More shuffling of XMA decoder code.

This commit is contained in:
gibbed 2015-06-21 06:31:24 -05:00
parent 06a3bfc3be
commit 2c319db116
3 changed files with 331 additions and 287 deletions

View File

@ -10,6 +10,8 @@
#include "xenia/apu/xma_context.h" #include "xenia/apu/xma_context.h"
#include "xenia/apu/xma_decoder.h" #include "xenia/apu/xma_decoder.h"
#include "xenia/base/logging.h" #include "xenia/base/logging.h"
#include "xenia/base/ring_buffer.h"
#include "xenia/profiling.h"
#include <cstring> #include <cstring>
@ -24,15 +26,18 @@ namespace xe {
namespace apu { namespace apu {
XmaContext::XmaContext() XmaContext::XmaContext()
: codec_(nullptr), : guest_ptr_(0)
context_(nullptr), , is_allocated_(false)
decoded_frame_(nullptr), , is_enabled_(false)
packet_(nullptr) {} , codec_(nullptr)
, context_(nullptr)
, decoded_frame_(nullptr)
, packet_(nullptr) {}
XmaContext::~XmaContext() { XmaContext::~XmaContext() {
if (context_) { if (context_) {
if (context_->extradata) { if (context_->extradata) {
delete context_->extradata; delete [] context_->extradata;
} }
if (avcodec_is_open(context_)) { if (avcodec_is_open(context_)) {
avcodec_close(context_); avcodec_close(context_);
@ -43,11 +48,15 @@ XmaContext::~XmaContext() {
av_frame_free(&decoded_frame_); av_frame_free(&decoded_frame_);
} }
if (current_frame_) { if (current_frame_) {
delete current_frame_; delete [] current_frame_;
} }
} }
int XmaContext::Initialize() { int XmaContext::Setup(uint32_t id, Memory* memory, uint32_t guest_ptr) {
id_ = id;
memory_ = memory;
guest_ptr_ = guest_ptr;
static bool avcodec_initialized = false; static bool avcodec_initialized = false;
if (!avcodec_initialized) { if (!avcodec_initialized) {
avcodec_register_all(); avcodec_register_all();
@ -80,7 +89,12 @@ int XmaContext::Initialize() {
// Extra data passed to the decoder // Extra data passed to the decoder
context_->extradata_size = 18; context_->extradata_size = 18;
context_->extradata = new uint8_t[18]; context_->extradata = new uint8_t[context_->extradata_size];
std::memset(context_->extradata, 0, context_->extradata_size);
*(short *)(context_->extradata) = 0x10; // bits per sample
*(int *)(context_->extradata + 2) = 1; // channel mask
*(short *)(context_->extradata + 14) = 0x10D6; // decode flags
// Current frame stuff whatever // Current frame stuff whatever
// samples per frame * 2 max channels * output bytes // samples per frame * 2 max channels * output bytes
@ -89,17 +103,273 @@ int XmaContext::Initialize() {
current_frame_pos_ = 0; current_frame_pos_ = 0;
frame_samples_size_ = 0; frame_samples_size_ = 0;
*(short *)(context_->extradata) = 0x10; // bits per sample
*(int *)(context_->extradata + 2) = 1; // channel mask
*(short *)(context_->extradata + 14) = 0x10D6; // decode flags
// FYI: We're purposely not opening the context here. That is done later. // FYI: We're purposely not opening the context here. That is done later.
return 0; return 0;
} }
void XmaContext::Work() {
if (!is_allocated() || !is_enabled()) {
return;
}
std::lock_guard<xe::mutex> lock(lock_);
set_is_enabled(false);
auto context_ptr = memory()->TranslateVirtual(guest_ptr());
XMA_CONTEXT_DATA data(context_ptr);
Process(data);
data.Store(context_ptr);
}
void XmaContext::Enable() {
std::lock_guard<xe::mutex> lock(lock_);
auto context_ptr = memory()->TranslateVirtual(guest_ptr());
XMA_CONTEXT_DATA data(context_ptr);
XELOGAPU("XmaContext: kicking context %d (%d/%d bytes)", id(),
(data.input_buffer_read_offset & ~0x7FF) / 8,
(data.input_buffer_0_packet_count + data.input_buffer_1_packet_count)
* XMA_CONTEXT_DATA::kBytesPerPacket);
// Reset valid flags so our audio decoder knows to process this one.
data.input_buffer_0_valid = data.input_buffer_0_ptr != 0;
data.input_buffer_1_valid = data.input_buffer_1_ptr != 0;
data.Store(context_ptr);
set_is_enabled(true);
}
bool XmaContext::Block(bool poll) {
if (!lock_.try_lock()) {
if (poll) {
return false;
}
lock_.lock();
}
lock_.unlock();
return true;
}
void XmaContext::Clear() {
std::lock_guard<xe::mutex> lock(lock_);
XELOGAPU("XmaContext: reset context %d", id());
DiscardPacket();
auto context_ptr = memory()->TranslateVirtual(guest_ptr());
XMA_CONTEXT_DATA data(context_ptr);
data.input_buffer_0_valid = 0;
data.input_buffer_1_valid = 0;
data.output_buffer_valid = 0;
data.output_buffer_read_offset = 0;
data.output_buffer_write_offset = 0;
data.Store(context_ptr);
}
void XmaContext::Disable() {
std::lock_guard<xe::mutex> lock(lock_);
XELOGAPU("XmaContext: disabling context %d", id());
set_is_enabled(false);
}
void XmaContext::Release() {
// Lock it in case the decoder thread is working on it now
std::lock_guard<xe::mutex> lock(lock_);
assert_true(is_allocated_ == true);
set_is_allocated(false);
auto context_ptr = memory()->TranslateVirtual(guest_ptr());
std::memset(context_ptr, 0, sizeof(XMA_CONTEXT_DATA)); // Zero it.
DiscardPacket();
}
void XmaContext::Process(XMA_CONTEXT_DATA& data) {
SCOPE_profile_cpu_f("apu");
// What I see:
// XMA outputs 2 bytes per sample
// 512 samples per frame (128 per subframe)
// Max output size is data.output_buffer_block_count * 256
// This decoder is fed packets (max 4095 per buffer)
// Packets contain "some" frames
// 32bit header (big endian)
// Frames are the smallest thing the SPUs can decode.
// They usually can span packets (libav handles this)
// Sample rates (data.sample_rate):
// 0 - 24 kHz ?
// 1 - 32 kHz
// 2 - 44.1 kHz ?
// 3 - 48 kHz ?
// SPUs also support stereo decoding. (data.is_stereo)
// Check the output buffer - we cannot decode anything else if it's
// unavailable.
if (!data.output_buffer_valid) {
return;
}
// Translate this for future use.
uint8_t* output_buffer = memory()->TranslatePhysical(data.output_buffer_ptr);
// Output buffers are in raw PCM samples, 256 bytes per block.
// Output buffer is a ring buffer. We need to write from the write offset
// to the read offset.
uint32_t output_capacity = data.output_buffer_block_count * 256;
uint32_t output_read_offset = data.output_buffer_read_offset * 256;
uint32_t output_write_offset = data.output_buffer_write_offset * 256;
RingBuffer output_rb(output_buffer, output_capacity);
output_rb.set_read_offset(output_read_offset);
output_rb.set_write_offset(output_write_offset);
size_t output_remaining_bytes = output_rb.write_count();
// Decode until we can't write any more data.
while (output_remaining_bytes > 0) {
// This'll copy audio samples into the output buffer.
// The samples need to be 2 bytes long!
// Copies one frame at a time, so keep calling this until size == 0
int read_bytes = 0;
int decode_attempts_remaining = 3;
uint8_t work_buffer[XMA_CONTEXT_DATA::kOutputMaxSizeBytes];
while (decode_attempts_remaining) {
read_bytes = DecodePacket(work_buffer, 0, output_remaining_bytes);
if (read_bytes >= 0) {
//assert_true((read_bytes % 256) == 0);
auto written_bytes = output_rb.Write(work_buffer, read_bytes);
assert_true(read_bytes == written_bytes);
// Ok.
break;
} else {
// Sometimes the decoder will fail on a packet. I think it's
// looking for cross-packet frames and failing. If you run it again
// on the same packet it'll work though.
--decode_attempts_remaining;
}
}
if (!decode_attempts_remaining) {
XELOGAPU("XmaContext: libav failed to decode packet (returned %.8X)", -read_bytes);
// Failed out.
if (data.input_buffer_0_valid || data.input_buffer_1_valid) {
// There's new data available - maybe we'll be ok if we decode it?
read_bytes = 0;
DiscardPacket();
} else {
// No data and hosed - bail.
break;
}
}
data.output_buffer_write_offset = output_rb.write_offset() / 256;
output_remaining_bytes -= read_bytes;
// If we need more data and the input buffers have it, grab it.
if (read_bytes) {
// Haven't finished with current packet.
continue;
} else if (data.input_buffer_0_valid || data.input_buffer_1_valid) {
// Done with previous packet, so grab a new one.
int ret = PreparePacket(data);
if (ret <= 0) {
// No more data (but may have prepared a packet)
data.input_buffer_0_valid = 0;
data.input_buffer_1_valid = 0;
}
} else {
// Decoder is out of data and there's no more to give.
break;
}
}
// The game will kick us again with a new output buffer later.
data.output_buffer_valid = 0;
}
int XmaContext::PreparePacket(XMA_CONTEXT_DATA &data) {
// Translate pointers for future use.
uint8_t* in0 = data.input_buffer_0_valid
? memory()->TranslatePhysical(data.input_buffer_0_ptr)
: nullptr;
uint8_t* in1 = data.input_buffer_1_valid
? memory()->TranslatePhysical(data.input_buffer_1_ptr)
: nullptr;
int sample_rate = 0;
if (data.sample_rate == 0) {
sample_rate = 24000;
} else if (data.sample_rate == 1) {
sample_rate = 32000;
} else if (data.sample_rate == 2) {
sample_rate = 44100;
} else if (data.sample_rate == 3) {
sample_rate = 48000;
}
int channels = data.is_stereo ? 2 : 1;
// See if we've finished with the input.
// Block count is in packets, so expand by packet size.
uint32_t input_size_0_bytes = (data.input_buffer_0_packet_count) * 2048;
uint32_t input_size_1_bytes = (data.input_buffer_1_packet_count) * 2048;
// Total input size
uint32_t input_size_bytes = input_size_0_bytes + input_size_1_bytes;
// Input read offset is in bits. Typically starts at 32 (4 bytes).
// "Sequence" offset - used internally for WMA Pro decoder.
// Just the read offset.
uint32_t seq_offset_bytes = (data.input_buffer_read_offset & ~0x7FF) / 8;
uint32_t input_remaining_bytes = input_size_bytes - seq_offset_bytes;
if (seq_offset_bytes < input_size_bytes) {
// Setup input offset and input buffer.
uint32_t input_offset_bytes = seq_offset_bytes;
auto input_buffer = in0;
if (seq_offset_bytes >= input_size_0_bytes) {
// Size overlap, select input buffer 1.
// TODO: This needs testing.
input_offset_bytes -= input_size_0_bytes;
input_buffer = in1;
}
// Still have data to read.
auto packet = input_buffer + input_offset_bytes;
assert_true(input_offset_bytes % 2048 == 0);
PreparePacket(packet, seq_offset_bytes,
XMA_CONTEXT_DATA::kBytesPerPacket,
sample_rate, channels);
data.input_buffer_read_offset += XMA_CONTEXT_DATA::kBytesPerPacket * 8;
input_remaining_bytes -= XMA_CONTEXT_DATA::kBytesPerPacket;
if (input_remaining_bytes <= 0) {
// Used the last of the data but prepared a packet
return 0;
}
} else {
// No more data available and no packet prepared.
return -1;
}
return input_remaining_bytes;
}
int XmaContext::PreparePacket(uint8_t *input, size_t seq_offset, size_t size, int XmaContext::PreparePacket(uint8_t *input, size_t seq_offset, size_t size,
int sample_rate, int channels) { int sample_rate, int channels) {
if (size != XMA_CONTEXT_DATA::kBytesPerPacket) { if (size != XMA_CONTEXT_DATA::kBytesPerPacket) {
// Invalid packet size! // Invalid packet size!
assert_always(); assert_always();
@ -128,7 +398,7 @@ int XmaContext::PreparePacket(uint8_t *input, size_t seq_offset, size_t size,
// TODO: Find a better way. // TODO: Find a better way.
avcodec_close(context_); avcodec_close(context_);
if (avcodec_open2(context_, codec_, NULL) < 0) { if (avcodec_open2(context_, codec_, NULL) < 0) {
XELOGE("Audio Decoder: Failed to reopen context."); XELOGE("XmaContext: Failed to reopen libav context");
return 1; return 1;
} }
} }
@ -145,7 +415,7 @@ void XmaContext::DiscardPacket() {
} }
int XmaContext::DecodePacket(uint8_t *output, size_t output_offset, int XmaContext::DecodePacket(uint8_t *output, size_t output_offset,
size_t output_size) { size_t output_size) {
size_t to_copy = 0; size_t to_copy = 0;
size_t original_offset = output_offset; size_t original_offset = output_offset;
@ -210,7 +480,7 @@ int XmaContext::DecodePacket(uint8_t *output, size_t output_offset,
float scaled_sample = raw_sample * ((1 << 15) - 1); float scaled_sample = raw_sample * ((1 << 15) - 1);
int sample = static_cast<int>(scaled_sample); int sample = static_cast<int>(scaled_sample);
xe::store_and_swap<uint16_t>(&current_frame_[o++ * 2], xe::store_and_swap<uint16_t>(&current_frame_[o++ * 2],
sample & 0xFFFF); sample & 0xFFFF);
} }
} }
current_frame_pos_ = 0; current_frame_pos_ = 0;

View File

@ -127,7 +127,28 @@ class XmaContext {
XmaContext(); XmaContext();
~XmaContext(); ~XmaContext();
int Initialize(); int Setup(uint32_t id, Memory* memory, uint32_t guest_ptr);
void Work();
void Enable();
bool Block(bool poll);
void Clear();
void Disable();
void Release();
Memory* memory() const { return memory_; }
uint32_t id() { return id_; }
uint32_t guest_ptr() { return guest_ptr_; }
bool is_allocated() { return is_allocated_; }
bool is_enabled() { return is_enabled_; }
void set_is_allocated(bool is_allocated) { is_allocated_ = is_allocated; }
void set_is_enabled(bool is_enabled) { is_enabled_ = is_enabled; }
private:
void Process(XMA_CONTEXT_DATA& data);
int PreparePacket(XMA_CONTEXT_DATA &data);
int PreparePacket(uint8_t* input, size_t seq_offset, size_t size, int PreparePacket(uint8_t* input, size_t seq_offset, size_t size,
int sample_rate, int channels); int sample_rate, int channels);
@ -135,20 +156,13 @@ class XmaContext {
int DecodePacket(uint8_t* output, size_t offset, size_t size); int DecodePacket(uint8_t* output, size_t offset, size_t size);
uint32_t guest_ptr() { return guest_ptr_; } Memory* memory_;
xe::mutex& lock() { return lock_; } // TODO(gibbed): remove this
bool in_use() { return in_use_; }
bool kicked() { return kicked_; }
void set_guest_ptr(uint32_t guest_ptr) { guest_ptr_ = guest_ptr; } uint32_t id_;
void set_in_use(bool in_use) { in_use_ = in_use; }
void set_kicked(bool kicked) { kicked_ = kicked; }
private:
uint32_t guest_ptr_; uint32_t guest_ptr_;
xe::mutex lock_; xe::mutex lock_;
bool in_use_; bool is_allocated_;
bool kicked_; bool is_enabled_;
// libav structures // libav structures
AVCodec* codec_; AVCodec* codec_;

View File

@ -7,8 +7,6 @@
****************************************************************************** ******************************************************************************
*/ */
#include "xenia/apu/audio_system.h"
#include "xenia/apu/xma_context.h" #include "xenia/apu/xma_context.h"
#include "xenia/apu/xma_decoder.h" #include "xenia/apu/xma_decoder.h"
#include "xenia/base/logging.h" #include "xenia/base/logging.h"
@ -57,24 +55,21 @@ using namespace xe::cpu;
XmaDecoder::XmaDecoder(Emulator* emulator) XmaDecoder::XmaDecoder(Emulator* emulator)
: emulator_(emulator) : emulator_(emulator)
, memory_(emulator->memory()) , memory_(emulator->memory())
, processor_(emulator->processor())
, worker_running_(false) , worker_running_(false)
, context_data_first_ptr_(0) , context_data_first_ptr_(0)
, context_data_last_ptr_(0) { , context_data_last_ptr_(0) {
} }
XmaDecoder::~XmaDecoder() { XmaDecoder::~XmaDecoder() {}
}
void av_log_callback(void *avcl, int level, const char *fmt, va_list va) { void av_log_callback(void *avcl, int level, const char *fmt, va_list va) {
StringBuffer buff; StringBuffer buff;
buff.AppendVarargs(fmt, va); buff.AppendVarargs(fmt, va);
xe::log_line('i', "libav: %s", buff.GetString()); xe::log_line('i', "libav: %s", buff.GetString());
} }
X_STATUS XmaDecoder::Setup() { X_STATUS XmaDecoder::Setup() {
processor_ = emulator_->processor();
// Setup libav logging callback // Setup libav logging callback
av_log_set_callback(av_log_callback); av_log_set_callback(av_log_callback);
@ -84,18 +79,19 @@ X_STATUS XmaDecoder::Setup() {
reinterpret_cast<MMIOReadCallback>(MMIOReadRegisterThunk), reinterpret_cast<MMIOReadCallback>(MMIOReadRegisterThunk),
reinterpret_cast<MMIOWriteCallback>(MMIOWriteRegisterThunk)); reinterpret_cast<MMIOWriteCallback>(MMIOWriteRegisterThunk));
// Setup XMA contexts ptr. // Setup XMA context data.
context_data_first_ptr_ = memory()->SystemHeapAlloc( context_data_first_ptr_ = memory()->SystemHeapAlloc(
sizeof(XMA_CONTEXT_DATA) * kContextCount, 256, kSystemHeapPhysical); sizeof(XMA_CONTEXT_DATA) * kContextCount, 256, kSystemHeapPhysical);
context_data_last_ptr_ = context_data_first_ptr_ + (sizeof(XMA_CONTEXT_DATA) * kContextCount - 1); context_data_last_ptr_ = context_data_first_ptr_ + (sizeof(XMA_CONTEXT_DATA) * kContextCount - 1);
registers_.context_array_ptr = context_data_first_ptr_; registers_.context_array_ptr = context_data_first_ptr_;
// Add all contexts to the free list. // Setup XMA contexts.
for (int i = kContextCount - 1; i >= 0; --i) { for (int i = 0; i < kContextCount; ++i) {
uint32_t ptr = registers_.context_array_ptr + i * sizeof(XMA_CONTEXT_DATA); uint32_t guest_ptr = registers_.context_array_ptr + i * sizeof(XMA_CONTEXT_DATA);
XmaContext& context = contexts_[i]; XmaContext& context = contexts_[i];
context.set_guest_ptr(ptr); if (context.Setup(i, memory(), guest_ptr)) {
context.Initialize(); assert_always();
}
} }
registers_.next_context = 1; registers_.next_context = 1;
@ -117,17 +113,7 @@ void XmaDecoder::WorkerThreadMain() {
// Okay, let's loop through XMA contexts to find ones we need to decode! // Okay, let's loop through XMA contexts to find ones we need to decode!
for (uint32_t n = 0; n < kContextCount; n++) { for (uint32_t n = 0; n < kContextCount; n++) {
XmaContext& context = contexts_[n]; XmaContext& context = contexts_[n];
if (context.in_use() && context.kicked()) { context.Work();
context.lock().lock();
context.set_kicked(false);
auto context_ptr = memory()->TranslateVirtual(context.guest_ptr());
XMA_CONTEXT_DATA data(context_ptr);
ProcessContext(context, data);
data.Store(context_ptr);
context.lock().unlock();
}
} }
} }
} }
@ -155,8 +141,8 @@ uint32_t XmaDecoder::AllocateContext() {
for (uint32_t n = 0; n < kContextCount; n++) { for (uint32_t n = 0; n < kContextCount; n++) {
XmaContext& context = contexts_[n]; XmaContext& context = contexts_[n];
if (!context.in_use()) { if (!context.is_allocated()) {
context.set_in_use(true); context.set_is_allocated(true);
return context.guest_ptr(); return context.guest_ptr();
} }
} }
@ -171,16 +157,7 @@ void XmaDecoder::ReleaseContext(uint32_t guest_ptr) {
assert_true(context_id >= 0); assert_true(context_id >= 0);
XmaContext& context = contexts_[context_id]; XmaContext& context = contexts_[context_id];
context.Release();
// Lock it in case the decoder thread is working on it now
context.lock().lock();
context.set_in_use(false);
auto context_ptr = memory()->TranslateVirtual(guest_ptr);
std::memset(context_ptr, 0, sizeof(XMA_CONTEXT_DATA)); // Zero it.
context.DiscardPacket();
context.lock().unlock();
} }
bool XmaDecoder::BlockOnContext(uint32_t guest_ptr, bool poll) { bool XmaDecoder::BlockOnContext(uint32_t guest_ptr, bool poll) {
@ -190,193 +167,7 @@ bool XmaDecoder::BlockOnContext(uint32_t guest_ptr, bool poll) {
assert_true(context_id >= 0); assert_true(context_id >= 0);
XmaContext& context = contexts_[context_id]; XmaContext& context = contexts_[context_id];
if (!context.lock().try_lock()) { return context.Block(poll);
if (poll) {
return false;
}
context.lock().lock();
}
context.lock().unlock();
return true;
}
void XmaDecoder::ProcessContext(XmaContext& context, XMA_CONTEXT_DATA& data) {
SCOPE_profile_cpu_f("apu");
// What I see:
// XMA outputs 2 bytes per sample
// 512 samples per frame (128 per subframe)
// Max output size is data.output_buffer_block_count * 256
// This decoder is fed packets (max 4095 per buffer)
// Packets contain "some" frames
// 32bit header (big endian)
// Frames are the smallest thing the SPUs can decode.
// They usually can span packets (libav handles this)
// Sample rates (data.sample_rate):
// 0 - 24 kHz ?
// 1 - 32 kHz
// 2 - 44.1 kHz ?
// 3 - 48 kHz ?
// SPUs also support stereo decoding. (data.is_stereo)
// Check the output buffer - we cannot decode anything else if it's
// unavailable.
if (!data.output_buffer_valid) {
return;
}
// Translate this for future use.
uint8_t* output_buffer = memory()->TranslatePhysical(data.output_buffer_ptr);
// Output buffers are in raw PCM samples, 256 bytes per block.
// Output buffer is a ring buffer. We need to write from the write offset
// to the read offset.
uint32_t output_capacity = data.output_buffer_block_count * 256;
uint32_t output_read_offset = data.output_buffer_read_offset * 256;
uint32_t output_write_offset = data.output_buffer_write_offset * 256;
RingBuffer output_rb(output_buffer, output_capacity);
output_rb.set_read_offset(output_read_offset);
output_rb.set_write_offset(output_write_offset);
size_t output_remaining_bytes = output_rb.write_count();
// Decode until we can't write any more data.
while (output_remaining_bytes > 0) {
// This'll copy audio samples into the output buffer.
// The samples need to be 2 bytes long!
// Copies one frame at a time, so keep calling this until size == 0
int read_bytes = 0;
int decode_attempts_remaining = 3;
uint8_t work_buffer[XMA_CONTEXT_DATA::kOutputMaxSizeBytes];
while (decode_attempts_remaining) {
read_bytes = context.DecodePacket(work_buffer, 0,
output_remaining_bytes);
if (read_bytes >= 0) {
//assert_true((read_bytes % 256) == 0);
auto written_bytes = output_rb.Write(work_buffer, read_bytes);
assert_true(read_bytes == written_bytes);
// Ok.
break;
} else {
// Sometimes the decoder will fail on a packet. I think it's
// looking for cross-packet frames and failing. If you run it again
// on the same packet it'll work though.
--decode_attempts_remaining;
}
}
if (!decode_attempts_remaining) {
XELOGAPU("XmaDecoder: libav failed to decode packet (returned %.8X)", -read_bytes);
// Failed out.
if (data.input_buffer_0_valid || data.input_buffer_1_valid) {
// There's new data available - maybe we'll be ok if we decode it?
read_bytes = 0;
context.DiscardPacket();
} else {
// No data and hosed - bail.
break;
}
}
data.output_buffer_write_offset = output_rb.write_offset() / 256;
output_remaining_bytes -= read_bytes;
// If we need more data and the input buffers have it, grab it.
if (read_bytes) {
// Haven't finished with current packet.
continue;
} else if (data.input_buffer_0_valid || data.input_buffer_1_valid) {
// Done with previous packet, so grab a new one.
int ret = PreparePacket(context, data);
if (ret <= 0) {
// No more data (but may have prepared a packet)
data.input_buffer_0_valid = 0;
data.input_buffer_1_valid = 0;
}
} else {
// Decoder is out of data and there's no more to give.
break;
}
}
// The game will kick us again with a new output buffer later.
data.output_buffer_valid = 0;
}
int XmaDecoder::PreparePacket(XmaContext &context, XMA_CONTEXT_DATA &data) {
// Translate pointers for future use.
uint8_t* in0 = data.input_buffer_0_valid
? memory()->TranslatePhysical(data.input_buffer_0_ptr)
: nullptr;
uint8_t* in1 = data.input_buffer_1_valid
? memory()->TranslatePhysical(data.input_buffer_1_ptr)
: nullptr;
int sample_rate = 0;
if (data.sample_rate == 0) {
sample_rate = 24000;
} else if (data.sample_rate == 1) {
sample_rate = 32000;
} else if (data.sample_rate == 2) {
sample_rate = 44100;
} else if (data.sample_rate == 3) {
sample_rate = 48000;
}
int channels = data.is_stereo ? 2 : 1;
// See if we've finished with the input.
// Block count is in packets, so expand by packet size.
uint32_t input_size_0_bytes = (data.input_buffer_0_packet_count) * 2048;
uint32_t input_size_1_bytes = (data.input_buffer_1_packet_count) * 2048;
// Total input size
uint32_t input_size_bytes = input_size_0_bytes + input_size_1_bytes;
// Input read offset is in bits. Typically starts at 32 (4 bytes).
// "Sequence" offset - used internally for WMA Pro decoder.
// Just the read offset.
uint32_t seq_offset_bytes = (data.input_buffer_read_offset & ~0x7FF) / 8;
uint32_t input_remaining_bytes = input_size_bytes - seq_offset_bytes;
if (seq_offset_bytes < input_size_bytes) {
// Setup input offset and input buffer.
uint32_t input_offset_bytes = seq_offset_bytes;
auto input_buffer = in0;
if (seq_offset_bytes >= input_size_0_bytes) {
// Size overlap, select input buffer 1.
// TODO: This needs testing.
input_offset_bytes -= input_size_0_bytes;
input_buffer = in1;
}
// Still have data to read.
auto packet = input_buffer + input_offset_bytes;
assert_true(input_offset_bytes % 2048 == 0);
context.PreparePacket(packet, seq_offset_bytes,
XMA_CONTEXT_DATA::kBytesPerPacket,
sample_rate, channels);
data.input_buffer_read_offset += XMA_CONTEXT_DATA::kBytesPerPacket * 8;
input_remaining_bytes -= XMA_CONTEXT_DATA::kBytesPerPacket;
if (input_remaining_bytes <= 0) {
// Used the last of the data but prepared a packet
return 0;
}
} else {
// No more data available and no packet prepared.
return -1;
}
return input_remaining_bytes;
} }
// free60 may be useful here, however it looks like it's using a different // free60 may be useful here, however it looks like it's using a different
@ -431,24 +222,7 @@ void XmaDecoder::WriteRegister(uint32_t addr, uint64_t value) {
if (value & 1) { if (value & 1) {
uint32_t context_id = base_context_id + i; uint32_t context_id = base_context_id + i;
XmaContext& context = contexts_[context_id]; XmaContext& context = contexts_[context_id];
context.Enable();
context.lock().lock();
auto context_ptr = memory()->TranslateVirtual(context.guest_ptr());
XMA_CONTEXT_DATA data(context_ptr);
XELOGAPU("XmaDecoder: kicking context %d (%d/%d bytes)", context_id,
(data.input_buffer_read_offset & ~0x7FF) / 8,
(data.input_buffer_0_packet_count + data.input_buffer_1_packet_count)
* XMA_CONTEXT_DATA::kBytesPerPacket);
// Reset valid flags so our audio decoder knows to process this one.
data.input_buffer_0_valid = data.input_buffer_0_ptr != 0;
data.input_buffer_1_valid = data.input_buffer_1_ptr != 0;
data.Store(context_ptr);
context.set_kicked(true);
context.lock().unlock();
} }
} }
@ -462,7 +236,8 @@ void XmaDecoder::WriteRegister(uint32_t addr, uint64_t value) {
for (int i = 0; value && i < 32; ++i, value >>= 1) { for (int i = 0; value && i < 32; ++i, value >>= 1) {
if (value & 1) { if (value & 1) {
uint32_t context_id = base_context_id + i; uint32_t context_id = base_context_id + i;
XELOGAPU("XmaDecoder: set context lock %d", context_id); XmaContext& context = contexts_[context_id];
context.Disable();
} }
} }
@ -476,22 +251,7 @@ void XmaDecoder::WriteRegister(uint32_t addr, uint64_t value) {
if (value & 1) { if (value & 1) {
uint32_t context_id = base_context_id + i; uint32_t context_id = base_context_id + i;
XmaContext& context = contexts_[context_id]; XmaContext& context = contexts_[context_id];
XELOGAPU("XmaDecoder: reset context %d", context_id); context.Clear();
context.lock().lock();
auto context_ptr = memory()->TranslateVirtual(context.guest_ptr());
XMA_CONTEXT_DATA data(context_ptr);
context.DiscardPacket();
data.input_buffer_0_valid = 0;
data.input_buffer_1_valid = 0;
data.output_buffer_valid = 0;
data.output_buffer_read_offset = 0;
data.output_buffer_write_offset = 0;
data.Store(context_ptr);
context.lock().unlock();
} }
} }
} else { } else {