory image_memory;
VkDeviceSize memory_offset;
VkDeviceSize memory_size;
};
struct TextureView {
Texture* texture;
VkImageView view;
};
TextureCache(RegisterFile* register_file, TraceWriter* trace_writer,
ui::vulkan::VulkanDevice* device);
~TextureCache();
@ -49,28 +73,24 @@ class TextureCache {
// TODO(benvanik): Resolve.
// TODO(benvanik): ReadTexture.
// Demands a texture for the purpose of resolving from EDRAM. This either
// creates a new texture or returns a previously created texture. texture_info
// is not required to be completely filled out, just guest_address and size.
//
// It's possible that this may return an image that is larger than the
// requested size (e.g. resolving into a bigger texture) or an image that
// must have an offset applied. If so, the caller must handle this.
// At the very least, it's guaranteed that the image will be large enough to
// hold the requested size.
Texture* DemandResolveTexture(const TextureInfo& texture_info,
TextureFormat format, uint32_t* out_offset_x,
uint32_t* out_offset_y);
// Clears all cached content.
void ClearCache();
private:
struct UpdateSetInfo;
struct TextureView;
// This represents an uploaded Vulkan texture.
struct Texture {
TextureInfo texture_info;
VkDeviceMemory texture_memory;
VkDeviceSize memory_offset;
VkDeviceSize memory_size;
VkImage image;
VkFormat format;
std::vector<std::unique_ptr<TextureView>> views;
};
struct TextureView {
Texture* texture;
VkImageView view;
};
// Cached Vulkan sampler.
struct Sampler {
@ -78,18 +98,28 @@ class TextureCache {
VkSampler sampler;
};
// Allocates a new texture and memory to back it on the GPU.
Texture* AllocateTexture(const TextureInfo& texture_info);
bool FreeTexture(Texture* texture);
// Demands a texture. If command_buffer is null and the texture hasn't been
// uploaded to graphics memory already, we will return null and bail.
Texture* Demand(const TextureInfo& texture_info,
VkCommandBuffer command_buffer = nullptr);
Sampler* Demand(const SamplerInfo& sampler_info);
// Allocates a new texture and memory to back it on the GPU.
Texture* AllocateTexture(TextureInfo texture_info);
bool FreeTexture(Texture* texture);
// Looks for a texture either containing or matching these parameters.
// Caller is responsible for checking if the texture returned is an exact
// match or just contains the texture given by the parameters.
// If offset_x and offset_y are not null, this may return a texture that
// contains this image at an offset.
Texture* LookupAddress(uint32_t guest_address, uint32_t width,
uint32_t height, TextureFormat format,
uint32_t* offset_x, uint32_t* offset_y);
// Queues commands to upload a texture from system memory, applying any
// conversions necessary.
// conversions necessary. This may flush the command buffer to the GPU if we
// run out of staging memory.
bool UploadTexture2D(VkCommandBuffer command_buffer, Texture* dest,
TextureInfo src);
@ -112,13 +142,12 @@ class TextureCache {
VkDeviceMemory staging_buffer_mem_ = nullptr;
std::unordered_map<uint64_t, std::unique_ptr<Texture>> textures_;
std::unordered_map<uint64_t, std::unique_ptr<Sampler>> samplers_;
std::vector<std::unique_ptr<Texture>> resolve_textures_;
struct UpdateSetInfo {
// Bitmap of all 32 fetch constants and whether they have been setup yet.
// This prevents duplication across the vertex and pixel shader.
uint32_t has_setup_fetch_mask;
uint32_t sampler_write_count = 0;
VkDescriptorImageInfo sampler_infos[32];
uint32_t image_1d_write_count = 0;
VkDescriptorImageInfo image_1d_infos[32];
uint32_t image_2d_write_count = 0;