Merge branch 'master' into vulkan

This commit is contained in:
Triang3l 2020-11-26 22:28:47 +03:00
commit 43d11816b8
61 changed files with 767 additions and 314 deletions

3
.gitmodules vendored
View File

@ -61,6 +61,9 @@
[submodule "third_party/premake-androidmk"] [submodule "third_party/premake-androidmk"]
path = third_party/premake-androidmk path = third_party/premake-androidmk
url = https://github.com/Triang3l/premake-androidmk.git url = https://github.com/Triang3l/premake-androidmk.git
[submodule "third_party/date"]
path = third_party/date
url = https://github.com/HowardHinnant/date.git
[submodule "third_party/glslang"] [submodule "third_party/glslang"]
path = third_party/glslang path = third_party/glslang
url = https://github.com/KhronosGroup/glslang.git url = https://github.com/KhronosGroup/glslang.git

View File

@ -22,6 +22,11 @@ namespace xe {
class Win32MappedMemory : public MappedMemory { class Win32MappedMemory : public MappedMemory {
public: public:
// CreateFile returns INVALID_HANDLE_VALUE in case of failure.
static constexpr HANDLE kFileHandleInvalid = INVALID_HANDLE_VALUE;
// CreateFileMapping returns nullptr in case of failure.
static constexpr HANDLE kMappingHandleInvalid = nullptr;
Win32MappedMemory(const std::filesystem::path& path, Mode mode) Win32MappedMemory(const std::filesystem::path& path, Mode mode)
: MappedMemory(path, mode) {} : MappedMemory(path, mode) {}
@ -29,10 +34,10 @@ class Win32MappedMemory : public MappedMemory {
if (data_) { if (data_) {
UnmapViewOfFile(data_); UnmapViewOfFile(data_);
} }
if (mapping_handle != INVALID_HANDLE_VALUE) { if (mapping_handle != kMappingHandleInvalid) {
CloseHandle(mapping_handle); CloseHandle(mapping_handle);
} }
if (file_handle != INVALID_HANDLE_VALUE) { if (file_handle != kFileHandleInvalid) {
CloseHandle(file_handle); CloseHandle(file_handle);
} }
} }
@ -42,11 +47,11 @@ class Win32MappedMemory : public MappedMemory {
UnmapViewOfFile(data_); UnmapViewOfFile(data_);
data_ = nullptr; data_ = nullptr;
} }
if (mapping_handle != INVALID_HANDLE_VALUE) { if (mapping_handle != kMappingHandleInvalid) {
CloseHandle(mapping_handle); CloseHandle(mapping_handle);
mapping_handle = INVALID_HANDLE_VALUE; mapping_handle = kMappingHandleInvalid;
} }
if (file_handle != INVALID_HANDLE_VALUE) { if (file_handle != kFileHandleInvalid) {
if (truncate_size) { if (truncate_size) {
LONG distance_high = truncate_size >> 32; LONG distance_high = truncate_size >> 32;
SetFilePointer(file_handle, truncate_size & 0xFFFFFFFF, &distance_high, SetFilePointer(file_handle, truncate_size & 0xFFFFFFFF, &distance_high,
@ -55,7 +60,7 @@ class Win32MappedMemory : public MappedMemory {
} }
CloseHandle(file_handle); CloseHandle(file_handle);
file_handle = INVALID_HANDLE_VALUE; file_handle = kFileHandleInvalid;
} }
} }
@ -65,8 +70,13 @@ class Win32MappedMemory : public MappedMemory {
size_t aligned_length = length + (offset - aligned_offset); size_t aligned_length = length + (offset - aligned_offset);
UnmapViewOfFile(data_); UnmapViewOfFile(data_);
#if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)
data_ = MapViewOfFile(mapping_handle, view_access_, aligned_offset >> 32, data_ = MapViewOfFile(mapping_handle, view_access_, aligned_offset >> 32,
aligned_offset & 0xFFFFFFFF, aligned_length); aligned_offset & 0xFFFFFFFF, aligned_length);
#else
data_ = MapViewOfFileFromApp(mapping_handle, ULONG(view_access_),
ULONG64(aligned_offset), aligned_length);
#endif
if (!data_) { if (!data_) {
return false; return false;
} }
@ -83,8 +93,8 @@ class Win32MappedMemory : public MappedMemory {
return true; return true;
} }
HANDLE file_handle = INVALID_HANDLE_VALUE; HANDLE file_handle = kFileHandleInvalid;
HANDLE mapping_handle = INVALID_HANDLE_VALUE; HANDLE mapping_handle = kMappingHandleInvalid;
DWORD view_access_ = 0; DWORD view_access_ = 0;
}; };
@ -125,20 +135,32 @@ std::unique_ptr<MappedMemory> MappedMemory::Open(
mm->file_handle = CreateFile(path.c_str(), file_access, file_share, nullptr, mm->file_handle = CreateFile(path.c_str(), file_access, file_share, nullptr,
create_mode, FILE_ATTRIBUTE_NORMAL, nullptr); create_mode, FILE_ATTRIBUTE_NORMAL, nullptr);
if (mm->file_handle == INVALID_HANDLE_VALUE) { if (mm->file_handle == Win32MappedMemory::kFileHandleInvalid) {
return nullptr; return nullptr;
} }
mm->mapping_handle = CreateFileMapping(mm->file_handle, nullptr, #if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)
mapping_protect, aligned_length >> 32, mm->mapping_handle = CreateFileMapping(
aligned_length & 0xFFFFFFFF, nullptr); mm->file_handle, nullptr, mapping_protect, DWORD(aligned_length >> 32),
if (mm->mapping_handle == INVALID_HANDLE_VALUE) { DWORD(aligned_length), nullptr);
#else
mm->mapping_handle =
CreateFileMappingFromApp(mm->file_handle, nullptr, ULONG(mapping_protect),
ULONG64(aligned_length), nullptr);
#endif
if (mm->mapping_handle == Win32MappedMemory::kMappingHandleInvalid) {
return nullptr; return nullptr;
} }
#if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)
mm->data_ = reinterpret_cast<uint8_t*>(MapViewOfFile( mm->data_ = reinterpret_cast<uint8_t*>(MapViewOfFile(
mm->mapping_handle, view_access, static_cast<DWORD>(aligned_offset >> 32), mm->mapping_handle, view_access, DWORD(aligned_offset >> 32),
static_cast<DWORD>(aligned_offset & 0xFFFFFFFF), aligned_length)); DWORD(aligned_offset), aligned_length));
#else
mm->data_ = reinterpret_cast<uint8_t*>(
MapViewOfFileFromApp(mm->mapping_handle, ULONG(view_access),
ULONG64(aligned_offset), aligned_length));
#endif
if (!mm->data_) { if (!mm->data_) {
return nullptr; return nullptr;
} }
@ -203,8 +225,8 @@ class Win32ChunkedMappedMemoryWriter : public ChunkedMappedMemoryWriter {
class Chunk { class Chunk {
public: public:
explicit Chunk(size_t capacity) explicit Chunk(size_t capacity)
: file_handle_(0), : file_handle_(Win32MappedMemory::kFileHandleInvalid),
mapping_handle_(0), mapping_handle_(Win32MappedMemory::kMappingHandleInvalid),
data_(nullptr), data_(nullptr),
offset_(0), offset_(0),
capacity_(capacity), capacity_(capacity),
@ -214,10 +236,10 @@ class Win32ChunkedMappedMemoryWriter : public ChunkedMappedMemoryWriter {
if (data_) { if (data_) {
UnmapViewOfFile(data_); UnmapViewOfFile(data_);
} }
if (mapping_handle_) { if (mapping_handle_ != Win32MappedMemory::kMappingHandleInvalid) {
CloseHandle(mapping_handle_); CloseHandle(mapping_handle_);
} }
if (file_handle_) { if (file_handle_ != Win32MappedMemory::kFileHandleInvalid) {
CloseHandle(file_handle_); CloseHandle(file_handle_);
} }
} }
@ -231,14 +253,20 @@ class Win32ChunkedMappedMemoryWriter : public ChunkedMappedMemoryWriter {
file_handle_ = CreateFile(path.c_str(), file_access, file_share, nullptr, file_handle_ = CreateFile(path.c_str(), file_access, file_share, nullptr,
create_mode, FILE_ATTRIBUTE_NORMAL, nullptr); create_mode, FILE_ATTRIBUTE_NORMAL, nullptr);
if (!file_handle_) { if (file_handle_ == Win32MappedMemory::kFileHandleInvalid) {
return false; return false;
} }
#if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)
mapping_handle_ = mapping_handle_ =
CreateFileMapping(file_handle_, nullptr, mapping_protect, 0, CreateFileMapping(file_handle_, nullptr, mapping_protect,
static_cast<DWORD>(capacity_), nullptr); DWORD(capacity_ >> 32), DWORD(capacity_), nullptr);
if (!mapping_handle_) { #else
mapping_handle_ = CreateFileMappingFromApp(file_handle_, nullptr,
ULONG(mapping_protect),
ULONG64(capacity_), nullptr);
#endif
if (mapping_handle_ == Win32MappedMemory::kMappingHandleInvalid) {
return false; return false;
} }
@ -247,10 +275,32 @@ class Win32ChunkedMappedMemoryWriter : public ChunkedMappedMemoryWriter {
if (low_address_space) { if (low_address_space) {
bool successful = false; bool successful = false;
data_ = reinterpret_cast<uint8_t*>(0x10000000); data_ = reinterpret_cast<uint8_t*>(0x10000000);
#if !WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)
HANDLE process = GetCurrentProcess();
#endif
for (int i = 0; i < 1000; ++i) { for (int i = 0; i < 1000; ++i) {
#if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)
if (MapViewOfFileEx(mapping_handle_, view_access, 0, 0, capacity_, if (MapViewOfFileEx(mapping_handle_, view_access, 0, 0, capacity_,
data_)) { data_)) {
successful = true; successful = true;
}
#else
// VirtualAlloc2FromApp and MapViewOfFile3FromApp were added in
// 10.0.17134.0.
// https://docs.microsoft.com/en-us/uwp/win32-and-com/win32-apis
if (VirtualAlloc2FromApp(process, data_, capacity_,
MEM_RESERVE | MEM_RESERVE_PLACEHOLDER,
PAGE_NOACCESS, nullptr, 0)) {
if (MapViewOfFile3FromApp(mapping_handle_, process, data_, 0,
capacity_, MEM_REPLACE_PLACEHOLDER,
ULONG(mapping_protect), nullptr, 0)) {
successful = true;
} else {
VirtualFree(data_, capacity_, MEM_RELEASE);
}
}
#endif
if (successful) {
break; break;
} }
data_ += capacity_; data_ += capacity_;
@ -261,8 +311,13 @@ class Win32ChunkedMappedMemoryWriter : public ChunkedMappedMemoryWriter {
} }
} }
} else { } else {
#if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)
data_ = reinterpret_cast<uint8_t*>( data_ = reinterpret_cast<uint8_t*>(
MapViewOfFile(mapping_handle_, view_access, 0, 0, capacity_)); MapViewOfFile(mapping_handle_, view_access, 0, 0, capacity_));
#else
data_ = reinterpret_cast<uint8_t*>(MapViewOfFileFromApp(
mapping_handle_, ULONG(view_access), 0, capacity_));
#endif
} }
if (!data_) { if (!data_) {
return false; return false;

View File

@ -8,11 +8,26 @@
*/ */
#include "xenia/base/memory.h" #include "xenia/base/memory.h"
#include "xenia/base/cvar.h"
#include "xenia/base/platform.h" #include "xenia/base/platform.h"
#include <algorithm> #include <algorithm>
DEFINE_bool(
writable_executable_memory, true,
"Allow mapping memory with both write and execute access, for simulating "
"behavior on platforms where that's not supported",
"Memory");
namespace xe { namespace xe {
namespace memory {
bool IsWritableExecutableMemoryPreferred() {
return IsWritableExecutableMemorySupported() &&
cvars::writable_executable_memory;
}
} // namespace memory
// TODO(benvanik): fancy AVX versions. // TODO(benvanik): fancy AVX versions.
// https://github.com/gnuradio/volk/blob/master/kernels/volk/volk_16u_byteswap.h // https://github.com/gnuradio/volk/blob/master/kernels/volk/volk_16u_byteswap.h

View File

@ -35,6 +35,7 @@ enum class PageAccess {
kNoAccess = 0, kNoAccess = 0,
kReadOnly = 1 << 0, kReadOnly = 1 << 0,
kReadWrite = kReadOnly | 1 << 1, kReadWrite = kReadOnly | 1 << 1,
kExecuteReadOnly = kReadOnly | 1 << 2,
kExecuteReadWrite = kReadWrite | 1 << 2, kExecuteReadWrite = kReadWrite | 1 << 2,
}; };
@ -49,6 +50,16 @@ enum class DeallocationType {
kDecommit = 1 << 1, kDecommit = 1 << 1,
}; };
// Whether the host allows the pages to be allocated or mapped with
// PageAccess::kExecuteReadWrite - if not, separate mappings backed by the same
// memory-mapped file must be used to write to executable pages.
bool IsWritableExecutableMemorySupported();
// Whether PageAccess::kExecuteReadWrite is a supported and preferred way of
// writing executable memory, useful for simulating how Xenia would work without
// writable executable memory on a system with it.
bool IsWritableExecutableMemoryPreferred();
// Allocates a block of memory at the given page-aligned base address. // Allocates a block of memory at the given page-aligned base address.
// Fails if the memory is not available. // Fails if the memory is not available.
// Specify nullptr for base_address to leave it up to the system. // Specify nullptr for base_address to leave it up to the system.

View File

@ -39,6 +39,8 @@ uint32_t ToPosixProtectFlags(PageAccess access) {
return PROT_READ; return PROT_READ;
case PageAccess::kReadWrite: case PageAccess::kReadWrite:
return PROT_READ | PROT_WRITE; return PROT_READ | PROT_WRITE;
case PageAccess::kExecuteReadOnly:
return PROT_READ | PROT_EXEC;
case PageAccess::kExecuteReadWrite: case PageAccess::kExecuteReadWrite:
return PROT_READ | PROT_WRITE | PROT_EXEC; return PROT_READ | PROT_WRITE | PROT_EXEC;
default: default:
@ -47,6 +49,8 @@ uint32_t ToPosixProtectFlags(PageAccess access) {
} }
} }
bool IsWritableExecutableMemorySupported() { return true; }
void* AllocFixed(void* base_address, size_t length, void* AllocFixed(void* base_address, size_t length,
AllocationType allocation_type, PageAccess access) { AllocationType allocation_type, PageAccess access) {
// mmap does not support reserve / commit, so ignore allocation_type. // mmap does not support reserve / commit, so ignore allocation_type.
@ -112,6 +116,7 @@ FileMappingHandle CreateFileMappingHandle(const std::filesystem::path& path,
oflag = 0; oflag = 0;
break; break;
case PageAccess::kReadOnly: case PageAccess::kReadOnly:
case PageAccess::kExecuteReadOnly:
oflag = O_RDONLY; oflag = O_RDONLY;
break; break;
case PageAccess::kReadWrite: case PageAccess::kReadWrite:

View File

@ -42,6 +42,8 @@ DWORD ToWin32ProtectFlags(PageAccess access) {
return PAGE_READONLY; return PAGE_READONLY;
case PageAccess::kReadWrite: case PageAccess::kReadWrite:
return PAGE_READWRITE; return PAGE_READWRITE;
case PageAccess::kExecuteReadOnly:
return PAGE_EXECUTE_READ;
case PageAccess::kExecuteReadWrite: case PageAccess::kExecuteReadWrite:
return PAGE_EXECUTE_READWRITE; return PAGE_EXECUTE_READWRITE;
default: default:
@ -63,6 +65,8 @@ PageAccess ToXeniaProtectFlags(DWORD access) {
return PageAccess::kReadOnly; return PageAccess::kReadOnly;
case PAGE_READWRITE: case PAGE_READWRITE:
return PageAccess::kReadWrite; return PageAccess::kReadWrite;
case PAGE_EXECUTE_READ:
return PageAccess::kExecuteReadOnly;
case PAGE_EXECUTE_READWRITE: case PAGE_EXECUTE_READWRITE:
return PageAccess::kExecuteReadWrite; return PageAccess::kExecuteReadWrite;
default: default:
@ -70,6 +74,17 @@ PageAccess ToXeniaProtectFlags(DWORD access) {
} }
} }
bool IsWritableExecutableMemorySupported() {
#if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)
return true;
#else
// To test FromApp functions on desktop, replace
// WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP) with 0 in the #ifs and
// link to WindowsApp.lib.
return false;
#endif
}
void* AllocFixed(void* base_address, size_t length, void* AllocFixed(void* base_address, size_t length,
AllocationType allocation_type, PageAccess access) { AllocationType allocation_type, PageAccess access) {
DWORD alloc_type = 0; DWORD alloc_type = 0;
@ -88,7 +103,12 @@ void* AllocFixed(void* base_address, size_t length,
break; break;
} }
DWORD protect = ToWin32ProtectFlags(access); DWORD protect = ToWin32ProtectFlags(access);
#if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)
return VirtualAlloc(base_address, length, alloc_type, protect); return VirtualAlloc(base_address, length, alloc_type, protect);
#else
return VirtualAllocFromApp(base_address, length, ULONG(alloc_type),
ULONG(protect));
#endif
} }
bool DeallocFixed(void* base_address, size_t length, bool DeallocFixed(void* base_address, size_t length,
@ -115,13 +135,19 @@ bool Protect(void* base_address, size_t length, PageAccess access,
*out_old_access = PageAccess::kNoAccess; *out_old_access = PageAccess::kNoAccess;
} }
DWORD new_protect = ToWin32ProtectFlags(access); DWORD new_protect = ToWin32ProtectFlags(access);
#if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)
DWORD old_protect = 0; DWORD old_protect = 0;
BOOL result = VirtualProtect(base_address, length, new_protect, &old_protect); BOOL result = VirtualProtect(base_address, length, new_protect, &old_protect);
#else
ULONG old_protect = 0;
BOOL result = VirtualProtectFromApp(base_address, length, ULONG(new_protect),
&old_protect);
#endif
if (!result) { if (!result) {
return false; return false;
} }
if (out_old_access) { if (out_old_access) {
*out_old_access = ToXeniaProtectFlags(old_protect); *out_old_access = ToXeniaProtectFlags(DWORD(old_protect));
} }
return true; return true;
} }
@ -148,9 +174,14 @@ FileMappingHandle CreateFileMappingHandle(const std::filesystem::path& path,
DWORD protect = DWORD protect =
ToWin32ProtectFlags(access) | (commit ? SEC_COMMIT : SEC_RESERVE); ToWin32ProtectFlags(access) | (commit ? SEC_COMMIT : SEC_RESERVE);
auto full_path = "Local" / path; auto full_path = "Local" / path;
return CreateFileMappingW(INVALID_HANDLE_VALUE, NULL, protect, #if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)
return CreateFileMappingW(INVALID_HANDLE_VALUE, nullptr, protect,
static_cast<DWORD>(length >> 32), static_cast<DWORD>(length >> 32),
static_cast<DWORD>(length), full_path.c_str()); static_cast<DWORD>(length), full_path.c_str());
#else
return CreateFileMappingFromApp(INVALID_HANDLE_VALUE, nullptr, ULONG(protect),
ULONG64(length), full_path.c_str());
#endif
} }
void CloseFileMappingHandle(FileMappingHandle handle, void CloseFileMappingHandle(FileMappingHandle handle,
@ -160,6 +191,7 @@ void CloseFileMappingHandle(FileMappingHandle handle,
void* MapFileView(FileMappingHandle handle, void* base_address, size_t length, void* MapFileView(FileMappingHandle handle, void* base_address, size_t length,
PageAccess access, size_t file_offset) { PageAccess access, size_t file_offset) {
#if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)
DWORD target_address_low = static_cast<DWORD>(file_offset); DWORD target_address_low = static_cast<DWORD>(file_offset);
DWORD target_address_high = static_cast<DWORD>(file_offset >> 32); DWORD target_address_high = static_cast<DWORD>(file_offset >> 32);
DWORD file_access = 0; DWORD file_access = 0;
@ -170,6 +202,9 @@ void* MapFileView(FileMappingHandle handle, void* base_address, size_t length,
case PageAccess::kReadWrite: case PageAccess::kReadWrite:
file_access = FILE_MAP_ALL_ACCESS; file_access = FILE_MAP_ALL_ACCESS;
break; break;
case PageAccess::kExecuteReadOnly:
file_access = FILE_MAP_READ | FILE_MAP_EXECUTE;
break;
case PageAccess::kExecuteReadWrite: case PageAccess::kExecuteReadWrite:
file_access = FILE_MAP_ALL_ACCESS | FILE_MAP_EXECUTE; file_access = FILE_MAP_ALL_ACCESS | FILE_MAP_EXECUTE;
break; break;
@ -180,6 +215,25 @@ void* MapFileView(FileMappingHandle handle, void* base_address, size_t length,
} }
return MapViewOfFileEx(handle, file_access, target_address_high, return MapViewOfFileEx(handle, file_access, target_address_high,
target_address_low, length, base_address); target_address_low, length, base_address);
#else
// VirtualAlloc2FromApp and MapViewOfFile3FromApp were added in 10.0.17134.0.
// https://docs.microsoft.com/en-us/uwp/win32-and-com/win32-apis
HANDLE process = GetCurrentProcess();
void* placeholder = VirtualAlloc2FromApp(
process, base_address, length, MEM_RESERVE | MEM_RESERVE_PLACEHOLDER,
PAGE_NOACCESS, nullptr, 0);
if (!placeholder) {
return nullptr;
}
void* mapping = MapViewOfFile3FromApp(
handle, process, placeholder, ULONG64(file_offset), length,
MEM_REPLACE_PLACEHOLDER, ULONG(ToWin32ProtectFlags(access)), nullptr, 0);
if (!mapping) {
VirtualFree(placeholder, length, MEM_RELEASE);
return nullptr;
}
return mapping;
#endif
} }
bool UnmapFileView(FileMappingHandle handle, void* base_address, bool UnmapFileView(FileMappingHandle handle, void* base_address,

View File

@ -48,6 +48,7 @@ void Initialize(const ANativeActivity* activity) {
dlsym(lib, #name)); \ dlsym(lib, #name)); \
assert_not_null(api_functions_.api_##api.name); assert_not_null(api_functions_.api_##api.name);
XE_PLATFORM_ANDROID_LOAD_API_FUNCTION(libandroid, ASharedMemory_create, 26); XE_PLATFORM_ANDROID_LOAD_API_FUNCTION(libandroid, ASharedMemory_create, 26);
// pthreads are a part of Bionic libc on Android.
XE_PLATFORM_ANDROID_LOAD_API_FUNCTION(libc, pthread_getname_np, 26); XE_PLATFORM_ANDROID_LOAD_API_FUNCTION(libc, pthread_getname_np, 26);
#undef XE_PLATFORM_ANDROID_LOAD_API_FUNCTION #undef XE_PLATFORM_ANDROID_LOAD_API_FUNCTION
} }

View File

@ -10,6 +10,8 @@
#ifndef XENIA_CPU_BACKEND_CODE_CACHE_H_ #ifndef XENIA_CPU_BACKEND_CODE_CACHE_H_
#define XENIA_CPU_BACKEND_CODE_CACHE_H_ #define XENIA_CPU_BACKEND_CODE_CACHE_H_
#include <cstddef>
#include <cstdint>
#include <string> #include <string>
#include "xenia/cpu/function.h" #include "xenia/cpu/function.h"
@ -24,8 +26,8 @@ class CodeCache {
virtual ~CodeCache() = default; virtual ~CodeCache() = default;
virtual const std::filesystem::path& file_name() const = 0; virtual const std::filesystem::path& file_name() const = 0;
virtual uint32_t base_address() const = 0; virtual uintptr_t execute_base_address() const = 0;
virtual uint32_t total_size() const = 0; virtual size_t total_size() const = 0;
// Finds a function based on the given host PC (that may be within a // Finds a function based on the given host PC (that may be within a
// function). // function).

View File

@ -41,8 +41,15 @@ X64CodeCache::~X64CodeCache() {
// Unmap all views and close mapping. // Unmap all views and close mapping.
if (mapping_ != xe::memory::kFileMappingHandleInvalid) { if (mapping_ != xe::memory::kFileMappingHandleInvalid) {
xe::memory::UnmapFileView(mapping_, generated_code_base_, if (generated_code_write_base_ &&
generated_code_write_base_ != generated_code_execute_base_) {
xe::memory::UnmapFileView(mapping_, generated_code_write_base_,
kGeneratedCodeSize); kGeneratedCodeSize);
}
if (generated_code_execute_base_) {
xe::memory::UnmapFileView(mapping_, generated_code_execute_base_,
kGeneratedCodeSize);
}
xe::memory::CloseFileMappingHandle(mapping_, file_name_); xe::memory::CloseFileMappingHandle(mapping_, file_name_);
mapping_ = xe::memory::kFileMappingHandleInvalid; mapping_ = xe::memory::kFileMappingHandleInvalid;
} }
@ -73,18 +80,42 @@ bool X64CodeCache::Initialize() {
} }
// Map generated code region into the file. Pages are committed as required. // Map generated code region into the file. Pages are committed as required.
generated_code_base_ = reinterpret_cast<uint8_t*>(xe::memory::MapFileView( if (xe::memory::IsWritableExecutableMemoryPreferred()) {
mapping_, reinterpret_cast<void*>(kGeneratedCodeBase), kGeneratedCodeSize, generated_code_execute_base_ =
xe::memory::PageAccess::kExecuteReadWrite, 0)); reinterpret_cast<uint8_t*>(xe::memory::MapFileView(
if (!generated_code_base_) { mapping_, reinterpret_cast<void*>(kGeneratedCodeExecuteBase),
kGeneratedCodeSize, xe::memory::PageAccess::kExecuteReadWrite, 0));
generated_code_write_base_ = generated_code_execute_base_;
if (!generated_code_execute_base_ || !generated_code_write_base_) {
XELOGE("Unable to allocate code cache generated code storage"); XELOGE("Unable to allocate code cache generated code storage");
XELOGE( XELOGE(
"This is likely because the {:X}-{:X} range is in use by some other " "This is likely because the {:X}-{:X} range is in use by some other "
"system DLL", "system DLL",
static_cast<uint64_t>(kGeneratedCodeBase), uint64_t(kGeneratedCodeExecuteBase),
kGeneratedCodeBase + kGeneratedCodeSize); uint64_t(kGeneratedCodeExecuteBase + kGeneratedCodeSize));
return false; return false;
} }
} else {
generated_code_execute_base_ =
reinterpret_cast<uint8_t*>(xe::memory::MapFileView(
mapping_, reinterpret_cast<void*>(kGeneratedCodeExecuteBase),
kGeneratedCodeSize, xe::memory::PageAccess::kExecuteReadOnly, 0));
generated_code_write_base_ =
reinterpret_cast<uint8_t*>(xe::memory::MapFileView(
mapping_, reinterpret_cast<void*>(kGeneratedCodeWriteBase),
kGeneratedCodeSize, xe::memory::PageAccess::kReadWrite, 0));
if (!generated_code_execute_base_ || !generated_code_write_base_) {
XELOGE("Unable to allocate code cache generated code storage");
XELOGE(
"This is likely because the {:X}-{:X} and {:X}-{:X} ranges are in "
"use by some other system DLL",
uint64_t(kGeneratedCodeExecuteBase),
uint64_t(kGeneratedCodeExecuteBase + kGeneratedCodeSize),
uint64_t(kGeneratedCodeWriteBase),
uint64_t(kGeneratedCodeWriteBase + kGeneratedCodeSize));
return false;
}
}
// Preallocate the function map to a large, reasonable size. // Preallocate the function map to a large, reasonable size.
generated_code_map_.reserve(kMaximumFunctionCount); generated_code_map_.reserve(kMaximumFunctionCount);
@ -117,7 +148,7 @@ void X64CodeCache::CommitExecutableRange(uint32_t guest_low,
xe::memory::AllocFixed( xe::memory::AllocFixed(
indirection_table_base_ + (guest_low - kIndirectionTableBase), indirection_table_base_ + (guest_low - kIndirectionTableBase),
guest_high - guest_low, xe::memory::AllocationType::kCommit, guest_high - guest_low, xe::memory::AllocationType::kCommit,
xe::memory::PageAccess::kExecuteReadWrite); xe::memory::PageAccess::kReadWrite);
// Fill memory with the default value. // Fill memory with the default value.
uint32_t* p = reinterpret_cast<uint32_t*>(indirection_table_base_); uint32_t* p = reinterpret_cast<uint32_t*>(indirection_table_base_);
@ -126,21 +157,26 @@ void X64CodeCache::CommitExecutableRange(uint32_t guest_low,
} }
} }
void* X64CodeCache::PlaceHostCode(uint32_t guest_address, void* machine_code, void X64CodeCache::PlaceHostCode(uint32_t guest_address, void* machine_code,
const EmitFunctionInfo& func_info) { const EmitFunctionInfo& func_info,
void*& code_execute_address_out,
void*& code_write_address_out) {
// Same for now. We may use different pools or whatnot later on, like when // Same for now. We may use different pools or whatnot later on, like when
// we only want to place guest code in a serialized cache on disk. // we only want to place guest code in a serialized cache on disk.
return PlaceGuestCode(guest_address, machine_code, func_info, nullptr); PlaceGuestCode(guest_address, machine_code, func_info, nullptr,
code_execute_address_out, code_write_address_out);
} }
void* X64CodeCache::PlaceGuestCode(uint32_t guest_address, void* machine_code, void X64CodeCache::PlaceGuestCode(uint32_t guest_address, void* machine_code,
const EmitFunctionInfo& func_info, const EmitFunctionInfo& func_info,
GuestFunction* function_info) { GuestFunction* function_info,
void*& code_execute_address_out,
void*& code_write_address_out) {
// Hold a lock while we bump the pointers up. This is important as the // Hold a lock while we bump the pointers up. This is important as the
// unwind table requires entries AND code to be sorted in order. // unwind table requires entries AND code to be sorted in order.
size_t low_mark; size_t low_mark;
size_t high_mark; size_t high_mark;
uint8_t* code_address; uint8_t* code_execute_address;
UnwindReservation unwind_reservation; UnwindReservation unwind_reservation;
{ {
auto global_lock = global_critical_region_.Acquire(); auto global_lock = global_critical_region_.Acquire();
@ -149,26 +185,33 @@ void* X64CodeCache::PlaceGuestCode(uint32_t guest_address, void* machine_code,
// Reserve code. // Reserve code.
// Always move the code to land on 16b alignment. // Always move the code to land on 16b alignment.
code_address = generated_code_base_ + generated_code_offset_; code_execute_address =
generated_code_execute_base_ + generated_code_offset_;
code_execute_address_out = code_execute_address;
uint8_t* code_write_address =
generated_code_write_base_ + generated_code_offset_;
code_write_address_out = code_write_address;
generated_code_offset_ += xe::round_up(func_info.code_size.total, 16); generated_code_offset_ += xe::round_up(func_info.code_size.total, 16);
auto tail_address = generated_code_base_ + generated_code_offset_; auto tail_write_address =
generated_code_write_base_ + generated_code_offset_;
// Reserve unwind info. // Reserve unwind info.
// We go on the high size of the unwind info as we don't know how big we // We go on the high size of the unwind info as we don't know how big we
// need it, and a few extra bytes of padding isn't the worst thing. // need it, and a few extra bytes of padding isn't the worst thing.
unwind_reservation = unwind_reservation = RequestUnwindReservation(generated_code_write_base_ +
RequestUnwindReservation(generated_code_base_ + generated_code_offset_); generated_code_offset_);
generated_code_offset_ += xe::round_up(unwind_reservation.data_size, 16); generated_code_offset_ += xe::round_up(unwind_reservation.data_size, 16);
auto end_address = generated_code_base_ + generated_code_offset_; auto end_write_address =
generated_code_write_base_ + generated_code_offset_;
high_mark = generated_code_offset_; high_mark = generated_code_offset_;
// Store in map. It is maintained in sorted order of host PC dependent on // Store in map. It is maintained in sorted order of host PC dependent on
// us also being append-only. // us also being append-only.
generated_code_map_.emplace_back( generated_code_map_.emplace_back(
(uint64_t(code_address - generated_code_base_) << 32) | (uint64_t(code_execute_address - generated_code_execute_base_) << 32) |
generated_code_offset_, generated_code_offset_,
function_info); function_info);
@ -185,21 +228,30 @@ void* X64CodeCache::PlaceGuestCode(uint32_t guest_address, void* machine_code,
if (high_mark <= old_commit_mark) break; if (high_mark <= old_commit_mark) break;
new_commit_mark = old_commit_mark + 16 * 1024 * 1024; new_commit_mark = old_commit_mark + 16 * 1024 * 1024;
xe::memory::AllocFixed(generated_code_base_, new_commit_mark, if (generated_code_execute_base_ == generated_code_write_base_) {
xe::memory::AllocFixed(generated_code_execute_base_, new_commit_mark,
xe::memory::AllocationType::kCommit, xe::memory::AllocationType::kCommit,
xe::memory::PageAccess::kExecuteReadWrite); xe::memory::PageAccess::kExecuteReadWrite);
} else {
xe::memory::AllocFixed(generated_code_execute_base_, new_commit_mark,
xe::memory::AllocationType::kCommit,
xe::memory::PageAccess::kExecuteReadOnly);
xe::memory::AllocFixed(generated_code_write_base_, new_commit_mark,
xe::memory::AllocationType::kCommit,
xe::memory::PageAccess::kReadWrite);
}
} while (generated_code_commit_mark_.compare_exchange_weak( } while (generated_code_commit_mark_.compare_exchange_weak(
old_commit_mark, new_commit_mark)); old_commit_mark, new_commit_mark));
// Copy code. // Copy code.
std::memcpy(code_address, machine_code, func_info.code_size.total); std::memcpy(code_write_address, machine_code, func_info.code_size.total);
// Fill unused slots with 0xCC // Fill unused slots with 0xCC
std::memset(tail_address, 0xCC, std::memset(tail_write_address, 0xCC,
static_cast<size_t>(end_address - tail_address)); static_cast<size_t>(end_write_address - tail_write_address));
// Notify subclasses of placed code. // Notify subclasses of placed code.
PlaceCode(guest_address, machine_code, func_info, code_address, PlaceCode(guest_address, machine_code, func_info, code_execute_address,
unwind_reservation); unwind_reservation);
} }
@ -214,7 +266,7 @@ void* X64CodeCache::PlaceGuestCode(uint32_t guest_address, void* machine_code,
iJIT_Method_Load_V2 method = {0}; iJIT_Method_Load_V2 method = {0};
method.method_id = iJIT_GetNewMethodID(); method.method_id = iJIT_GetNewMethodID();
method.method_load_address = code_address; method.method_load_address = code_execute_address;
method.method_size = uint32_t(code_size); method.method_size = uint32_t(code_size);
method.method_name = const_cast<char*>(method_name.data()); method.method_name = const_cast<char*>(method_name.data());
method.module_name = function_info method.module_name = function_info
@ -230,10 +282,9 @@ void* X64CodeCache::PlaceGuestCode(uint32_t guest_address, void* machine_code,
if (guest_address && indirection_table_base_) { if (guest_address && indirection_table_base_) {
uint32_t* indirection_slot = reinterpret_cast<uint32_t*>( uint32_t* indirection_slot = reinterpret_cast<uint32_t*>(
indirection_table_base_ + (guest_address - kIndirectionTableBase)); indirection_table_base_ + (guest_address - kIndirectionTableBase));
*indirection_slot = uint32_t(reinterpret_cast<uint64_t>(code_address)); *indirection_slot =
uint32_t(reinterpret_cast<uint64_t>(code_execute_address));
} }
return code_address;
} }
uint32_t X64CodeCache::PlaceData(const void* data, size_t length) { uint32_t X64CodeCache::PlaceData(const void* data, size_t length) {
@ -245,7 +296,7 @@ uint32_t X64CodeCache::PlaceData(const void* data, size_t length) {
// Reserve code. // Reserve code.
// Always move the code to land on 16b alignment. // Always move the code to land on 16b alignment.
data_address = generated_code_base_ + generated_code_offset_; data_address = generated_code_write_base_ + generated_code_offset_;
generated_code_offset_ += xe::round_up(length, 16); generated_code_offset_ += xe::round_up(length, 16);
high_mark = generated_code_offset_; high_mark = generated_code_offset_;
@ -260,9 +311,18 @@ uint32_t X64CodeCache::PlaceData(const void* data, size_t length) {
if (high_mark <= old_commit_mark) break; if (high_mark <= old_commit_mark) break;
new_commit_mark = old_commit_mark + 16 * 1024 * 1024; new_commit_mark = old_commit_mark + 16 * 1024 * 1024;
xe::memory::AllocFixed(generated_code_base_, new_commit_mark, if (generated_code_execute_base_ == generated_code_write_base_) {
xe::memory::AllocFixed(generated_code_execute_base_, new_commit_mark,
xe::memory::AllocationType::kCommit, xe::memory::AllocationType::kCommit,
xe::memory::PageAccess::kExecuteReadWrite); xe::memory::PageAccess::kExecuteReadWrite);
} else {
xe::memory::AllocFixed(generated_code_execute_base_, new_commit_mark,
xe::memory::AllocationType::kCommit,
xe::memory::PageAccess::kExecuteReadOnly);
xe::memory::AllocFixed(generated_code_write_base_, new_commit_mark,
xe::memory::AllocationType::kCommit,
xe::memory::PageAccess::kReadWrite);
}
} while (generated_code_commit_mark_.compare_exchange_weak(old_commit_mark, } while (generated_code_commit_mark_.compare_exchange_weak(old_commit_mark,
new_commit_mark)); new_commit_mark));
@ -273,7 +333,7 @@ uint32_t X64CodeCache::PlaceData(const void* data, size_t length) {
} }
GuestFunction* X64CodeCache::LookupFunction(uint64_t host_pc) { GuestFunction* X64CodeCache::LookupFunction(uint64_t host_pc) {
uint32_t key = uint32_t(host_pc - kGeneratedCodeBase); uint32_t key = uint32_t(host_pc - kGeneratedCodeExecuteBase);
void* fn_entry = std::bsearch( void* fn_entry = std::bsearch(
&key, generated_code_map_.data(), generated_code_map_.size() + 1, &key, generated_code_map_.data(), generated_code_map_.size() + 1,
sizeof(std::pair<uint32_t, Function*>), sizeof(std::pair<uint32_t, Function*>),

View File

@ -11,6 +11,8 @@
#define XENIA_CPU_BACKEND_X64_X64_CODE_CACHE_H_ #define XENIA_CPU_BACKEND_X64_X64_CODE_CACHE_H_
#include <atomic> #include <atomic>
#include <cstddef>
#include <cstdint>
#include <memory> #include <memory>
#include <string> #include <string>
#include <utility> #include <utility>
@ -46,8 +48,10 @@ class X64CodeCache : public CodeCache {
virtual bool Initialize(); virtual bool Initialize();
const std::filesystem::path& file_name() const override { return file_name_; } const std::filesystem::path& file_name() const override { return file_name_; }
uint32_t base_address() const override { return kGeneratedCodeBase; } uintptr_t execute_base_address() const override {
uint32_t total_size() const override { return kGeneratedCodeSize; } return kGeneratedCodeExecuteBase;
}
size_t total_size() const override { return kGeneratedCodeSize; }
// TODO(benvanik): ELF serialization/etc // TODO(benvanik): ELF serialization/etc
// TODO(benvanik): keep track of code blocks // TODO(benvanik): keep track of code blocks
@ -59,11 +63,15 @@ class X64CodeCache : public CodeCache {
void CommitExecutableRange(uint32_t guest_low, uint32_t guest_high); void CommitExecutableRange(uint32_t guest_low, uint32_t guest_high);
void* PlaceHostCode(uint32_t guest_address, void* machine_code, void PlaceHostCode(uint32_t guest_address, void* machine_code,
const EmitFunctionInfo& func_info);
void* PlaceGuestCode(uint32_t guest_address, void* machine_code,
const EmitFunctionInfo& func_info, const EmitFunctionInfo& func_info,
GuestFunction* function_info); void*& code_execute_address_out,
void*& code_write_address_out);
void PlaceGuestCode(uint32_t guest_address, void* machine_code,
const EmitFunctionInfo& func_info,
GuestFunction* function_info,
void*& code_execute_address_out,
void*& code_write_address_out);
uint32_t PlaceData(const void* data, size_t length); uint32_t PlaceData(const void* data, size_t length);
GuestFunction* LookupFunction(uint64_t host_pc) override; GuestFunction* LookupFunction(uint64_t host_pc) override;
@ -71,13 +79,16 @@ class X64CodeCache : public CodeCache {
protected: protected:
// All executable code falls within 0x80000000 to 0x9FFFFFFF, so we can // All executable code falls within 0x80000000 to 0x9FFFFFFF, so we can
// only map enough for lookups within that range. // only map enough for lookups within that range.
static const uint64_t kIndirectionTableBase = 0x80000000; static const size_t kIndirectionTableSize = 0x1FFFFFFF;
static const uint64_t kIndirectionTableSize = 0x1FFFFFFF; static const uintptr_t kIndirectionTableBase = 0x80000000;
// The code range is 512MB, but we know the total code games will have is // The code range is 512MB, but we know the total code games will have is
// pretty small (dozens of mb at most) and our expansion is reasonablish // pretty small (dozens of mb at most) and our expansion is reasonablish
// so 256MB should be more than enough. // so 256MB should be more than enough.
static const uint64_t kGeneratedCodeBase = 0xA0000000; static const size_t kGeneratedCodeSize = 0x0FFFFFFF;
static const uint64_t kGeneratedCodeSize = 0x0FFFFFFF; static const uintptr_t kGeneratedCodeExecuteBase = 0xA0000000;
// Used for writing when PageAccess::kExecuteReadWrite is not supported.
static const uintptr_t kGeneratedCodeWriteBase =
kGeneratedCodeExecuteBase + kGeneratedCodeSize + 1;
// This is picked to be high enough to cover whatever we can reasonably // This is picked to be high enough to cover whatever we can reasonably
// expect. If we hit issues with this it probably means some corner case // expect. If we hit issues with this it probably means some corner case
@ -96,7 +107,8 @@ class X64CodeCache : public CodeCache {
return UnwindReservation(); return UnwindReservation();
} }
virtual void PlaceCode(uint32_t guest_address, void* machine_code, virtual void PlaceCode(uint32_t guest_address, void* machine_code,
const EmitFunctionInfo& func_info, void* code_address, const EmitFunctionInfo& func_info,
void* code_execute_address,
UnwindReservation unwind_reservation) {} UnwindReservation unwind_reservation) {}
std::filesystem::path file_name_; std::filesystem::path file_name_;
@ -114,9 +126,13 @@ class X64CodeCache : public CodeCache {
// the generated code table that correspond to the PPC functions in guest // the generated code table that correspond to the PPC functions in guest
// space. // space.
uint8_t* indirection_table_base_ = nullptr; uint8_t* indirection_table_base_ = nullptr;
// Fixed at kGeneratedCodeBase and holding all generated code, growing as // Fixed at kGeneratedCodeExecuteBase and holding all generated code, growing
// needed. // as needed.
uint8_t* generated_code_base_ = nullptr; uint8_t* generated_code_execute_base_ = nullptr;
// View of the memory that backs generated_code_execute_base_ when
// PageAccess::kExecuteReadWrite is not supported, for writing the generated
// code. Equals to generated_code_execute_base_ when it's supported.
uint8_t* generated_code_write_base_ = nullptr;
// Current offset to empty space in generated code. // Current offset to empty space in generated code.
size_t generated_code_offset_ = 0; size_t generated_code_offset_ = 0;
// Current high water mark of COMMITTED code. // Current high water mark of COMMITTED code.

View File

@ -27,7 +27,7 @@ class PosixX64CodeCache : public X64CodeCache {
/* /*
UnwindReservation RequestUnwindReservation(uint8_t* entry_address) override; UnwindReservation RequestUnwindReservation(uint8_t* entry_address) override;
void PlaceCode(uint32_t guest_address, void* machine_code, size_t code_size, void PlaceCode(uint32_t guest_address, void* machine_code, size_t code_size,
size_t stack_size, void* code_address, size_t stack_size, void* code_execute_address,
UnwindReservation unwind_reservation) override; UnwindReservation unwind_reservation) override;
void InitializeUnwindEntry(uint8_t* unwind_entry_address, void InitializeUnwindEntry(uint8_t* unwind_entry_address,

View File

@ -107,11 +107,12 @@ class Win32X64CodeCache : public X64CodeCache {
private: private:
UnwindReservation RequestUnwindReservation(uint8_t* entry_address) override; UnwindReservation RequestUnwindReservation(uint8_t* entry_address) override;
void PlaceCode(uint32_t guest_address, void* machine_code, void PlaceCode(uint32_t guest_address, void* machine_code,
const EmitFunctionInfo& func_info, void* code_address, const EmitFunctionInfo& func_info, void* code_execute_address,
UnwindReservation unwind_reservation) override; UnwindReservation unwind_reservation) override;
void InitializeUnwindEntry(uint8_t* unwind_entry_address, void InitializeUnwindEntry(uint8_t* unwind_entry_address,
size_t unwind_table_slot, void* code_address, size_t unwind_table_slot,
void* code_execute_address,
const EmitFunctionInfo& func_info); const EmitFunctionInfo& func_info);
// Growable function table system handle. // Growable function table system handle.
@ -140,9 +141,9 @@ Win32X64CodeCache::~Win32X64CodeCache() {
delete_growable_table_(unwind_table_handle_); delete_growable_table_(unwind_table_handle_);
} }
} else { } else {
if (generated_code_base_) { if (generated_code_execute_base_) {
RtlDeleteFunctionTable(reinterpret_cast<PRUNTIME_FUNCTION>( RtlDeleteFunctionTable(reinterpret_cast<PRUNTIME_FUNCTION>(
reinterpret_cast<DWORD64>(generated_code_base_) | 0x3)); reinterpret_cast<DWORD64>(generated_code_execute_base_) | 0x3));
} }
} }
} }
@ -176,10 +177,11 @@ bool Win32X64CodeCache::Initialize() {
// Create table and register with the system. It's empty now, but we'll grow // Create table and register with the system. It's empty now, but we'll grow
// it as functions are added. // it as functions are added.
if (supports_growable_table_) { if (supports_growable_table_) {
if (add_growable_table_(&unwind_table_handle_, unwind_table_.data(), if (add_growable_table_(
unwind_table_count_, DWORD(unwind_table_.size()), &unwind_table_handle_, unwind_table_.data(), unwind_table_count_,
reinterpret_cast<ULONG_PTR>(generated_code_base_), DWORD(unwind_table_.size()),
reinterpret_cast<ULONG_PTR>(generated_code_base_ + reinterpret_cast<ULONG_PTR>(generated_code_execute_base_),
reinterpret_cast<ULONG_PTR>(generated_code_execute_base_ +
kGeneratedCodeSize))) { kGeneratedCodeSize))) {
XELOGE("Unable to create unwind function table"); XELOGE("Unable to create unwind function table");
return false; return false;
@ -188,8 +190,9 @@ bool Win32X64CodeCache::Initialize() {
// Install a callback that the debugger will use to lookup unwind info on // Install a callback that the debugger will use to lookup unwind info on
// demand. // demand.
if (!RtlInstallFunctionTableCallback( if (!RtlInstallFunctionTableCallback(
reinterpret_cast<DWORD64>(generated_code_base_) | 0x3, reinterpret_cast<DWORD64>(generated_code_execute_base_) | 0x3,
reinterpret_cast<DWORD64>(generated_code_base_), kGeneratedCodeSize, reinterpret_cast<DWORD64>(generated_code_execute_base_),
kGeneratedCodeSize,
[](DWORD64 control_pc, PVOID context) { [](DWORD64 control_pc, PVOID context) {
auto code_cache = reinterpret_cast<Win32X64CodeCache*>(context); auto code_cache = reinterpret_cast<Win32X64CodeCache*>(context);
return reinterpret_cast<PRUNTIME_FUNCTION>( return reinterpret_cast<PRUNTIME_FUNCTION>(
@ -216,11 +219,12 @@ Win32X64CodeCache::RequestUnwindReservation(uint8_t* entry_address) {
void Win32X64CodeCache::PlaceCode(uint32_t guest_address, void* machine_code, void Win32X64CodeCache::PlaceCode(uint32_t guest_address, void* machine_code,
const EmitFunctionInfo& func_info, const EmitFunctionInfo& func_info,
void* code_address, void* code_execute_address,
UnwindReservation unwind_reservation) { UnwindReservation unwind_reservation) {
// Add unwind info. // Add unwind info.
InitializeUnwindEntry(unwind_reservation.entry_address, InitializeUnwindEntry(unwind_reservation.entry_address,
unwind_reservation.table_slot, code_address, func_info); unwind_reservation.table_slot, code_execute_address,
func_info);
if (supports_growable_table_) { if (supports_growable_table_) {
// Notify that the unwind table has grown. // Notify that the unwind table has grown.
@ -229,13 +233,15 @@ void Win32X64CodeCache::PlaceCode(uint32_t guest_address, void* machine_code,
} }
// This isn't needed on x64 (probably), but is convention. // This isn't needed on x64 (probably), but is convention.
FlushInstructionCache(GetCurrentProcess(), code_address, // On UWP, FlushInstructionCache available starting from 10.0.16299.0.
// https://docs.microsoft.com/en-us/uwp/win32-and-com/win32-apis
FlushInstructionCache(GetCurrentProcess(), code_execute_address,
func_info.code_size.total); func_info.code_size.total);
} }
void Win32X64CodeCache::InitializeUnwindEntry( void Win32X64CodeCache::InitializeUnwindEntry(
uint8_t* unwind_entry_address, size_t unwind_table_slot, void* code_address, uint8_t* unwind_entry_address, size_t unwind_table_slot,
const EmitFunctionInfo& func_info) { void* code_execute_address, const EmitFunctionInfo& func_info) {
auto unwind_info = reinterpret_cast<UNWIND_INFO*>(unwind_entry_address); auto unwind_info = reinterpret_cast<UNWIND_INFO*>(unwind_entry_address);
UNWIND_CODE* unwind_code = nullptr; UNWIND_CODE* unwind_code = nullptr;
@ -299,10 +305,12 @@ void Win32X64CodeCache::InitializeUnwindEntry(
// Add entry. // Add entry.
auto& fn_entry = unwind_table_[unwind_table_slot]; auto& fn_entry = unwind_table_[unwind_table_slot];
fn_entry.BeginAddress = fn_entry.BeginAddress =
(DWORD)(reinterpret_cast<uint8_t*>(code_address) - generated_code_base_); DWORD(reinterpret_cast<uint8_t*>(code_execute_address) -
generated_code_execute_base_);
fn_entry.EndAddress = fn_entry.EndAddress =
(DWORD)(fn_entry.BeginAddress + func_info.code_size.total); DWORD(fn_entry.BeginAddress + func_info.code_size.total);
fn_entry.UnwindData = (DWORD)(unwind_entry_address - generated_code_base_); fn_entry.UnwindData =
DWORD(unwind_entry_address - generated_code_execute_base_);
} }
void* Win32X64CodeCache::LookupUnwindInfo(uint64_t host_pc) { void* Win32X64CodeCache::LookupUnwindInfo(uint64_t host_pc) {
@ -310,8 +318,8 @@ void* Win32X64CodeCache::LookupUnwindInfo(uint64_t host_pc) {
&host_pc, unwind_table_.data(), unwind_table_count_, &host_pc, unwind_table_.data(), unwind_table_count_,
sizeof(RUNTIME_FUNCTION), sizeof(RUNTIME_FUNCTION),
[](const void* key_ptr, const void* element_ptr) { [](const void* key_ptr, const void* element_ptr) {
auto key = auto key = *reinterpret_cast<const uintptr_t*>(key_ptr) -
*reinterpret_cast<const uintptr_t*>(key_ptr) - kGeneratedCodeBase; kGeneratedCodeExecuteBase;
auto element = reinterpret_cast<const RUNTIME_FUNCTION*>(element_ptr); auto element = reinterpret_cast<const RUNTIME_FUNCTION*>(element_ptr);
if (key < element->BeginAddress) { if (key < element->BeginAddress) {
return -1; return -1;

View File

@ -125,20 +125,26 @@ void* X64Emitter::Emplace(const EmitFunctionInfo& func_info,
// top_ points to the Xbyak buffer, and since we are in AutoGrow mode // top_ points to the Xbyak buffer, and since we are in AutoGrow mode
// it has pending relocations. We copy the top_ to our buffer, swap the // it has pending relocations. We copy the top_ to our buffer, swap the
// pointer, relocate, then return the original scratch pointer for use. // pointer, relocate, then return the original scratch pointer for use.
// top_ is used by Xbyak's ready() as both write base pointer and the absolute
// address base, which would not work on platforms not supporting writable
// executable memory, but Xenia doesn't use absolute label addresses in the
// generated code.
uint8_t* old_address = top_; uint8_t* old_address = top_;
void* new_address; void* new_execute_address;
void* new_write_address;
assert_true(func_info.code_size.total == size_); assert_true(func_info.code_size.total == size_);
if (function) { if (function) {
new_address = code_cache_->PlaceGuestCode(function->address(), top_, code_cache_->PlaceGuestCode(function->address(), top_, func_info, function,
func_info, function); new_execute_address, new_write_address);
} else { } else {
new_address = code_cache_->PlaceHostCode(0, top_, func_info); code_cache_->PlaceHostCode(0, top_, func_info, new_execute_address,
new_write_address);
} }
top_ = reinterpret_cast<uint8_t*>(new_address); top_ = reinterpret_cast<uint8_t*>(new_write_address);
ready(); ready();
top_ = old_address; top_ = old_address;
reset(); reset();
return new_address; return new_execute_address;
} }
bool X64Emitter::Emit(HIRBuilder* builder, EmitFunctionInfo& func_info) { bool X64Emitter::Emit(HIRBuilder* builder, EmitFunctionInfo& func_info) {

View File

@ -177,6 +177,9 @@ class TestRunner {
public: public:
TestRunner() { TestRunner() {
memory_size_ = 64 * 1024 * 1024; memory_size_ = 64 * 1024 * 1024;
// FIXME(Triang3l): If this is ever compiled for a platform without
// xe::memory::IsWritableExecutableMemorySupported, two memory mappings must
// be used.
memory_ = memory::AllocFixed(nullptr, memory_size_, memory_ = memory::AllocFixed(nullptr, memory_size_,
memory::AllocationType::kReserveCommit, memory::AllocationType::kReserveCommit,
memory::PageAccess::kExecuteReadWrite); memory::PageAccess::kExecuteReadWrite);

View File

@ -9,6 +9,7 @@
#include "xenia/cpu/stack_walker.h" #include "xenia/cpu/stack_walker.h"
#include <cstdint>
#include <mutex> #include <mutex>
#include "xenia/base/logging.h" #include "xenia/base/logging.h"
@ -120,8 +121,8 @@ class Win32StackWalker : public StackWalker {
// They never change, so it's fine even if they are touched from multiple // They never change, so it's fine even if they are touched from multiple
// threads. // threads.
code_cache_ = code_cache; code_cache_ = code_cache;
code_cache_min_ = code_cache_->base_address(); code_cache_min_ = code_cache_->execute_base_address();
code_cache_max_ = code_cache_->base_address() + code_cache_->total_size(); code_cache_max_ = code_cache_min_ + code_cache_->total_size();
} }
bool Initialize() { bool Initialize() {
@ -297,13 +298,13 @@ class Win32StackWalker : public StackWalker {
std::mutex dbghelp_mutex_; std::mutex dbghelp_mutex_;
static xe::cpu::backend::CodeCache* code_cache_; static xe::cpu::backend::CodeCache* code_cache_;
static uint32_t code_cache_min_; static uintptr_t code_cache_min_;
static uint32_t code_cache_max_; static uintptr_t code_cache_max_;
}; };
xe::cpu::backend::CodeCache* Win32StackWalker::code_cache_ = nullptr; xe::cpu::backend::CodeCache* Win32StackWalker::code_cache_ = nullptr;
uint32_t Win32StackWalker::code_cache_min_ = 0; uintptr_t Win32StackWalker::code_cache_min_ = 0;
uint32_t Win32StackWalker::code_cache_max_ = 0; uintptr_t Win32StackWalker::code_cache_max_ = 0;
std::unique_ptr<StackWalker> StackWalker::Create( std::unique_ptr<StackWalker> StackWalker::Create(
backend::CodeCache* code_cache) { backend::CodeCache* code_cache) {

View File

@ -1454,7 +1454,7 @@ void DebugWindow::UpdateCache() {
// Fetch module listing. // Fetch module listing.
// We hold refs so that none are unloaded. // We hold refs so that none are unloaded.
cache_.modules = cache_.modules =
object_table->GetObjectsByType<XModule>(XObject::Type::kTypeModule); object_table->GetObjectsByType<XModule>(XObject::Type::Module);
cache_.thread_debug_infos = processor_->QueryThreadDebugInfos(); cache_.thread_debug_infos = processor_->QueryThreadDebugInfos();

View File

@ -358,7 +358,7 @@ void Emulator::Pause() {
auto lock = global_critical_region::AcquireDirect(); auto lock = global_critical_region::AcquireDirect();
auto threads = auto threads =
kernel_state()->object_table()->GetObjectsByType<kernel::XThread>( kernel_state()->object_table()->GetObjectsByType<kernel::XThread>(
kernel::XObject::kTypeThread); kernel::XObject::Type::Thread);
auto current_thread = kernel::XThread::IsInThread() auto current_thread = kernel::XThread::IsInThread()
? kernel::XThread::GetCurrentThread() ? kernel::XThread::GetCurrentThread()
: nullptr; : nullptr;
@ -388,7 +388,7 @@ void Emulator::Resume() {
auto threads = auto threads =
kernel_state()->object_table()->GetObjectsByType<kernel::XThread>( kernel_state()->object_table()->GetObjectsByType<kernel::XThread>(
kernel::XObject::kTypeThread); kernel::XObject::Type::Thread);
for (auto thread : threads) { for (auto thread : threads) {
if (!thread->can_debugger_suspend()) { if (!thread->can_debugger_suspend()) {
// Don't pause host threads. // Don't pause host threads.
@ -513,7 +513,7 @@ bool Emulator::ExceptionCallbackThunk(Exception* ex, void* data) {
bool Emulator::ExceptionCallback(Exception* ex) { bool Emulator::ExceptionCallback(Exception* ex) {
// Check to see if the exception occurred in guest code. // Check to see if the exception occurred in guest code.
auto code_cache = processor()->backend()->code_cache(); auto code_cache = processor()->backend()->code_cache();
auto code_base = code_cache->base_address(); auto code_base = code_cache->execute_base_address();
auto code_end = code_base + code_cache->total_size(); auto code_end = code_base + code_cache->total_size();
if (!processor()->is_debugger_attached() && debugging::IsDebuggerAttached()) { if (!processor()->is_debugger_attached() && debugging::IsDebuggerAttached()) {

View File

@ -763,13 +763,13 @@ bool KernelState::Save(ByteStream* stream) {
for (auto object : objects) { for (auto object : objects) {
auto prev_offset = stream->offset(); auto prev_offset = stream->offset();
if (object->is_host_object() || object->type() == XObject::kTypeThread) { if (object->is_host_object() || object->type() == XObject::Type::Thread) {
// Don't save host objects or save XThreads again // Don't save host objects or save XThreads again
num_objects--; num_objects--;
continue; continue;
} }
stream->Write<uint32_t>(object->type()); stream->Write<uint32_t>(static_cast<uint32_t>(object->type()));
if (!object->Save(stream)) { if (!object->Save(stream)) {
XELOGD("Did not save object of type {}", object->type()); XELOGD("Did not save object of type {}", object->type());
assert_always(); assert_always();
@ -804,7 +804,7 @@ bool KernelState::Restore(ByteStream* stream) {
uint32_t num_threads = stream->Read<uint32_t>(); uint32_t num_threads = stream->Read<uint32_t>();
XELOGD("Loading {} threads...", num_threads); XELOGD("Loading {} threads...", num_threads);
for (uint32_t i = 0; i < num_threads; i++) { for (uint32_t i = 0; i < num_threads; i++) {
auto thread = XObject::Restore(this, XObject::kTypeThread, stream); auto thread = XObject::Restore(this, XObject::Type::Thread, stream);
if (!thread) { if (!thread) {
// Can't continue the restore or we risk misalignment. // Can't continue the restore or we risk misalignment.
assert_always(); assert_always();

View File

@ -51,7 +51,7 @@ class ObjectTable {
object_ref<T> LookupObject(X_HANDLE handle) { object_ref<T> LookupObject(X_HANDLE handle) {
auto object = LookupObject(handle, false); auto object = LookupObject(handle, false);
if (object) { if (object) {
assert_true(object->type() == T::kType); assert_true(object->type() == T::kObjectType);
} }
auto result = object_ref<T>(reinterpret_cast<T*>(object)); auto result = object_ref<T>(reinterpret_cast<T*>(object));
return result; return result;
@ -72,7 +72,7 @@ class ObjectTable {
std::vector<object_ref<T>> GetObjectsByType() { std::vector<object_ref<T>> GetObjectsByType() {
std::vector<object_ref<T>> results; std::vector<object_ref<T>> results;
GetObjectsByType( GetObjectsByType(
T::kType, T::kObjectType,
reinterpret_cast<std::vector<object_ref<XObject>>*>(&results)); reinterpret_cast<std::vector<object_ref<XObject>>*>(&results));
return results; return results;
} }

View File

@ -47,8 +47,15 @@ void HandleSetThreadName(pointer_t<X_EXCEPTION_RECORD> record) {
return; return;
} }
auto name = // Shadowrun (and its demo) has a bug where it ends up passing freed memory
kernel_memory()->TranslateVirtual<const char*>(thread_info->name_ptr); // for the name, so at the point of SetThreadName it's filled with junk.
// TODO(gibbed): cvar for thread name encoding for conversion, some games use
// SJIS and there's no way to automatically know this.
auto name = std::string(
kernel_memory()->TranslateVirtual<const char*>(thread_info->name_ptr));
std::replace_if(
name.begin(), name.end(), [](auto c) { return c < 32 || c > 127; }, '?');
object_ref<XThread> thread; object_ref<XThread> thread;
if (thread_info->thread_id == -1) { if (thread_info->thread_id == -1) {

View File

@ -131,7 +131,7 @@ dword_result_t NtCreateFile(lpdword_t handle_out, dword_t desired_access,
auto root_file = kernel_state()->object_table()->LookupObject<XFile>( auto root_file = kernel_state()->object_table()->LookupObject<XFile>(
object_attrs->root_directory); object_attrs->root_directory);
assert_not_null(root_file); assert_not_null(root_file);
assert_true(root_file->type() == XObject::Type::kTypeFile); assert_true(root_file->type() == XObject::Type::File);
root_entry = root_file->entry(); root_entry = root_file->entry();
} }
@ -399,7 +399,7 @@ dword_result_t NtQueryFullAttributesFile(
root_file = kernel_state()->object_table()->LookupObject<XFile>( root_file = kernel_state()->object_table()->LookupObject<XFile>(
obj_attribs->root_directory); obj_attribs->root_directory);
assert_not_null(root_file); assert_not_null(root_file);
assert_true(root_file->type() == XObject::Type::kTypeFile); assert_true(root_file->type() == XObject::Type::File);
assert_always(); assert_always();
} }

View File

@ -101,6 +101,9 @@ dword_result_t NtAllocateVirtualMemory(lpdword_t base_addr_ptr,
if (*base_addr_ptr != 0) { if (*base_addr_ptr != 0) {
// ignore specified page size when base address is specified. // ignore specified page size when base address is specified.
auto heap = kernel_memory()->LookupHeap(*base_addr_ptr); auto heap = kernel_memory()->LookupHeap(*base_addr_ptr);
if (heap->heap_type() != HeapType::kGuestVirtual) {
return X_STATUS_INVALID_PARAMETER;
}
page_size = heap->page_size(); page_size = heap->page_size();
} else { } else {
// Adjust size. // Adjust size.
@ -192,7 +195,9 @@ dword_result_t NtProtectVirtualMemory(lpdword_t base_addr_ptr,
} }
auto heap = kernel_memory()->LookupHeap(*base_addr_ptr); auto heap = kernel_memory()->LookupHeap(*base_addr_ptr);
if (heap->heap_type() != HeapType::kGuestVirtual) {
return X_STATUS_INVALID_PARAMETER;
}
// Adjust the base downwards to the nearest page boundary. // Adjust the base downwards to the nearest page boundary.
uint32_t adjusted_base = uint32_t adjusted_base =
*base_addr_ptr - (*base_addr_ptr % heap->page_size()); *base_addr_ptr - (*base_addr_ptr % heap->page_size());
@ -240,6 +245,9 @@ dword_result_t NtFreeVirtualMemory(lpdword_t base_addr_ptr,
} }
auto heap = kernel_state()->memory()->LookupHeap(base_addr_value); auto heap = kernel_state()->memory()->LookupHeap(base_addr_value);
if (heap->heap_type() != HeapType::kGuestVirtual) {
return X_STATUS_INVALID_PARAMETER;
}
bool result = false; bool result = false;
if (free_type == X_MEM_DECOMMIT) { if (free_type == X_MEM_DECOMMIT) {
// If zero, we may need to query size (free whole region). // If zero, we may need to query size (free whole region).
@ -401,6 +409,11 @@ DECLARE_XBOXKRNL_EXPORT2(MmQueryAddressProtect, kMemory, kImplemented,
void MmSetAddressProtect(lpvoid_t base_address, dword_t region_size, void MmSetAddressProtect(lpvoid_t base_address, dword_t region_size,
dword_t protect_bits) { dword_t protect_bits) {
if (!protect_bits) {
XELOGE("MmSetAddressProtect: Failed due to incorrect protect_bits");
return;
}
uint32_t protect = FromXdkProtectFlags(protect_bits); uint32_t protect = FromXdkProtectFlags(protect_bits);
auto heap = kernel_memory()->LookupHeap(base_address); auto heap = kernel_memory()->LookupHeap(base_address);
heap->Protect(base_address.guest_address(), region_size, protect); heap->Protect(base_address.guest_address(), region_size, protect);

View File

@ -78,22 +78,21 @@ DECLARE_XBOXKRNL_EXPORT1(ObLookupThreadByThreadId, kNone, kImplemented);
dword_result_t ObReferenceObjectByHandle(dword_t handle, dword_result_t ObReferenceObjectByHandle(dword_t handle,
dword_t object_type_ptr, dword_t object_type_ptr,
lpdword_t out_object_ptr) { lpdword_t out_object_ptr) {
const static std::unordered_map<XObject::Type, uint32_t> obj_type_match = { // These values come from how Xenia handles uninitialized kernel data exports.
{XObject::kTypeEvent, 0xD00EBEEF}, // D###BEEF where ### is the ordinal.
{XObject::kTypeSemaphore, 0xD017BEEF}, const static std::unordered_map<XObject::Type, uint32_t> object_types = {
{XObject::kTypeThread, 0xD01BBEEF}}; {XObject::Type::Event, 0xD00EBEEF},
{XObject::Type::Semaphore, 0xD017BEEF},
{XObject::Type::Thread, 0xD01BBEEF}};
auto object = kernel_state()->object_table()->LookupObject<XObject>(handle); auto object = kernel_state()->object_table()->LookupObject<XObject>(handle);
if (!object) { if (!object) {
return X_STATUS_INVALID_HANDLE; return X_STATUS_INVALID_HANDLE;
} }
uint32_t native_ptr = object->guest_object(); uint32_t native_ptr = object->guest_object();
auto obj_type = obj_type_match.find(object->type()); auto object_type = object_types.find(object->type());
if (object_type != object_types.end()) {
if (obj_type != obj_type_match.end()) { if (object_type_ptr && object_type_ptr != object_type->second) {
if (object_type_ptr && object_type_ptr != obj_type->second) {
return X_STATUS_OBJECT_TYPE_MISMATCH; return X_STATUS_OBJECT_TYPE_MISMATCH;
} }
} else { } else {

View File

@ -21,14 +21,10 @@
#include "xenia/kernel/util/shim_utils.h" #include "xenia/kernel/util/shim_utils.h"
#include "xenia/kernel/xboxkrnl/xboxkrnl_private.h" #include "xenia/kernel/xboxkrnl/xboxkrnl_private.h"
#include "xenia/kernel/xboxkrnl/xboxkrnl_threading.h" #include "xenia/kernel/xboxkrnl/xboxkrnl_threading.h"
#include "xenia/kernel/xclock.h"
#include "xenia/kernel/xevent.h" #include "xenia/kernel/xevent.h"
#include "xenia/kernel/xthread.h" #include "xenia/kernel/xthread.h"
#if XE_PLATFORM_WIN32
#include "xenia/base/platform_win.h"
#define timegm _mkgmtime
#endif
namespace xe { namespace xe {
namespace kernel { namespace kernel {
namespace xboxkrnl { namespace xboxkrnl {
@ -507,44 +503,51 @@ struct X_TIME_FIELDS {
xe::be<uint16_t> milliseconds; xe::be<uint16_t> milliseconds;
xe::be<uint16_t> weekday; xe::be<uint16_t> weekday;
}; };
static_assert(sizeof(X_TIME_FIELDS) == 16, "Must be LARGEINTEGER"); static_assert_size(X_TIME_FIELDS, 16);
// https://support.microsoft.com/en-us/kb/167296 // https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-rtltimetotimefields
void RtlTimeToTimeFields(lpqword_t time_ptr, void RtlTimeToTimeFields(lpqword_t time_ptr,
pointer_t<X_TIME_FIELDS> time_fields_ptr) { pointer_t<X_TIME_FIELDS> time_fields_ptr) {
int64_t time_ms = time_ptr.value() / 10000 - 11644473600000LL; auto tp = XClock::to_sys(XClock::from_file_time(time_ptr.value()));
time_t timet = time_ms / 1000; auto dp = date::floor<date::days>(tp);
struct tm* tm = gmtime(&timet); auto year_month_day = date::year_month_day{dp};
auto weekday = date::weekday{dp};
time_fields_ptr->year = tm->tm_year + 1900; auto time = date::hh_mm_ss{date::floor<std::chrono::milliseconds>(tp - dp)};
time_fields_ptr->month = tm->tm_mon + 1; time_fields_ptr->year = static_cast<int>(year_month_day.year());
time_fields_ptr->day = tm->tm_mday; time_fields_ptr->month = static_cast<unsigned>(year_month_day.month());
time_fields_ptr->hour = tm->tm_hour; time_fields_ptr->day = static_cast<unsigned>(year_month_day.day());
time_fields_ptr->minute = tm->tm_min; time_fields_ptr->weekday = weekday.c_encoding();
time_fields_ptr->second = tm->tm_sec; time_fields_ptr->hour = time.hours().count();
time_fields_ptr->milliseconds = time_ms % 1000; time_fields_ptr->minute = time.minutes().count();
time_fields_ptr->weekday = tm->tm_wday; time_fields_ptr->second = static_cast<uint16_t>(time.seconds().count());
time_fields_ptr->milliseconds =
static_cast<uint16_t>(time.subseconds().count());
} }
DECLARE_XBOXKRNL_EXPORT1(RtlTimeToTimeFields, kNone, kImplemented); DECLARE_XBOXKRNL_EXPORT1(RtlTimeToTimeFields, kNone, kImplemented);
// https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-rtltimefieldstotime
dword_result_t RtlTimeFieldsToTime(pointer_t<X_TIME_FIELDS> time_fields_ptr, dword_result_t RtlTimeFieldsToTime(pointer_t<X_TIME_FIELDS> time_fields_ptr,
lpqword_t time_ptr) { lpqword_t time_ptr) {
struct tm tm; if (time_fields_ptr->year < 1601 || time_fields_ptr->month < 1 ||
tm.tm_year = time_fields_ptr->year - 1900; time_fields_ptr->month > 11 || time_fields_ptr->day < 1 ||
tm.tm_mon = time_fields_ptr->month - 1; time_fields_ptr->hour > 23 || time_fields_ptr->minute > 59 ||
tm.tm_mday = time_fields_ptr->day; time_fields_ptr->second > 59 || time_fields_ptr->milliseconds > 999) {
tm.tm_hour = time_fields_ptr->hour;
tm.tm_min = time_fields_ptr->minute;
tm.tm_sec = time_fields_ptr->second;
tm.tm_isdst = 0;
time_t timet = timegm(&tm);
if (timet == -1) {
// set last error = ERROR_INVALID_PARAMETER
return 0; return 0;
} }
uint64_t time = auto year = date::year{time_fields_ptr->year};
((timet + 11644473600LL) * 1000 + time_fields_ptr->milliseconds) * 10000; auto month = date::month{time_fields_ptr->month};
*time_ptr = time; auto day = date::day{time_fields_ptr->day};
auto year_month_day = date::year_month_day{year, month, day};
if (!year_month_day.ok()) {
return 0;
}
auto dp = static_cast<date::sys_days>(year_month_day);
std::chrono::system_clock::time_point time = dp;
time += std::chrono::hours{time_fields_ptr->hour};
time += std::chrono::minutes{time_fields_ptr->minute};
time += std::chrono::seconds{time_fields_ptr->second};
time += std::chrono::milliseconds{time_fields_ptr->milliseconds};
*time_ptr = XClock::to_file_time(XClock::from_sys(time));
return 1; return 1;
} }
DECLARE_XBOXKRNL_EXPORT1(RtlTimeFieldsToTime, kNone, kImplemented); DECLARE_XBOXKRNL_EXPORT1(RtlTimeFieldsToTime, kNone, kImplemented);

View File

@ -432,7 +432,7 @@ dword_result_t NtCreateEvent(lpdword_t handle_ptr,
auto existing_object = auto existing_object =
LookupNamedObject<XEvent>(kernel_state(), obj_attributes_ptr); LookupNamedObject<XEvent>(kernel_state(), obj_attributes_ptr);
if (existing_object) { if (existing_object) {
if (existing_object->type() == XObject::kTypeEvent) { if (existing_object->type() == XObject::Type::Event) {
if (handle_ptr) { if (handle_ptr) {
existing_object->RetainHandle(); existing_object->RetainHandle();
*handle_ptr = existing_object->handle(); *handle_ptr = existing_object->handle();
@ -559,7 +559,7 @@ dword_result_t NtCreateSemaphore(lpdword_t handle_ptr,
auto existing_object = auto existing_object =
LookupNamedObject<XSemaphore>(kernel_state(), obj_attributes_ptr); LookupNamedObject<XSemaphore>(kernel_state(), obj_attributes_ptr);
if (existing_object) { if (existing_object) {
if (existing_object->type() == XObject::kTypeSemaphore) { if (existing_object->type() == XObject::Type::Semaphore) {
if (handle_ptr) { if (handle_ptr) {
existing_object->RetainHandle(); existing_object->RetainHandle();
*handle_ptr = existing_object->handle(); *handle_ptr = existing_object->handle();
@ -613,7 +613,7 @@ dword_result_t NtCreateMutant(lpdword_t handle_out,
auto existing_object = LookupNamedObject<XMutant>( auto existing_object = LookupNamedObject<XMutant>(
kernel_state(), obj_attributes.guest_address()); kernel_state(), obj_attributes.guest_address());
if (existing_object) { if (existing_object) {
if (existing_object->type() == XObject::kTypeMutant) { if (existing_object->type() == XObject::Type::Mutant) {
if (handle_out) { if (handle_out) {
existing_object->RetainHandle(); existing_object->RetainHandle();
*handle_out = existing_object->handle(); *handle_out = existing_object->handle();
@ -674,7 +674,7 @@ dword_result_t NtCreateTimer(lpdword_t handle_ptr, lpvoid_t obj_attributes_ptr,
auto existing_object = auto existing_object =
LookupNamedObject<XTimer>(kernel_state(), obj_attributes_ptr); LookupNamedObject<XTimer>(kernel_state(), obj_attributes_ptr);
if (existing_object) { if (existing_object) {
if (existing_object->type() == XObject::kTypeTimer) { if (existing_object->type() == XObject::Type::Timer) {
if (handle_ptr) { if (handle_ptr) {
existing_object->RetainHandle(); existing_object->RetainHandle();
*handle_ptr = existing_object->handle(); *handle_ptr = existing_object->handle();

78
src/xenia/kernel/xclock.h Normal file
View File

@ -0,0 +1,78 @@
/**
******************************************************************************
* Xenia : Xbox 360 Emulator Research Project *
******************************************************************************
* Copyright 2020 Ben Vanik. All rights reserved. *
* Released under the BSD license - see LICENSE in the root for more details. *
******************************************************************************
*/
#ifndef XENIA_KERNEL_XCLOCK_H_
#define XENIA_KERNEL_XCLOCK_H_
#include <chrono>
#include "xenia/base/clock.h"
#include "third_party/date/include/date/date.h"
namespace xe {
namespace kernel {
struct XClock {
using rep = int64_t;
using period = std::ratio_multiply<std::ratio<100>, std::nano>;
using duration = std::chrono::duration<rep, period>;
using time_point = std::chrono::time_point<XClock>;
static constexpr bool is_steady = false;
static time_point now() noexcept {
return from_file_time(Clock::QueryGuestSystemTime());
}
static uint64_t to_file_time(time_point const& tp) noexcept {
return static_cast<uint64_t>(tp.time_since_epoch().count());
}
static time_point from_file_time(uint64_t const& tp) noexcept {
return time_point{duration{tp}};
}
static std::chrono::system_clock::time_point to_sys(time_point const& tp) {
// TODO(gibbed): verify behavior under Linux
using sys_duration = std::chrono::system_clock::duration;
using sys_time = std::chrono::system_clock::time_point;
auto dp = tp;
dp += system_clock_delta();
auto cdp = std::chrono::time_point_cast<sys_duration>(dp);
return sys_time{cdp.time_since_epoch()};
}
static time_point from_sys(std::chrono::system_clock::time_point const& tp) {
// TODO(gibbed): verify behavior under Linux
auto ctp = std::chrono::time_point_cast<duration>(tp);
auto dp = time_point{ctp.time_since_epoch()};
dp -= system_clock_delta();
return dp;
}
private:
// The delta between std::chrono::system_clock (Jan 1 1970) and Xenon file
// time (Jan 1 1601), in seconds. In the spec std::chrono::system_clock's
// epoch is undefined, but C++20 cements it as Jan 1 1970.
static constexpr std::chrono::seconds system_clock_delta() {
auto filetime_epoch = date::year{1601} / date::month{1} / date::day{1};
auto system_clock_epoch = date::year{1970} / date::month{1} / date::day{1};
std::chrono::system_clock::time_point fp{
static_cast<date::sys_days>(filetime_epoch)};
std::chrono::system_clock::time_point sp{
static_cast<date::sys_days>(system_clock_epoch)};
return std::chrono::floor<std::chrono::seconds>(fp.time_since_epoch() -
sp.time_since_epoch());
}
};
} // namespace kernel
} // namespace xe
#endif // XENIA_KERNEL_XCLOCK_H_

View File

@ -14,7 +14,7 @@ namespace kernel {
XEnumerator::XEnumerator(KernelState* kernel_state, size_t items_per_enumerate, XEnumerator::XEnumerator(KernelState* kernel_state, size_t items_per_enumerate,
size_t item_size) size_t item_size)
: XObject(kernel_state, kType), : XObject(kernel_state, kObjectType),
items_per_enumerate_(items_per_enumerate), items_per_enumerate_(items_per_enumerate),
item_size_(item_size) {} item_size_(item_size) {}

View File

@ -21,7 +21,7 @@ namespace kernel {
class XEnumerator : public XObject { class XEnumerator : public XObject {
public: public:
static const Type kType = kTypeEnumerator; static const XObject::Type kObjectType = XObject::Type::Enumerator;
XEnumerator(KernelState* kernel_state, size_t items_per_enumerate, XEnumerator(KernelState* kernel_state, size_t items_per_enumerate,
size_t item_size); size_t item_size);

View File

@ -15,7 +15,8 @@
namespace xe { namespace xe {
namespace kernel { namespace kernel {
XEvent::XEvent(KernelState* kernel_state) : XObject(kernel_state, kType) {} XEvent::XEvent(KernelState* kernel_state)
: XObject(kernel_state, kObjectType) {}
XEvent::~XEvent() = default; XEvent::~XEvent() = default;

View File

@ -25,7 +25,7 @@ static_assert_size(X_KEVENT, 0x10);
class XEvent : public XObject { class XEvent : public XObject {
public: public:
static const Type kType = kTypeEvent; static const XObject::Type kObjectType = XObject::Type::Event;
explicit XEvent(KernelState* kernel_state); explicit XEvent(KernelState* kernel_state);
~XEvent() override; ~XEvent() override;

View File

@ -22,11 +22,13 @@ namespace xe {
namespace kernel { namespace kernel {
XFile::XFile(KernelState* kernel_state, vfs::File* file, bool synchronous) XFile::XFile(KernelState* kernel_state, vfs::File* file, bool synchronous)
: XObject(kernel_state, kType), file_(file), is_synchronous_(synchronous) { : XObject(kernel_state, kObjectType),
file_(file),
is_synchronous_(synchronous) {
async_event_ = threading::Event::CreateAutoResetEvent(false); async_event_ = threading::Event::CreateAutoResetEvent(false);
} }
XFile::XFile() : XObject(kType) { XFile::XFile() : XObject(kObjectType) {
async_event_ = threading::Event::CreateAutoResetEvent(false); async_event_ = threading::Event::CreateAutoResetEvent(false);
} }
@ -122,14 +124,14 @@ X_STATUS XFile::Read(uint32_t buffer_guest_address, uint32_t buffer_length,
const xe::BaseHeap* buffer_end_heap = const xe::BaseHeap* buffer_end_heap =
memory()->LookupHeap(buffer_guest_high_address); memory()->LookupHeap(buffer_guest_high_address);
if (!buffer_start_heap || !buffer_end_heap || if (!buffer_start_heap || !buffer_end_heap ||
buffer_start_heap->IsGuestPhysicalHeap() != (buffer_start_heap->heap_type() == HeapType::kGuestPhysical) !=
buffer_end_heap->IsGuestPhysicalHeap() || (buffer_end_heap->heap_type() == HeapType::kGuestPhysical) ||
(buffer_start_heap->IsGuestPhysicalHeap() && (buffer_start_heap->heap_type() == HeapType::kGuestPhysical &&
buffer_start_heap != buffer_end_heap)) { buffer_start_heap != buffer_end_heap)) {
result = X_STATUS_ACCESS_VIOLATION; result = X_STATUS_ACCESS_VIOLATION;
} else { } else {
xe::PhysicalHeap* buffer_physical_heap = xe::PhysicalHeap* buffer_physical_heap =
buffer_start_heap->IsGuestPhysicalHeap() buffer_start_heap->heap_type() == HeapType::kGuestPhysical
? static_cast<xe::PhysicalHeap*>(buffer_start_heap) ? static_cast<xe::PhysicalHeap*>(buffer_start_heap)
: nullptr; : nullptr;
if (buffer_physical_heap && if (buffer_physical_heap &&

View File

@ -75,7 +75,7 @@ class X_FILE_DIRECTORY_INFORMATION {
class XFile : public XObject { class XFile : public XObject {
public: public:
static const Type kType = kTypeFile; static const XObject::Type kObjectType = XObject::Type::File;
XFile(KernelState* kernel_state, vfs::File* file, bool synchronous); XFile(KernelState* kernel_state, vfs::File* file, bool synchronous);
~XFile() override; ~XFile() override;

View File

@ -13,7 +13,7 @@ namespace xe {
namespace kernel { namespace kernel {
XIOCompletion::XIOCompletion(KernelState* kernel_state) XIOCompletion::XIOCompletion(KernelState* kernel_state)
: XObject(kernel_state, kType) { : XObject(kernel_state, kObjectType) {
notification_semaphore_ = threading::Semaphore::Create(0, kMaxNotifications); notification_semaphore_ = threading::Semaphore::Create(0, kMaxNotifications);
} }

View File

@ -21,7 +21,7 @@ namespace kernel {
class XIOCompletion : public XObject { class XIOCompletion : public XObject {
public: public:
static const Type kType = kTypeIOCompletion; static const XObject::Type kObjectType = XObject::Type::IOCompletion;
explicit XIOCompletion(KernelState* kernel_state); explicit XIOCompletion(KernelState* kernel_state);
~XIOCompletion() override; ~XIOCompletion() override;

View File

@ -19,7 +19,7 @@ namespace xe {
namespace kernel { namespace kernel {
XModule::XModule(KernelState* kernel_state, ModuleType module_type) XModule::XModule(KernelState* kernel_state, ModuleType module_type)
: XObject(kernel_state, kType), : XObject(kernel_state, kObjectType),
module_type_(module_type), module_type_(module_type),
processor_module_(nullptr), processor_module_(nullptr),
hmodule_ptr_(0) { hmodule_ptr_(0) {

View File

@ -57,7 +57,7 @@ class XModule : public XObject {
kUserModule = 1, kUserModule = 1,
}; };
static const Type kType = kTypeModule; static const XObject::Type kObjectType = XObject::Type::Module;
XModule(KernelState* kernel_state, ModuleType module_type); XModule(KernelState* kernel_state, ModuleType module_type);
virtual ~XModule(); virtual ~XModule();

View File

@ -17,9 +17,10 @@
namespace xe { namespace xe {
namespace kernel { namespace kernel {
XMutant::XMutant() : XObject(kType) {} XMutant::XMutant(KernelState* kernel_state)
: XObject(kernel_state, kObjectType) {}
XMutant::XMutant(KernelState* kernel_state) : XObject(kernel_state, kType) {} XMutant::XMutant() : XObject(kObjectType) {}
XMutant::~XMutant() = default; XMutant::~XMutant() = default;

View File

@ -20,7 +20,7 @@ class XThread;
class XMutant : public XObject { class XMutant : public XObject {
public: public:
static const Type kType = kTypeMutant; static const XObject::Type kObjectType = XObject::Type::Mutant;
explicit XMutant(KernelState* kernel_state); explicit XMutant(KernelState* kernel_state);
~XMutant() override; ~XMutant() override;

View File

@ -16,7 +16,7 @@ namespace xe {
namespace kernel { namespace kernel {
XNotifyListener::XNotifyListener(KernelState* kernel_state) XNotifyListener::XNotifyListener(KernelState* kernel_state)
: XObject(kernel_state, kType) {} : XObject(kernel_state, kObjectType) {}
XNotifyListener::~XNotifyListener() {} XNotifyListener::~XNotifyListener() {}

View File

@ -23,7 +23,7 @@ namespace kernel {
class XNotifyListener : public XObject { class XNotifyListener : public XObject {
public: public:
static const Type kType = kTypeNotifyListener; static const XObject::Type kObjectType = XObject::Type::NotifyListener;
explicit XNotifyListener(KernelState* kernel_state); explicit XNotifyListener(KernelState* kernel_state);
~XNotifyListener() override; ~XNotifyListener() override;

View File

@ -129,33 +129,33 @@ bool XObject::RestoreObject(ByteStream* stream) {
object_ref<XObject> XObject::Restore(KernelState* kernel_state, Type type, object_ref<XObject> XObject::Restore(KernelState* kernel_state, Type type,
ByteStream* stream) { ByteStream* stream) {
switch (type) { switch (type) {
case kTypeEnumerator: case Type::Enumerator:
break; break;
case kTypeEvent: case Type::Event:
return XEvent::Restore(kernel_state, stream); return XEvent::Restore(kernel_state, stream);
case kTypeFile: case Type::File:
return XFile::Restore(kernel_state, stream); return XFile::Restore(kernel_state, stream);
case kTypeIOCompletion: case Type::IOCompletion:
break; break;
case kTypeModule: case Type::Module:
return XModule::Restore(kernel_state, stream); return XModule::Restore(kernel_state, stream);
case kTypeMutant: case Type::Mutant:
return XMutant::Restore(kernel_state, stream); return XMutant::Restore(kernel_state, stream);
case kTypeNotifyListener: case Type::NotifyListener:
return XNotifyListener::Restore(kernel_state, stream); return XNotifyListener::Restore(kernel_state, stream);
case kTypeSemaphore: case Type::Semaphore:
return XSemaphore::Restore(kernel_state, stream); return XSemaphore::Restore(kernel_state, stream);
case kTypeSession: case Type::Session:
break; break;
case kTypeSocket: case Type::Socket:
break; break;
case kTypeSymbolicLink: case Type::SymbolicLink:
return XSymbolicLink::Restore(kernel_state, stream); return XSymbolicLink::Restore(kernel_state, stream);
case kTypeThread: case Type::Thread:
return XThread::Restore(kernel_state, stream); return XThread::Restore(kernel_state, stream);
case kTypeTimer: case Type::Timer:
break; break;
case kTypeUndefined: case Type::Undefined:
break; break;
} }

View File

@ -116,21 +116,21 @@ class XObject {
// one with 0x8A... which causes crash // one with 0x8A... which causes crash
static constexpr uint32_t kHandleBase = 0xF8000000; static constexpr uint32_t kHandleBase = 0xF8000000;
enum Type { enum class Type : uint32_t {
kTypeUndefined, Undefined,
kTypeEnumerator, Enumerator,
kTypeEvent, Event,
kTypeFile, File,
kTypeIOCompletion, IOCompletion,
kTypeModule, Module,
kTypeMutant, Mutant,
kTypeNotifyListener, NotifyListener,
kTypeSemaphore, Semaphore,
kTypeSession, Session,
kTypeSocket, Socket,
kTypeSymbolicLink, SymbolicLink,
kTypeThread, Thread,
kTypeTimer, Timer,
}; };
XObject(Type type); XObject(Type type);

View File

@ -16,7 +16,7 @@ namespace xe {
namespace kernel { namespace kernel {
XSemaphore::XSemaphore(KernelState* kernel_state) XSemaphore::XSemaphore(KernelState* kernel_state)
: XObject(kernel_state, kTypeSemaphore) {} : XObject(kernel_state, kObjectType) {}
XSemaphore::~XSemaphore() = default; XSemaphore::~XSemaphore() = default;

View File

@ -25,7 +25,7 @@ static_assert_size(X_KSEMAPHORE, 0x14);
class XSemaphore : public XObject { class XSemaphore : public XObject {
public: public:
static const Type kType = kTypeSemaphore; static const XObject::Type kObjectType = XObject::Type::Semaphore;
explicit XSemaphore(KernelState* kernel_state); explicit XSemaphore(KernelState* kernel_state);
~XSemaphore() override; ~XSemaphore() override;

View File

@ -31,10 +31,11 @@
namespace xe { namespace xe {
namespace kernel { namespace kernel {
XSocket::XSocket(KernelState* kernel_state) : XObject(kernel_state, kType) {} XSocket::XSocket(KernelState* kernel_state)
: XObject(kernel_state, kObjectType) {}
XSocket::XSocket(KernelState* kernel_state, uint64_t native_handle) XSocket::XSocket(KernelState* kernel_state, uint64_t native_handle)
: XObject(kernel_state, kType), native_handle_(native_handle) {} : XObject(kernel_state, kObjectType), native_handle_(native_handle) {}
XSocket::~XSocket() { Close(); } XSocket::~XSocket() { Close(); }

View File

@ -66,7 +66,7 @@ struct N_XSOCKADDR_IN {
class XSocket : public XObject { class XSocket : public XObject {
public: public:
static const Type kType = kTypeSocket; static const XObject::Type kObjectType = XObject::Type::Socket;
enum AddressFamily { enum AddressFamily {
AF_INET = 2, AF_INET = 2,

View File

@ -16,9 +16,9 @@ namespace xe {
namespace kernel { namespace kernel {
XSymbolicLink::XSymbolicLink(KernelState* kernel_state) XSymbolicLink::XSymbolicLink(KernelState* kernel_state)
: XObject(kernel_state, kType), path_(), target_() {} : XObject(kernel_state, kObjectType), path_(), target_() {}
XSymbolicLink::XSymbolicLink() : XObject(kType), path_(), target_() {} XSymbolicLink::XSymbolicLink() : XObject(kObjectType), path_(), target_() {}
XSymbolicLink::~XSymbolicLink() {} XSymbolicLink::~XSymbolicLink() {}

View File

@ -23,7 +23,7 @@ namespace kernel {
class XSymbolicLink : public XObject { class XSymbolicLink : public XObject {
public: public:
static const Type kType = kTypeSymbolicLink; static const XObject::Type kObjectType = XObject::Type::SymbolicLink;
explicit XSymbolicLink(KernelState* kernel_state); explicit XSymbolicLink(KernelState* kernel_state);
~XSymbolicLink() override; ~XSymbolicLink() override;

View File

@ -48,13 +48,13 @@ using xe::cpu::ppc::PPCOpcode;
uint32_t next_xthread_id_ = 0; uint32_t next_xthread_id_ = 0;
XThread::XThread(KernelState* kernel_state) XThread::XThread(KernelState* kernel_state)
: XObject(kernel_state, kType), guest_thread_(true) {} : XObject(kernel_state, kObjectType), guest_thread_(true) {}
XThread::XThread(KernelState* kernel_state, uint32_t stack_size, XThread::XThread(KernelState* kernel_state, uint32_t stack_size,
uint32_t xapi_thread_startup, uint32_t start_address, uint32_t xapi_thread_startup, uint32_t start_address,
uint32_t start_context, uint32_t creation_flags, uint32_t start_context, uint32_t creation_flags,
bool guest_thread, bool main_thread) bool guest_thread, bool main_thread)
: XObject(kernel_state, kType), : XObject(kernel_state, kObjectType),
thread_id_(++next_xthread_id_), thread_id_(++next_xthread_id_),
guest_thread_(guest_thread), guest_thread_(guest_thread),
main_thread_(main_thread), main_thread_(main_thread),

View File

@ -106,7 +106,7 @@ static_assert_size(X_KTHREAD, 0xAB0);
class XThread : public XObject, public cpu::Thread { class XThread : public XObject, public cpu::Thread {
public: public:
static const Type kType = kTypeThread; static const XObject::Type kObjectType = XObject::Type::Thread;
struct CreationParams { struct CreationParams {
uint32_t stack_size; uint32_t stack_size;

View File

@ -17,7 +17,8 @@
namespace xe { namespace xe {
namespace kernel { namespace kernel {
XTimer::XTimer(KernelState* kernel_state) : XObject(kernel_state, kType) {} XTimer::XTimer(KernelState* kernel_state)
: XObject(kernel_state, kObjectType) {}
XTimer::~XTimer() = default; XTimer::~XTimer() = default;

View File

@ -21,7 +21,7 @@ class XThread;
class XTimer : public XObject { class XTimer : public XObject {
public: public:
static const Type kType = kTypeTimer; static const XObject::Type kObjectType = XObject::Type::Timer;
explicit XTimer(KernelState* kernel_state); explicit XTimer(KernelState* kernel_state);
~XTimer() override; ~XTimer() override;

View File

@ -158,24 +158,26 @@ bool Memory::Initialize() {
physical_membase_ = mapping_base_ + 0x100000000ull; physical_membase_ = mapping_base_ + 0x100000000ull;
// Prepare virtual heaps. // Prepare virtual heaps.
heaps_.v00000000.Initialize(this, virtual_membase_, 0x00000000, 0x40000000, heaps_.v00000000.Initialize(this, virtual_membase_, HeapType::kGuestVirtual,
4096); 0x00000000, 0x40000000, 4096);
heaps_.v40000000.Initialize(this, virtual_membase_, 0x40000000, heaps_.v40000000.Initialize(this, virtual_membase_, HeapType::kGuestVirtual,
0x40000000 - 0x01000000, 64 * 1024); 0x40000000, 0x40000000 - 0x01000000, 64 * 1024);
heaps_.v80000000.Initialize(this, virtual_membase_, 0x80000000, 0x10000000, heaps_.v80000000.Initialize(this, virtual_membase_, HeapType::kGuestXex,
64 * 1024); 0x80000000, 0x10000000, 64 * 1024);
heaps_.v90000000.Initialize(this, virtual_membase_, 0x90000000, 0x10000000, heaps_.v90000000.Initialize(this, virtual_membase_, HeapType::kGuestXex,
4096); 0x90000000, 0x10000000, 4096);
// Prepare physical heaps. // Prepare physical heaps.
heaps_.physical.Initialize(this, physical_membase_, 0x00000000, 0x20000000, heaps_.physical.Initialize(this, physical_membase_, HeapType::kGuestPhysical,
4096); 0x00000000, 0x20000000, 4096);
heaps_.vA0000000.Initialize(this, virtual_membase_, 0xA0000000, 0x20000000, heaps_.vA0000000.Initialize(this, virtual_membase_, HeapType::kGuestPhysical,
64 * 1024, &heaps_.physical); 0xA0000000, 0x20000000, 64 * 1024,
heaps_.vC0000000.Initialize(this, virtual_membase_, 0xC0000000, 0x20000000, &heaps_.physical);
16 * 1024 * 1024, &heaps_.physical); heaps_.vC0000000.Initialize(this, virtual_membase_, HeapType::kGuestPhysical,
heaps_.vE0000000.Initialize(this, virtual_membase_, 0xE0000000, 0x1FD00000, 0xC0000000, 0x20000000, 16 * 1024 * 1024,
4096, &heaps_.physical); &heaps_.physical);
heaps_.vE0000000.Initialize(this, virtual_membase_, HeapType::kGuestPhysical,
0xE0000000, 0x1FD00000, 4096, &heaps_.physical);
// Protect the first and last 64kb of memory. // Protect the first and last 64kb of memory.
heaps_.v00000000.AllocFixed( heaps_.v00000000.AllocFixed(
@ -373,7 +375,7 @@ uint32_t Memory::HostToGuestVirtualThunk(const void* context,
uint32_t Memory::GetPhysicalAddress(uint32_t address) const { uint32_t Memory::GetPhysicalAddress(uint32_t address) const {
const BaseHeap* heap = LookupHeap(address); const BaseHeap* heap = LookupHeap(address);
if (!heap || !heap->IsGuestPhysicalHeap()) { if (!heap || heap->heap_type() != HeapType::kGuestPhysical) {
return UINT32_MAX; return UINT32_MAX;
} }
return static_cast<const PhysicalHeap*>(heap)->GetPhysicalAddress(address); return static_cast<const PhysicalHeap*>(heap)->GetPhysicalAddress(address);
@ -449,7 +451,7 @@ bool Memory::AccessViolationCallback(
} }
uint32_t virtual_address = HostToGuestVirtual(host_address); uint32_t virtual_address = HostToGuestVirtual(host_address);
BaseHeap* heap = LookupHeap(virtual_address); BaseHeap* heap = LookupHeap(virtual_address);
if (!heap->IsGuestPhysicalHeap()) { if (heap->heap_type() != HeapType::kGuestPhysical) {
return false; return false;
} }
@ -475,7 +477,7 @@ bool Memory::TriggerPhysicalMemoryCallbacks(
uint32_t virtual_address, uint32_t length, bool is_write, uint32_t virtual_address, uint32_t length, bool is_write,
bool unwatch_exact_range, bool unprotect) { bool unwatch_exact_range, bool unprotect) {
BaseHeap* heap = LookupHeap(virtual_address); BaseHeap* heap = LookupHeap(virtual_address);
if (heap->IsGuestPhysicalHeap()) { if (heap->heap_type() == HeapType::kGuestPhysical) {
auto physical_heap = static_cast<PhysicalHeap*>(heap); auto physical_heap = static_cast<PhysicalHeap*>(heap);
return physical_heap->TriggerCallbacks(std::move(global_lock_locked_once), return physical_heap->TriggerCallbacks(std::move(global_lock_locked_once),
virtual_address, length, is_write, virtual_address, length, is_write,
@ -619,6 +621,10 @@ uint32_t FromPageAccess(xe::memory::PageAccess protect) {
return kMemoryProtectRead; return kMemoryProtectRead;
case memory::PageAccess::kReadWrite: case memory::PageAccess::kReadWrite:
return kMemoryProtectRead | kMemoryProtectWrite; return kMemoryProtectRead | kMemoryProtectWrite;
case memory::PageAccess::kExecuteReadOnly:
// Guest memory cannot be executable - this should never happen :)
assert_always();
return kMemoryProtectRead;
case memory::PageAccess::kExecuteReadWrite: case memory::PageAccess::kExecuteReadWrite:
// Guest memory cannot be executable - this should never happen :) // Guest memory cannot be executable - this should never happen :)
assert_always(); assert_always();
@ -633,11 +639,12 @@ BaseHeap::BaseHeap()
BaseHeap::~BaseHeap() = default; BaseHeap::~BaseHeap() = default;
void BaseHeap::Initialize(Memory* memory, uint8_t* membase, uint32_t heap_base, void BaseHeap::Initialize(Memory* memory, uint8_t* membase, HeapType heap_type,
uint32_t heap_size, uint32_t page_size, uint32_t heap_base, uint32_t heap_size,
uint32_t host_address_offset) { uint32_t page_size, uint32_t host_address_offset) {
memory_ = memory; memory_ = memory;
membase_ = membase; membase_ = membase;
heap_type_ = heap_type;
heap_base_ = heap_base; heap_base_ = heap_base;
heap_size_ = heap_size; heap_size_ = heap_size;
page_size_ = page_size; page_size_ = page_size;
@ -1346,9 +1353,10 @@ VirtualHeap::VirtualHeap() = default;
VirtualHeap::~VirtualHeap() = default; VirtualHeap::~VirtualHeap() = default;
void VirtualHeap::Initialize(Memory* memory, uint8_t* membase, void VirtualHeap::Initialize(Memory* memory, uint8_t* membase,
uint32_t heap_base, uint32_t heap_size, HeapType heap_type, uint32_t heap_base,
uint32_t page_size) { uint32_t heap_size, uint32_t page_size) {
BaseHeap::Initialize(memory, membase, heap_base, heap_size, page_size); BaseHeap::Initialize(memory, membase, heap_type, heap_base, heap_size,
page_size);
} }
PhysicalHeap::PhysicalHeap() : parent_heap_(nullptr) {} PhysicalHeap::PhysicalHeap() : parent_heap_(nullptr) {}
@ -1356,8 +1364,9 @@ PhysicalHeap::PhysicalHeap() : parent_heap_(nullptr) {}
PhysicalHeap::~PhysicalHeap() = default; PhysicalHeap::~PhysicalHeap() = default;
void PhysicalHeap::Initialize(Memory* memory, uint8_t* membase, void PhysicalHeap::Initialize(Memory* memory, uint8_t* membase,
uint32_t heap_base, uint32_t heap_size, HeapType heap_type, uint32_t heap_base,
uint32_t page_size, VirtualHeap* parent_heap) { uint32_t heap_size, uint32_t page_size,
VirtualHeap* parent_heap) {
uint32_t host_address_offset; uint32_t host_address_offset;
if (heap_base >= 0xE0000000 && if (heap_base >= 0xE0000000 &&
xe::memory::allocation_granularity() > 0x1000) { xe::memory::allocation_granularity() > 0x1000) {
@ -1366,8 +1375,8 @@ void PhysicalHeap::Initialize(Memory* memory, uint8_t* membase,
host_address_offset = 0; host_address_offset = 0;
} }
BaseHeap::Initialize(memory, membase, heap_base, heap_size, page_size, BaseHeap::Initialize(memory, membase, heap_type, heap_base, heap_size,
host_address_offset); page_size, host_address_offset);
parent_heap_ = parent_heap; parent_heap_ = parent_heap;
system_page_size_ = uint32_t(xe::memory::page_size()); system_page_size_ = uint32_t(xe::memory::page_size());

View File

@ -36,6 +36,13 @@ enum SystemHeapFlag : uint32_t {
kSystemHeapDefault = kSystemHeapVirtual, kSystemHeapDefault = kSystemHeapVirtual,
}; };
enum class HeapType : uint8_t {
kGuestVirtual,
kGuestXex,
kGuestPhysical,
kHostPhysical,
};
enum MemoryAllocationFlag : uint32_t { enum MemoryAllocationFlag : uint32_t {
kMemoryAllocationReserve = 1 << 0, kMemoryAllocationReserve = 1 << 0,
kMemoryAllocationCommit = 1 << 1, kMemoryAllocationCommit = 1 << 1,
@ -106,6 +113,9 @@ class BaseHeap {
// Size of each page within the heap range in bytes. // Size of each page within the heap range in bytes.
uint32_t page_size() const { return page_size_; } uint32_t page_size() const { return page_size_; }
// Type of specified heap
HeapType heap_type() const { return heap_type_; }
// Offset added to the virtual addresses to convert them to host addresses // Offset added to the virtual addresses to convert them to host addresses
// (not including membase). // (not including membase).
uint32_t host_address_offset() const { return host_address_offset_; } uint32_t host_address_offset() const { return host_address_offset_; }
@ -177,9 +187,6 @@ class BaseHeap {
xe::memory::PageAccess QueryRangeAccess(uint32_t low_address, xe::memory::PageAccess QueryRangeAccess(uint32_t low_address,
uint32_t high_address); uint32_t high_address);
// Whether the heap is a guest virtual memory mapping of the physical memory.
virtual bool IsGuestPhysicalHeap() const { return false; }
bool Save(ByteStream* stream); bool Save(ByteStream* stream);
bool Restore(ByteStream* stream); bool Restore(ByteStream* stream);
@ -188,12 +195,13 @@ class BaseHeap {
protected: protected:
BaseHeap(); BaseHeap();
void Initialize(Memory* memory, uint8_t* membase, uint32_t heap_base, void Initialize(Memory* memory, uint8_t* membase, HeapType heap_type,
uint32_t heap_size, uint32_t page_size, uint32_t heap_base, uint32_t heap_size, uint32_t page_size,
uint32_t host_address_offset = 0); uint32_t host_address_offset = 0);
Memory* memory_; Memory* memory_;
uint8_t* membase_; uint8_t* membase_;
HeapType heap_type_;
uint32_t heap_base_; uint32_t heap_base_;
uint32_t heap_size_; uint32_t heap_size_;
uint32_t page_size_; uint32_t page_size_;
@ -209,8 +217,8 @@ class VirtualHeap : public BaseHeap {
~VirtualHeap() override; ~VirtualHeap() override;
// Initializes the heap properties and allocates the page table. // Initializes the heap properties and allocates the page table.
void Initialize(Memory* memory, uint8_t* membase, uint32_t heap_base, void Initialize(Memory* memory, uint8_t* membase, HeapType heap_type,
uint32_t heap_size, uint32_t page_size); uint32_t heap_base, uint32_t heap_size, uint32_t page_size);
}; };
// A heap for ranges of memory that are mapped to physical ranges. // A heap for ranges of memory that are mapped to physical ranges.
@ -226,8 +234,8 @@ class PhysicalHeap : public BaseHeap {
~PhysicalHeap() override; ~PhysicalHeap() override;
// Initializes the heap properties and allocates the page table. // Initializes the heap properties and allocates the page table.
void Initialize(Memory* memory, uint8_t* membase, uint32_t heap_base, void Initialize(Memory* memory, uint8_t* membase, HeapType heap_type,
uint32_t heap_size, uint32_t page_size, uint32_t heap_base, uint32_t heap_size, uint32_t page_size,
VirtualHeap* parent_heap); VirtualHeap* parent_heap);
bool Alloc(uint32_t size, uint32_t alignment, uint32_t allocation_type, bool Alloc(uint32_t size, uint32_t alignment, uint32_t allocation_type,
@ -253,7 +261,6 @@ class PhysicalHeap : public BaseHeap {
uint32_t virtual_address, uint32_t length, bool is_write, uint32_t virtual_address, uint32_t length, bool is_write,
bool unwatch_exact_range, bool unprotect = true); bool unwatch_exact_range, bool unprotect = true);
bool IsGuestPhysicalHeap() const override { return true; }
uint32_t GetPhysicalAddress(uint32_t address) const; uint32_t GetPhysicalAddress(uint32_t address) const;
protected: protected:

View File

@ -97,13 +97,15 @@ std::unique_ptr<Entry> HostPathEntry::CreateEntryInternal(
bool HostPathEntry::DeleteEntryInternal(Entry* entry) { bool HostPathEntry::DeleteEntryInternal(Entry* entry) {
auto full_path = host_path_ / xe::to_path(entry->name()); auto full_path = host_path_ / xe::to_path(entry->name());
std::error_code ec; // avoid exception on remove/remove_all failure
if (entry->attributes() & kFileAttributeDirectory) { if (entry->attributes() & kFileAttributeDirectory) {
// Delete entire directory and contents. // Delete entire directory and contents.
return std::filesystem::remove_all(full_path); auto removed = std::filesystem::remove_all(full_path, ec);
return removed >= 1 && removed != static_cast<std::uintmax_t>(-1);
} else { } else {
// Delete file. // Delete file.
return !std::filesystem::is_directory(full_path) && return !std::filesystem::is_directory(full_path) &&
std::filesystem::remove(full_path); std::filesystem::remove(full_path, ec);
} }
} }

1
third_party/date vendored Submodule

@ -0,0 +1 @@
Subproject commit 97246a638a6d8f0269f4555c5e31106a86e3fd94

@ -1 +1 @@
Subproject commit 11aff7aeacc8315e85a659bc1e803c1064adc6b3 Subproject commit df609672110ac07ff7ea6597911575c4365c2928

Binary file not shown.

View File

@ -26,8 +26,12 @@ local function combined_test_suite(test_suite_name, project_root, base_path, con
})) }))
links(merge_arrays(config["links"], { links(merge_arrays(config["links"], {
})) }))
defines({
"XE_TEST_SUITE_NAME=\""..test_suite_name.."\"",
})
files({ files({
project_root.."/"..build_tools_src.."/test_suite_main.cc", project_root.."/"..build_tools_src.."/test_suite_main.cc",
project_root.."/src/xenia/base/main_"..platform_suffix..".cc",
base_path.."/**_test.cc", base_path.."/**_test.cc",
}) })
end end

View File

@ -13,44 +13,34 @@
#include <string> #include <string>
#include <vector> #include <vector>
#include "xenia/base/cvar.h"
#include "xenia/base/main.h"
#define CATCH_CONFIG_RUNNER #define CATCH_CONFIG_RUNNER
#include "third_party/catch/include/catch.hpp" #include "third_party/catch/include/catch.hpp"
#include "xenia/base/cvar.h"
namespace xe { namespace xe {
namespace test_suite {
bool has_console_attached() { return true; } int test_suite_main(const std::vector<std::string>& args) {
// Catch doesn't expose a way to pass a vector of strings, despite building a
// Used in console mode apps; automatically picked based on subsystem. // vector internally.
int Main(int argc, char* argv[]) { int argc = 0;
cvar::ParseLaunchArguments(argc, argv, "", std::vector<std::string>()); std::vector<const char*> argv;
for (const auto& arg : args) {
argv.push_back(arg.c_str());
argc++;
}
// Run Catch. // Run Catch.
int result = Catch::Session().run(argc, argv); return Catch::Session().run(argc, argv.data());
return result;
} }
} // namespace test_suite
} // namespace xe } // namespace xe
#if _WIN32 #ifndef XE_TEST_SUITE_NAME
#include "xenia/base/platform_win.h" #error XE_TEST_SUITE_NAME is undefined!
#endif
extern "C" int main(int argc, wchar_t* argv[]) { DEFINE_ENTRY_POINT(XE_TEST_SUITE_NAME, xe::test_suite::test_suite_main, "");
// Setup COM on the main thread.
// NOTE: this may fail if COM has already been initialized - that's OK.
CoInitializeEx(nullptr, COINIT_MULTITHREADED);
// Convert all args to narrow, as gflags doesn't support wchar.
int argca = argc;
char** argva = (char**)alloca(sizeof(char*) * argca);
for (int n = 0; n < argca; n++) {
size_t len = wcslen(argv[n]);
argva[n] = (char*)alloca(len + 1);
std::wcstombs(argva[n], argv[n], len + 1);
}
return xe::Main(argc, argva);
}
#else
extern "C" int main(int argc, char* argv[]) { return xe::Main(argc, argv); }
#endif // _WIN32

View File

@ -7,7 +7,7 @@
Run with --help or no arguments for possible commands. Run with --help or no arguments for possible commands.
""" """
from __future__ import print_function from __future__ import print_function
from datetime import datetime
import argparse import argparse
import json import json
import os import os
@ -271,6 +271,48 @@ def generate_version_h():
with open('build/version.h', 'w') as f: with open('build/version.h', 'w') as f:
f.write(contents) f.write(contents)
def generate_source_class(path):
header_path = '{}.h'.format(path)
source_path = '{}.cc'.format(path)
if os.path.isfile(header_path) or os.path.isfile(source_path):
print('ERROR: Target file already exists')
return 1
if generate_source_file(header_path) > 0:
return 1
if generate_source_file(source_path) > 0:
# remove header if source file generation failed
os.remove(os.path.join(source_root, header_path))
return 1
return 0
def generate_source_file(path):
"""Generates a source file at the specified path containing copyright notice
"""
copyright = '''/**
******************************************************************************
* Xenia : Xbox 360 Emulator Research Project *
******************************************************************************
* Copyright {} Ben Vanik. All rights reserved. *
* Released under the BSD license - see LICENSE in the root for more details. *
******************************************************************************
*/'''.format(datetime.now().year)
if os.path.isfile(path):
print('ERROR: Target file already exists')
return 1
try:
with open(path, 'w') as f:
f.write(copyright)
except Exception as e:
print('ERROR: Could not write to file [path {}]'.format(path))
return 1
return 0
def git_get_head_info(): def git_get_head_info():
"""Queries the current branch and commit checksum from git. """Queries the current branch and commit checksum from git.
@ -513,6 +555,7 @@ def discover_commands(subparsers):
'format': FormatCommand(subparsers), 'format': FormatCommand(subparsers),
'style': StyleCommand(subparsers), 'style': StyleCommand(subparsers),
'tidy': TidyCommand(subparsers), 'tidy': TidyCommand(subparsers),
'stub': StubCommand(subparsers),
} }
if sys.platform == 'win32': if sys.platform == 'win32':
commands['gendxbc'] = GenDxbcCommand(subparsers) commands['gendxbc'] = GenDxbcCommand(subparsers)
@ -1538,6 +1581,57 @@ class TidyCommand(Command):
print('Tidy completed successfully.') print('Tidy completed successfully.')
return 0 return 0
class StubCommand(Command):
"""'stub' command."""
def __init__(self, subparsers, *args, **kwargs):
super(StubCommand, self).__init__(
subparsers,
name='stub',
help_short='Create new file(s) in the xenia source tree and run premake',
*args, **kwargs)
self.parser.add_argument(
'--file', default=None,
help='Generate a source file at the provided location in the source tree')
self.parser.add_argument(
'--class', default=None,
help='Generate a class pair (.cc/.h) at the provided location in the source tree')
self.parser.add_argument(
'--target_os', default=None,
help='Target OS passed to premake, for cross-compilation')
def execute(self, args, pass_args, cwd):
root = os.path.dirname(os.path.realpath(__file__))
source_root = os.path.join(root, os.path.normpath('src/xenia'))
if args['class']:
path = os.path.normpath(os.path.join(source_root, args['class']))
target_dir = os.path.dirname(path)
class_name = os.path.basename(path)
status = generate_source_class(path)
if status > 0:
return status
print('Created class \'{0}\' at {1}'.format(class_name, target_dir))
elif args['file']:
path = os.path.normpath(os.path.join(source_root, args['file']))
target_dir = os.path.dirname(path)
file_name = os.path.basename(path)
status = generate_source_file(path)
if status > 0:
return status
print('Created file \'{0}\' at {1}'.format(file_name, target_dir))
else:
print('ERROR: Please specify a file/class to generate')
return 1
run_platform_premake(target_os_override=args['target_os'])
return 0
class DevenvCommand(Command): class DevenvCommand(Command):
"""'devenv' command.""" """'devenv' command."""