Rewriting memory manager.

This commit is contained in:
Ben Vanik 2015-05-16 00:23:13 -07:00
parent 3a7d1f21e8
commit 147a70b9c1
23 changed files with 1348 additions and 657 deletions

View File

@ -74,7 +74,7 @@ X_STATUS AudioSystem::Setup() {
processor_ = emulator_->processor(); processor_ = emulator_->processor();
// Let the processor know we want register access callbacks. // Let the processor know we want register access callbacks.
emulator_->memory()->AddMappedRange( emulator_->memory()->AddVirtualMappedRange(
0x7FEA0000, 0xFFFF0000, 0x0000FFFF, this, 0x7FEA0000, 0xFFFF0000, 0x0000FFFF, this,
reinterpret_cast<MMIOReadCallback>(MMIOReadRegisterThunk), reinterpret_cast<MMIOReadCallback>(MMIOReadRegisterThunk),
reinterpret_cast<MMIOWriteCallback>(MMIOWriteRegisterThunk)); reinterpret_cast<MMIOWriteCallback>(MMIOWriteRegisterThunk));
@ -94,6 +94,9 @@ X_STATUS AudioSystem::Setup() {
thread_state_->set_name("Audio Worker"); thread_state_->set_name("Audio Worker");
thread_block_ = memory()->SystemHeapAlloc(2048); thread_block_ = memory()->SystemHeapAlloc(2048);
thread_state_->context()->r[13] = thread_block_; thread_state_->context()->r[13] = thread_block_;
XELOGI("Audio Worker Thread %X Stack: %.8X-%.8X", thread_state_->thread_id(),
thread_state_->stack_address(),
thread_state_->stack_address() + thread_state_->stack_size());
// Create worker thread. // Create worker thread.
// This will initialize the audio system. // This will initialize the audio system.
@ -252,7 +255,7 @@ void AudioSystem::UnregisterClient(size_t index) {
// piece of hardware: // piece of hardware:
// https://github.com/Free60Project/libxenon/blob/master/libxenon/drivers/xenon_sound/sound.c // https://github.com/Free60Project/libxenon/blob/master/libxenon/drivers/xenon_sound/sound.c
uint64_t AudioSystem::ReadRegister(uint64_t addr) { uint64_t AudioSystem::ReadRegister(uint32_t addr) {
uint32_t r = addr & 0xFFFF; uint32_t r = addr & 0xFFFF;
XELOGAPU("ReadRegister(%.4X)", r); XELOGAPU("ReadRegister(%.4X)", r);
// 1800h is read on startup and stored -- context? buffers? // 1800h is read on startup and stored -- context? buffers?
@ -277,7 +280,7 @@ uint64_t AudioSystem::ReadRegister(uint64_t addr) {
return value; return value;
} }
void AudioSystem::WriteRegister(uint64_t addr, uint64_t value) { void AudioSystem::WriteRegister(uint32_t addr, uint64_t value) {
uint32_t r = addr & 0xFFFF; uint32_t r = addr & 0xFFFF;
value = xe::byte_swap(uint32_t(value)); value = xe::byte_swap(uint32_t(value));
XELOGAPU("WriteRegister(%.4X, %.8X)", r, value); XELOGAPU("WriteRegister(%.4X, %.8X)", r, value);

View File

@ -49,8 +49,8 @@ class AudioSystem {
AudioDriver** out_driver) = 0; AudioDriver** out_driver) = 0;
virtual void DestroyDriver(AudioDriver* driver) = 0; virtual void DestroyDriver(AudioDriver* driver) = 0;
virtual uint64_t ReadRegister(uint64_t addr); virtual uint64_t ReadRegister(uint32_t addr);
virtual void WriteRegister(uint64_t addr, uint64_t value); virtual void WriteRegister(uint32_t addr, uint64_t value);
protected: protected:
virtual void Initialize(); virtual void Initialize();
@ -58,10 +58,10 @@ class AudioSystem {
private: private:
void ThreadStart(); void ThreadStart();
static uint64_t MMIOReadRegisterThunk(AudioSystem* as, uint64_t addr) { static uint64_t MMIOReadRegisterThunk(AudioSystem* as, uint32_t addr) {
return as->ReadRegister(addr); return as->ReadRegister(addr);
} }
static void MMIOWriteRegisterThunk(AudioSystem* as, uint64_t addr, static void MMIOWriteRegisterThunk(AudioSystem* as, uint32_t addr,
uint64_t value) { uint64_t value) {
as->WriteRegister(addr, value); as->WriteRegister(addr, value);
} }

View File

@ -23,9 +23,11 @@ namespace cpu {
MMIOHandler* MMIOHandler::global_handler_ = nullptr; MMIOHandler* MMIOHandler::global_handler_ = nullptr;
// Implemented in the platform cc file. // Implemented in the platform cc file.
std::unique_ptr<MMIOHandler> CreateMMIOHandler(uint8_t* mapping_base); std::unique_ptr<MMIOHandler> CreateMMIOHandler(uint8_t* virtual_membase,
uint8_t* physical_membase);
std::unique_ptr<MMIOHandler> MMIOHandler::Install(uint8_t* mapping_base) { std::unique_ptr<MMIOHandler> MMIOHandler::Install(uint8_t* virtual_membase,
uint8_t* physical_membase) {
// There can be only one handler at a time. // There can be only one handler at a time.
assert_null(global_handler_); assert_null(global_handler_);
if (global_handler_) { if (global_handler_) {
@ -33,7 +35,7 @@ std::unique_ptr<MMIOHandler> MMIOHandler::Install(uint8_t* mapping_base) {
} }
// Create the platform-specific handler. // Create the platform-specific handler.
auto handler = CreateMMIOHandler(mapping_base); auto handler = CreateMMIOHandler(virtual_membase, physical_membase);
// Platform-specific initialization for the handler. // Platform-specific initialization for the handler.
if (!handler->Initialize()) { if (!handler->Initialize()) {
@ -49,45 +51,44 @@ MMIOHandler::~MMIOHandler() {
global_handler_ = nullptr; global_handler_ = nullptr;
} }
bool MMIOHandler::RegisterRange(uint64_t address, uint64_t mask, uint64_t size, bool MMIOHandler::RegisterRange(uint32_t virtual_address, uint32_t mask,
void* context, MMIOReadCallback read_callback, uint32_t size, void* context,
MMIOReadCallback read_callback,
MMIOWriteCallback write_callback) { MMIOWriteCallback write_callback) {
mapped_ranges_.push_back({ mapped_ranges_.push_back({
reinterpret_cast<uint64_t>(mapping_base_) | address, virtual_address, mask, size, context, read_callback, write_callback,
0xFFFFFFFF00000000ull | mask, size, context, read_callback,
write_callback,
}); });
return true; return true;
} }
bool MMIOHandler::CheckLoad(uint64_t address, uint64_t* out_value) { bool MMIOHandler::CheckLoad(uint32_t virtual_address, uint64_t* out_value) {
for (const auto& range : mapped_ranges_) { for (const auto& range : mapped_ranges_) {
if (((address | (uint64_t)mapping_base_) & range.mask) == range.address) { if ((virtual_address & range.mask) == range.address) {
*out_value = static_cast<uint32_t>(range.read(range.context, address)); *out_value =
static_cast<uint32_t>(range.read(range.context, virtual_address));
return true; return true;
} }
} }
return false; return false;
} }
bool MMIOHandler::CheckStore(uint64_t address, uint64_t value) { bool MMIOHandler::CheckStore(uint32_t virtual_address, uint64_t value) {
for (const auto& range : mapped_ranges_) { for (const auto& range : mapped_ranges_) {
if (((address | (uint64_t)mapping_base_) & range.mask) == range.address) { if ((virtual_address & range.mask) == range.address) {
range.write(range.context, address, value); range.write(range.context, virtual_address, value);
return true; return true;
} }
} }
return false; return false;
} }
uintptr_t MMIOHandler::AddWriteWatch(uint32_t guest_address, size_t length, uintptr_t MMIOHandler::AddPhysicalWriteWatch(uint32_t guest_address,
size_t length,
WriteWatchCallback callback, WriteWatchCallback callback,
void* callback_context, void* callback_context,
void* callback_data) { void* callback_data) {
uint32_t base_address = guest_address; uint32_t base_address = guest_address;
if (base_address > 0xA0000000) { assert_true(base_address < 0x1FFFFFFF);
base_address -= 0xA0000000;
}
// Add to table. The slot reservation may evict a previous watch, which // Add to table. The slot reservation may evict a previous watch, which
// could include our target, so we do it first. // could include our target, so we do it first.
@ -102,29 +103,33 @@ uintptr_t MMIOHandler::AddWriteWatch(uint32_t guest_address, size_t length,
write_watch_mutex_.unlock(); write_watch_mutex_.unlock();
// Make the desired range read only under all address spaces. // Make the desired range read only under all address spaces.
auto host_address = mapping_base_ + base_address;
DWORD old_protect; DWORD old_protect;
VirtualProtect(host_address, length, PAGE_READONLY, &old_protect); VirtualProtect(physical_membase_ + entry->address, entry->length,
VirtualProtect(host_address + 0xA0000000, length, PAGE_READONLY, PAGE_READONLY, &old_protect);
&old_protect); VirtualProtect(virtual_membase_ + entry->address, entry->length,
VirtualProtect(host_address + 0xC0000000, length, PAGE_READONLY, PAGE_READONLY, &old_protect);
&old_protect); VirtualProtect(virtual_membase_ + 0xA0000000 + entry->address, entry->length,
VirtualProtect(host_address + 0xE0000000, length, PAGE_READONLY, PAGE_READONLY, &old_protect);
&old_protect); VirtualProtect(virtual_membase_ + 0xC0000000 + entry->address, entry->length,
PAGE_READONLY, &old_protect);
VirtualProtect(virtual_membase_ + 0xE0000000 + entry->address, entry->length,
PAGE_READONLY, &old_protect);
return reinterpret_cast<uintptr_t>(entry); return reinterpret_cast<uintptr_t>(entry);
} }
void MMIOHandler::ClearWriteWatch(WriteWatchEntry* entry) { void MMIOHandler::ClearWriteWatch(WriteWatchEntry* entry) {
auto host_address = mapping_base_ + entry->address;
DWORD old_protect; DWORD old_protect;
VirtualProtect(host_address, entry->length, PAGE_READWRITE, &old_protect); VirtualProtect(physical_membase_ + entry->address, entry->length,
VirtualProtect(host_address + 0xA0000000, entry->length, PAGE_READWRITE, PAGE_READWRITE, &old_protect);
&old_protect); VirtualProtect(virtual_membase_ + entry->address, entry->length,
VirtualProtect(host_address + 0xC0000000, entry->length, PAGE_READWRITE, PAGE_READWRITE, &old_protect);
&old_protect); VirtualProtect(virtual_membase_ + 0xA0000000 + entry->address, entry->length,
VirtualProtect(host_address + 0xE0000000, entry->length, PAGE_READWRITE, PAGE_READWRITE, &old_protect);
&old_protect); VirtualProtect(virtual_membase_ + 0xC0000000 + entry->address, entry->length,
PAGE_READWRITE, &old_protect);
VirtualProtect(virtual_membase_ + 0xE0000000 + entry->address, entry->length,
PAGE_READWRITE, &old_protect);
} }
void MMIOHandler::CancelWriteWatch(uintptr_t watch_handle) { void MMIOHandler::CancelWriteWatch(uintptr_t watch_handle) {
@ -145,17 +150,16 @@ void MMIOHandler::CancelWriteWatch(uintptr_t watch_handle) {
} }
bool MMIOHandler::CheckWriteWatch(void* thread_state, uint64_t fault_address) { bool MMIOHandler::CheckWriteWatch(void* thread_state, uint64_t fault_address) {
uint32_t guest_address = uint32_t(fault_address - uintptr_t(mapping_base_)); uint32_t physical_address = uint32_t(fault_address);
uint32_t base_address = guest_address; if (physical_address > 0x1FFFFFFF) {
if (base_address > 0xA0000000) { physical_address &= 0x1FFFFFFF;
base_address -= 0xA0000000;
} }
std::list<WriteWatchEntry*> pending_invalidates; std::list<WriteWatchEntry*> pending_invalidates;
write_watch_mutex_.lock(); write_watch_mutex_.lock();
for (auto it = write_watches_.begin(); it != write_watches_.end();) { for (auto it = write_watches_.begin(); it != write_watches_.end();) {
auto entry = *it; auto entry = *it;
if (entry->address <= base_address && if (entry->address <= physical_address &&
entry->address + entry->length > base_address) { entry->address + entry->length > physical_address) {
// Hit! // Hit!
pending_invalidates.push_back(entry); pending_invalidates.push_back(entry);
// TODO(benvanik): outside of lock? // TODO(benvanik): outside of lock?
@ -176,7 +180,7 @@ bool MMIOHandler::CheckWriteWatch(void* thread_state, uint64_t fault_address) {
auto entry = pending_invalidates.back(); auto entry = pending_invalidates.back();
pending_invalidates.pop_back(); pending_invalidates.pop_back();
entry->callback(entry->callback_context, entry->callback_data, entry->callback(entry->callback_context, entry->callback_data,
guest_address); physical_address);
delete entry; delete entry;
} }
// Range was watched, so lets eat this access violation. // Range was watched, so lets eat this access violation.
@ -185,20 +189,23 @@ bool MMIOHandler::CheckWriteWatch(void* thread_state, uint64_t fault_address) {
bool MMIOHandler::HandleAccessFault(void* thread_state, bool MMIOHandler::HandleAccessFault(void* thread_state,
uint64_t fault_address) { uint64_t fault_address) {
if (fault_address < uint64_t(mapping_base_)) { if (fault_address < uint64_t(virtual_membase_)) {
// Quick kill anything below our mapping base. // Quick kill anything below our mapping base.
return false; return false;
} }
// Access violations are pretty rare, so we can do a linear search here. // Access violations are pretty rare, so we can do a linear search here.
// Only check if in the virtual range, as we only support virtual ranges.
const MMIORange* range = nullptr; const MMIORange* range = nullptr;
if (fault_address < uint64_t(physical_membase_)) {
for (const auto& test_range : mapped_ranges_) { for (const auto& test_range : mapped_ranges_) {
if ((fault_address & test_range.mask) == test_range.address) { if ((uint32_t(fault_address) & test_range.mask) == test_range.address) {
// Address is within the range of this mapping. // Address is within the range of this mapping.
range = &test_range; range = &test_range;
break; break;
} }
} }
}
if (!range) { if (!range) {
// Access is not found within any range, so fail and let the caller handle // Access is not found within any range, so fail and let the caller handle
// it (likely by aborting). // it (likely by aborting).

View File

@ -18,8 +18,8 @@
namespace xe { namespace xe {
namespace cpu { namespace cpu {
typedef uint64_t (*MMIOReadCallback)(void* context, uint64_t addr); typedef uint64_t (*MMIOReadCallback)(void* context, uint32_t addr);
typedef void (*MMIOWriteCallback)(void* context, uint64_t addr, uint64_t value); typedef void (*MMIOWriteCallback)(void* context, uint32_t addr, uint64_t value);
typedef void (*WriteWatchCallback)(void* context_ptr, void* data_ptr, typedef void (*WriteWatchCallback)(void* context_ptr, void* data_ptr,
uint32_t address); uint32_t address);
@ -29,19 +29,20 @@ class MMIOHandler {
public: public:
virtual ~MMIOHandler(); virtual ~MMIOHandler();
static std::unique_ptr<MMIOHandler> Install(uint8_t* mapping_base); static std::unique_ptr<MMIOHandler> Install(uint8_t* virtual_membase,
uint8_t* physical_membase);
static MMIOHandler* global_handler() { return global_handler_; } static MMIOHandler* global_handler() { return global_handler_; }
bool RegisterRange(uint64_t address, uint64_t mask, uint64_t size, bool RegisterRange(uint32_t virtual_address, uint32_t mask, uint32_t size,
void* context, MMIOReadCallback read_callback, void* context, MMIOReadCallback read_callback,
MMIOWriteCallback write_callback); MMIOWriteCallback write_callback);
bool CheckLoad(uint64_t address, uint64_t* out_value); bool CheckLoad(uint32_t virtual_address, uint64_t* out_value);
bool CheckStore(uint64_t address, uint64_t value); bool CheckStore(uint32_t virtual_address, uint64_t value);
uintptr_t AddWriteWatch(uint32_t guest_address, size_t length, uintptr_t AddPhysicalWriteWatch(uint32_t guest_address, size_t length,
WriteWatchCallback callback, void* callback_context, WriteWatchCallback callback,
void* callback_data); void* callback_context, void* callback_data);
void CancelWriteWatch(uintptr_t watch_handle); void CancelWriteWatch(uintptr_t watch_handle);
public: public:
@ -56,7 +57,9 @@ class MMIOHandler {
void* callback_data; void* callback_data;
}; };
MMIOHandler(uint8_t* mapping_base) : mapping_base_(mapping_base) {} MMIOHandler(uint8_t* virtual_membase, uint8_t* physical_membase)
: virtual_membase_(virtual_membase),
physical_membase_(physical_membase) {}
virtual bool Initialize() = 0; virtual bool Initialize() = 0;
@ -68,12 +71,13 @@ class MMIOHandler {
virtual uint64_t* GetThreadStateRegPtr(void* thread_state_ptr, virtual uint64_t* GetThreadStateRegPtr(void* thread_state_ptr,
int32_t be_reg_index) = 0; int32_t be_reg_index) = 0;
uint8_t* mapping_base_; uint8_t* virtual_membase_;
uint8_t* physical_membase_;
struct MMIORange { struct MMIORange {
uint64_t address; uint32_t address;
uint64_t mask; uint32_t mask;
uint64_t size; uint32_t size;
void* context; void* context;
MMIOReadCallback read; MMIOReadCallback read;
MMIOWriteCallback write; MMIOWriteCallback write;

View File

@ -11,6 +11,10 @@
#include <Windows.h> #include <Windows.h>
namespace xe {
void CrashDump();
} // namespace xe
namespace xe { namespace xe {
namespace cpu { namespace cpu {
@ -18,7 +22,8 @@ LONG CALLBACK MMIOExceptionHandler(PEXCEPTION_POINTERS ex_info);
class WinMMIOHandler : public MMIOHandler { class WinMMIOHandler : public MMIOHandler {
public: public:
WinMMIOHandler(uint8_t* mapping_base) : MMIOHandler(mapping_base) {} WinMMIOHandler(uint8_t* virtual_membase, uint8_t* physical_membase)
: MMIOHandler(virtual_membase, physical_membase) {}
~WinMMIOHandler() override; ~WinMMIOHandler() override;
protected: protected:
@ -30,8 +35,9 @@ class WinMMIOHandler : public MMIOHandler {
int32_t be_reg_index) override; int32_t be_reg_index) override;
}; };
std::unique_ptr<MMIOHandler> CreateMMIOHandler(uint8_t* mapping_base) { std::unique_ptr<MMIOHandler> CreateMMIOHandler(uint8_t* virtual_membase,
return std::make_unique<WinMMIOHandler>(mapping_base); uint8_t* physical_membase) {
return std::make_unique<WinMMIOHandler>(virtual_membase, physical_membase);
} }
bool WinMMIOHandler::Initialize() { bool WinMMIOHandler::Initialize() {
@ -67,6 +73,7 @@ LONG CALLBACK MMIOExceptionHandler(PEXCEPTION_POINTERS ex_info) {
} else { } else {
// Failed to handle; continue search for a handler (and die if no other // Failed to handle; continue search for a handler (and die if no other
// handler is found). // handler is found).
xe::CrashDump();
return EXCEPTION_CONTINUE_SEARCH; return EXCEPTION_CONTINUE_SEARCH;
} }
} }

View File

@ -152,6 +152,11 @@ bool Processor::Setup() {
interrupt_thread_state_->set_name("Interrupt"); interrupt_thread_state_->set_name("Interrupt");
interrupt_thread_block_ = memory_->SystemHeapAlloc(2048); interrupt_thread_block_ = memory_->SystemHeapAlloc(2048);
interrupt_thread_state_->context()->r[13] = interrupt_thread_block_; interrupt_thread_state_->context()->r[13] = interrupt_thread_block_;
XELOGI("Interrupt Thread %X Stack: %.8X-%.8X",
interrupt_thread_state_->thread_id(),
interrupt_thread_state_->stack_address(),
interrupt_thread_state_->stack_address() +
interrupt_thread_state_->stack_size());
return true; return true;
} }

View File

@ -30,8 +30,11 @@ bool RawModule::LoadFile(uint32_t base_address, const std::wstring& path) {
// Allocate memory. // Allocate memory.
// Since we have no real heap just load it wherever. // Since we have no real heap just load it wherever.
base_address_ = base_address; base_address_ = base_address;
memory_->LookupHeap(base_address_)
->AllocFixed(base_address_, file_length, 0,
kMemoryAllocationReserve | kMemoryAllocationCommit,
kMemoryProtectRead | kMemoryProtectWrite);
uint8_t* p = memory_->TranslateVirtual(base_address_); uint8_t* p = memory_->TranslateVirtual(base_address_);
std::memset(p, 0, file_length);
// Read into memory. // Read into memory.
fread(p, file_length, 1, file); fread(p, file_length, 1, file);

View File

@ -64,8 +64,6 @@ class TestFunction {
void Run(std::function<void(PPCContext*)> pre_call, void Run(std::function<void(PPCContext*)> pre_call,
std::function<void(PPCContext*)> post_call) { std::function<void(PPCContext*)> post_call) {
for (auto& processor : processors) { for (auto& processor : processors) {
memory->Zero(0, memory_size);
xe::cpu::Function* fn; xe::cpu::Function* fn;
processor->ResolveFunction(0x1000, &fn); processor->ResolveFunction(0x1000, &fn);

View File

@ -10,6 +10,7 @@
#include "xenia/cpu/thread_state.h" #include "xenia/cpu/thread_state.h"
#include "xenia/base/assert.h" #include "xenia/base/assert.h"
#include "xenia/base/logging.h"
#include "xenia/base/threading.h" #include "xenia/base/threading.h"
#include "xenia/cpu/processor.h" #include "xenia/cpu/processor.h"
#include "xenia/debug/debugger.h" #include "xenia/debug/debugger.h"
@ -49,12 +50,19 @@ ThreadState::ThreadState(Processor* processor, uint32_t thread_id,
uint32_t stack_alignment = (stack_size & 0xF000) ? 0x1000 : 0x10000; uint32_t stack_alignment = (stack_size & 0xF000) ? 0x1000 : 0x10000;
uint32_t stack_padding = stack_alignment * 1; uint32_t stack_padding = stack_alignment * 1;
uint32_t actual_stack_size = stack_padding + stack_size; uint32_t actual_stack_size = stack_padding + stack_size;
stack_address_ = memory()->SystemHeapAlloc(actual_stack_size, stack_alignment); memory()
assert_true(!(stack_address & 0xFFF)); // just to be safe ->LookupHeapByType(false, 0x10000)
->Alloc(actual_stack_size, stack_alignment,
kMemoryAllocationReserve | kMemoryAllocationCommit,
kMemoryProtectRead | kMemoryProtectWrite, true,
&stack_address_);
assert_true(!(stack_address_ & 0xFFF)); // just to be safe
stack_position = stack_address_ + actual_stack_size; stack_position = stack_address_ + actual_stack_size;
stack_allocated_ = true; stack_allocated_ = true;
memset(memory()->TranslateVirtual(stack_address_), 0xBE, actual_stack_size); memset(memory()->TranslateVirtual(stack_address_), 0xBE, actual_stack_size);
memory()->Protect(stack_address_, stack_padding, X_PAGE_NOACCESS); memory()
->LookupHeap(stack_address_)
->Protect(stack_address_, stack_padding, kMemoryProtectNoAccess);
} else { } else {
stack_address_ = stack_address; stack_address_ = stack_address;
stack_position = stack_address_ + stack_size; stack_position = stack_address_ + stack_size;
@ -100,7 +108,7 @@ ThreadState::~ThreadState() {
_aligned_free(context_); _aligned_free(context_);
if (stack_allocated_) { if (stack_allocated_) {
memory()->SystemHeapFree(stack_address_); memory()->LookupHeap(stack_address_)->Decommit(stack_address_, stack_size_);
} }
} }

View File

@ -456,7 +456,7 @@ void CommandProcessor::EnableReadPointerWriteBack(uint32_t ptr,
uint32_t block_size) { uint32_t block_size) {
// CP_RB_RPTR_ADDR Ring Buffer Read Pointer Address 0x70C // CP_RB_RPTR_ADDR Ring Buffer Read Pointer Address 0x70C
// ptr = RB_RPTR_ADDR, pointer to write back the address to. // ptr = RB_RPTR_ADDR, pointer to write back the address to.
read_ptr_writeback_ptr_ = (primary_buffer_ptr_ & ~0x1FFFFFFF) + ptr; read_ptr_writeback_ptr_ = ptr;
// CP_RB_CNTL Ring Buffer Control 0x704 // CP_RB_CNTL Ring Buffer Control 0x704
// block_size = RB_BLKSZ, number of quadwords read between updates of the // block_size = RB_BLKSZ, number of quadwords read between updates of the
// read pointer. // read pointer.
@ -966,7 +966,7 @@ bool CommandProcessor::ExecutePacketType3_XE_SWAP(RingbufferReader* reader,
bool CommandProcessor::ExecutePacketType3_INDIRECT_BUFFER( bool CommandProcessor::ExecutePacketType3_INDIRECT_BUFFER(
RingbufferReader* reader, uint32_t packet, uint32_t count) { RingbufferReader* reader, uint32_t packet, uint32_t count) {
// indirect buffer dispatch // indirect buffer dispatch
uint32_t list_ptr = reader->Read(); uint32_t list_ptr = CpuToGpu(reader->Read());
uint32_t list_length = reader->Read(); uint32_t list_length = reader->Read();
ExecuteIndirectBuffer(GpuToCpu(list_ptr), list_length); ExecuteIndirectBuffer(GpuToCpu(list_ptr), list_length);
return true; return true;
@ -993,7 +993,7 @@ bool CommandProcessor::ExecutePacketType3_WAIT_REG_MEM(RingbufferReader* reader,
poll_reg_addr &= ~0x3; poll_reg_addr &= ~0x3;
value = xe::load<uint32_t>(memory_->TranslatePhysical(poll_reg_addr)); value = xe::load<uint32_t>(memory_->TranslatePhysical(poll_reg_addr));
value = GpuSwap(value, endianness); value = GpuSwap(value, endianness);
trace_writer_.WriteMemoryRead(poll_reg_addr, 4); trace_writer_.WriteMemoryRead(CpuToGpu(poll_reg_addr), 4);
} else { } else {
// Register. // Register.
assert_true(poll_reg_addr < RegisterFile::kRegisterCount); assert_true(poll_reg_addr < RegisterFile::kRegisterCount);
@ -1093,7 +1093,7 @@ bool CommandProcessor::ExecutePacketType3_COND_WRITE(RingbufferReader* reader,
// Memory. // Memory.
auto endianness = static_cast<Endian>(poll_reg_addr & 0x3); auto endianness = static_cast<Endian>(poll_reg_addr & 0x3);
poll_reg_addr &= ~0x3; poll_reg_addr &= ~0x3;
trace_writer_.WriteMemoryRead(poll_reg_addr, 4); trace_writer_.WriteMemoryRead(CpuToGpu(poll_reg_addr), 4);
value = xe::load<uint32_t>(memory_->TranslatePhysical(poll_reg_addr)); value = xe::load<uint32_t>(memory_->TranslatePhysical(poll_reg_addr));
value = GpuSwap(value, endianness); value = GpuSwap(value, endianness);
} else { } else {
@ -1136,7 +1136,7 @@ bool CommandProcessor::ExecutePacketType3_COND_WRITE(RingbufferReader* reader,
write_reg_addr &= ~0x3; write_reg_addr &= ~0x3;
write_data = GpuSwap(write_data, endianness); write_data = GpuSwap(write_data, endianness);
xe::store(memory_->TranslatePhysical(write_reg_addr), write_data); xe::store(memory_->TranslatePhysical(write_reg_addr), write_data);
trace_writer_.WriteMemoryWrite(write_reg_addr, 4); trace_writer_.WriteMemoryWrite(CpuToGpu(write_reg_addr), 4);
} else { } else {
// Register. // Register.
WriteRegister(write_reg_addr, write_data); WriteRegister(write_reg_addr, write_data);
@ -1182,7 +1182,7 @@ bool CommandProcessor::ExecutePacketType3_EVENT_WRITE_SHD(
address &= ~0x3; address &= ~0x3;
data_value = GpuSwap(data_value, endianness); data_value = GpuSwap(data_value, endianness);
xe::store(memory_->TranslatePhysical(address), data_value); xe::store(memory_->TranslatePhysical(address), data_value);
trace_writer_.WriteMemoryWrite(address, 4); trace_writer_.WriteMemoryWrite(CpuToGpu(address), 4);
return true; return true;
} }
@ -1208,7 +1208,7 @@ bool CommandProcessor::ExecutePacketType3_EVENT_WRITE_EXT(
xe::copy_and_swap_16_aligned( xe::copy_and_swap_16_aligned(
reinterpret_cast<uint16_t*>(memory_->TranslatePhysical(address)), extents, reinterpret_cast<uint16_t*>(memory_->TranslatePhysical(address)), extents,
xe::countof(extents)); xe::countof(extents));
trace_writer_.WriteMemoryWrite(address, sizeof(extents)); trace_writer_.WriteMemoryWrite(CpuToGpu(address), sizeof(extents));
return true; return true;
} }
@ -1364,7 +1364,7 @@ bool CommandProcessor::ExecutePacketType3_LOAD_ALU_CONSTANT(
assert_always(); assert_always();
return true; return true;
} }
trace_writer_.WriteMemoryRead(address, size_dwords * 4); trace_writer_.WriteMemoryRead(CpuToGpu(address), size_dwords * 4);
for (uint32_t n = 0; n < size_dwords; n++, index++) { for (uint32_t n = 0; n < size_dwords; n++, index++) {
uint32_t data = xe::load_and_swap<uint32_t>( uint32_t data = xe::load_and_swap<uint32_t>(
memory_->TranslatePhysical(address + n * 4)); memory_->TranslatePhysical(address + n * 4));
@ -1395,7 +1395,7 @@ bool CommandProcessor::ExecutePacketType3_IM_LOAD(RingbufferReader* reader,
uint32_t start = start_size >> 16; uint32_t start = start_size >> 16;
uint32_t size_dwords = start_size & 0xFFFF; // dwords uint32_t size_dwords = start_size & 0xFFFF; // dwords
assert_true(start == 0); assert_true(start == 0);
trace_writer_.WriteMemoryRead(addr, size_dwords * 4); trace_writer_.WriteMemoryRead(CpuToGpu(addr), size_dwords * 4);
LoadShader(shader_type, addr, memory_->TranslatePhysical<uint32_t*>(addr), LoadShader(shader_type, addr, memory_->TranslatePhysical<uint32_t*>(addr),
size_dwords); size_dwords);
return true; return true;
@ -2106,7 +2106,8 @@ CommandProcessor::UpdateStatus CommandProcessor::UpdateBlendState() {
draw_batcher_.Flush(DrawBatcher::FlushMode::kStateChange); draw_batcher_.Flush(DrawBatcher::FlushMode::kStateChange);
static const GLenum blend_map[] = {/* 0 */ GL_ZERO, static const GLenum blend_map[] = {
/* 0 */ GL_ZERO,
/* 1 */ GL_ONE, /* 1 */ GL_ONE,
/* 2 */ GL_ZERO, // ? /* 2 */ GL_ZERO, // ?
/* 3 */ GL_ZERO, // ? /* 3 */ GL_ZERO, // ?
@ -2124,7 +2125,8 @@ CommandProcessor::UpdateStatus CommandProcessor::UpdateBlendState() {
/* 15 */ GL_ONE_MINUS_CONSTANT_ALPHA, /* 15 */ GL_ONE_MINUS_CONSTANT_ALPHA,
/* 16 */ GL_SRC_ALPHA_SATURATE, /* 16 */ GL_SRC_ALPHA_SATURATE,
}; };
static const GLenum blend_op_map[] = {/* 0 */ GL_FUNC_ADD, static const GLenum blend_op_map[] = {
/* 0 */ GL_FUNC_ADD,
/* 1 */ GL_FUNC_SUBTRACT, /* 1 */ GL_FUNC_SUBTRACT,
/* 2 */ GL_MIN, /* 2 */ GL_MIN,
/* 3 */ GL_MAX, /* 3 */ GL_MAX,
@ -2181,7 +2183,8 @@ CommandProcessor::UpdateStatus CommandProcessor::UpdateDepthStencilState() {
draw_batcher_.Flush(DrawBatcher::FlushMode::kStateChange); draw_batcher_.Flush(DrawBatcher::FlushMode::kStateChange);
static const GLenum compare_func_map[] = {/* 0 */ GL_NEVER, static const GLenum compare_func_map[] = {
/* 0 */ GL_NEVER,
/* 1 */ GL_LESS, /* 1 */ GL_LESS,
/* 2 */ GL_EQUAL, /* 2 */ GL_EQUAL,
/* 3 */ GL_LEQUAL, /* 3 */ GL_LEQUAL,
@ -2190,7 +2193,8 @@ CommandProcessor::UpdateStatus CommandProcessor::UpdateDepthStencilState() {
/* 6 */ GL_GEQUAL, /* 6 */ GL_GEQUAL,
/* 7 */ GL_ALWAYS, /* 7 */ GL_ALWAYS,
}; };
static const GLenum stencil_op_map[] = {/* 0 */ GL_KEEP, static const GLenum stencil_op_map[] = {
/* 0 */ GL_KEEP,
/* 1 */ GL_ZERO, /* 1 */ GL_ZERO,
/* 2 */ GL_REPLACE, /* 2 */ GL_REPLACE,
/* 3 */ GL_INCR_WRAP, /* 3 */ GL_INCR_WRAP,

View File

@ -74,7 +74,7 @@ X_STATUS GL4GraphicsSystem::Setup(cpu::Processor* processor,
[this](const SwapParameters& swap_params) { SwapHandler(swap_params); }); [this](const SwapParameters& swap_params) { SwapHandler(swap_params); });
// Let the processor know we want register access callbacks. // Let the processor know we want register access callbacks.
memory_->AddMappedRange( memory_->AddVirtualMappedRange(
0x7FC80000, 0xFFFF0000, 0x0000FFFF, this, 0x7FC80000, 0xFFFF0000, 0x0000FFFF, this,
reinterpret_cast<cpu::MMIOReadCallback>(MMIOReadRegisterThunk), reinterpret_cast<cpu::MMIOReadCallback>(MMIOReadRegisterThunk),
reinterpret_cast<cpu::MMIOWriteCallback>(MMIOWriteRegisterThunk)); reinterpret_cast<cpu::MMIOWriteCallback>(MMIOWriteRegisterThunk));
@ -275,7 +275,7 @@ void GL4GraphicsSystem::SwapHandler(const SwapParameters& swap_params) {
}); });
} }
uint64_t GL4GraphicsSystem::ReadRegister(uint64_t addr) { uint64_t GL4GraphicsSystem::ReadRegister(uint32_t addr) {
uint32_t r = addr & 0xFFFF; uint32_t r = addr & 0xFFFF;
switch (r) { switch (r) {
@ -295,7 +295,7 @@ uint64_t GL4GraphicsSystem::ReadRegister(uint64_t addr) {
return register_file_.values[r].u32; return register_file_.values[r].u32;
} }
void GL4GraphicsSystem::WriteRegister(uint64_t addr, uint64_t value) { void GL4GraphicsSystem::WriteRegister(uint32_t addr, uint64_t value) {
uint32_t r = addr & 0xFFFF; uint32_t r = addr & 0xFFFF;
switch (r) { switch (r) {

View File

@ -50,13 +50,13 @@ class GL4GraphicsSystem : public GraphicsSystem {
private: private:
void MarkVblank(); void MarkVblank();
void SwapHandler(const SwapParameters& swap_params); void SwapHandler(const SwapParameters& swap_params);
uint64_t ReadRegister(uint64_t addr); uint64_t ReadRegister(uint32_t addr);
void WriteRegister(uint64_t addr, uint64_t value); void WriteRegister(uint32_t addr, uint64_t value);
static uint64_t MMIOReadRegisterThunk(GL4GraphicsSystem* gs, uint64_t addr) { static uint64_t MMIOReadRegisterThunk(GL4GraphicsSystem* gs, uint32_t addr) {
return gs->ReadRegister(addr); return gs->ReadRegister(addr);
} }
static void MMIOWriteRegisterThunk(GL4GraphicsSystem* gs, uint64_t addr, static void MMIOWriteRegisterThunk(GL4GraphicsSystem* gs, uint32_t addr,
uint64_t value) { uint64_t value) {
gs->WriteRegister(addr, value); gs->WriteRegister(addr, value);
} }

View File

@ -490,7 +490,7 @@ TextureCache::TextureEntry* TextureCache::LookupOrInsertTexture(
// Add a write watch. If any data in the given range is touched we'll get a // Add a write watch. If any data in the given range is touched we'll get a
// callback and evict the texture. We could reuse the storage, though the // callback and evict the texture. We could reuse the storage, though the
// driver is likely in a better position to pool that kind of stuff. // driver is likely in a better position to pool that kind of stuff.
entry->write_watch_handle = memory_->AddWriteWatch( entry->write_watch_handle = memory_->AddPhysicalWriteWatch(
texture_info.guest_address, texture_info.input_length, texture_info.guest_address, texture_info.input_length,
[](void* context_ptr, void* data_ptr, uint32_t address) { [](void* context_ptr, void* data_ptr, uint32_t address) {
auto self = reinterpret_cast<TextureCache*>(context_ptr); auto self = reinterpret_cast<TextureCache*>(context_ptr);
@ -735,7 +735,8 @@ bool TextureCache::UploadTexture2D(GLuint texture,
auto bpp = (bytes_per_block >> 2) + auto bpp = (bytes_per_block >> 2) +
((bytes_per_block >> 1) >> (bytes_per_block >> 2)); ((bytes_per_block >> 1) >> (bytes_per_block >> 2));
for (uint32_t y = 0, output_base_offset = 0; for (uint32_t y = 0, output_base_offset = 0;
y < texture_info.size_2d.block_height; y < std::min(texture_info.size_2d.block_height,
texture_info.size_2d.logical_height);
y++, output_base_offset += texture_info.size_2d.output_pitch) { y++, output_base_offset += texture_info.size_2d.output_pitch) {
auto input_base_offset = TextureInfo::TiledOffset2DOuter( auto input_base_offset = TextureInfo::TiledOffset2DOuter(
offset_y + y, (texture_info.size_2d.input_width / offset_y + y, (texture_info.size_2d.input_width /

View File

@ -771,7 +771,15 @@ class TracePlayer : public TraceReader {
: loop_(loop), : loop_(loop),
graphics_system_(graphics_system), graphics_system_(graphics_system),
current_frame_index_(0), current_frame_index_(0),
current_command_index_(-1) {} current_command_index_(-1) {
// Need to allocate all of physical memory so that we can write to it
// during playback.
graphics_system_->memory()
->LookupHeapByType(true, 4096)
->AllocFixed(0, 0x1FFFFFFF, 4096,
kMemoryAllocationReserve | kMemoryAllocationCommit,
kMemoryProtectRead | kMemoryProtectWrite);
}
~TracePlayer() = default; ~TracePlayer() = default;
GraphicsSystem* graphics_system() const { return graphics_system_; } GraphicsSystem* graphics_system() const { return graphics_system_; }

View File

@ -213,6 +213,9 @@ X_STATUS XThread::Create() {
thread_state_ = thread_state_ =
new ThreadState(kernel_state()->processor(), thread_id_, 0, new ThreadState(kernel_state()->processor(), thread_id_, 0,
creation_params_.stack_size, thread_state_address_); creation_params_.stack_size, thread_state_address_);
XELOGI("XThread%04X (%X) Stack: %.8X-%.8X", handle(),
thread_state_->thread_id(), thread_state_->stack_address(),
thread_state_->stack_address() + thread_state_->stack_size());
xe::store_and_swap<uint32_t>( xe::store_and_swap<uint32_t>(
p + 0x05C, thread_state_->stack_address() + thread_state_->stack_size()); p + 0x05C, thread_state_->stack_address() + thread_state_->stack_size());

View File

@ -536,8 +536,12 @@ int xe_xex2_read_image_uncompressed(const xe_xex2_header_t *header,
// Allocate in-place the XEX memory. // Allocate in-place the XEX memory.
const uint32_t exe_length = xex_length - header->exe_offset; const uint32_t exe_length = xex_length - header->exe_offset;
uint32_t uncompressed_size = exe_length; uint32_t uncompressed_size = exe_length;
uint32_t alloc_result = memory->HeapAlloc( bool alloc_result =
header->exe_address, uncompressed_size, xe::MEMORY_FLAG_ZERO); memory->LookupHeap(header->exe_address)
->AllocFixed(
header->exe_address, uncompressed_size, 4096,
xe::kMemoryAllocationReserve | xe::kMemoryAllocationCommit,
xe::kMemoryProtectRead | xe::kMemoryProtectWrite);
if (!alloc_result) { if (!alloc_result) {
XELOGE("Unable to allocate XEX memory at %.8X-%.8X.", header->exe_address, XELOGE("Unable to allocate XEX memory at %.8X-%.8X.", header->exe_address,
uncompressed_size); uncompressed_size);
@ -588,14 +592,18 @@ int xe_xex2_read_image_basic_compressed(const xe_xex2_header_t *header,
// Calculate the total size of the XEX image from its headers. // Calculate the total size of the XEX image from its headers.
uint32_t total_size = 0; uint32_t total_size = 0;
for (uint32_t i = 0; i < header->section_count; i++) { for (uint32_t i = 0; i < header->section_count; i++) {
xe_xex2_section_t& section = header->sections[i]; xe_xex2_section_t &section = header->sections[i];
total_size += section.info.page_count * section.page_size; total_size += section.info.page_count * section.page_size;
} }
// Allocate in-place the XEX memory. // Allocate in-place the XEX memory.
uint32_t alloc_result = memory->HeapAlloc( bool alloc_result =
header->exe_address, total_size, xe::MEMORY_FLAG_ZERO); memory->LookupHeap(header->exe_address)
->AllocFixed(
header->exe_address, total_size, 4096,
xe::kMemoryAllocationReserve | xe::kMemoryAllocationCommit,
xe::kMemoryProtectRead | xe::kMemoryProtectWrite);
if (!alloc_result) { if (!alloc_result) {
XELOGE("Unable to allocate XEX memory at %.8X-%.8X.", header->exe_address, XELOGE("Unable to allocate XEX memory at %.8X-%.8X.", header->exe_address,
uncompressed_size); uncompressed_size);
@ -731,8 +739,12 @@ int xe_xex2_read_image_compressed(const xe_xex2_header_t *header,
} }
// Allocate in-place the XEX memory. // Allocate in-place the XEX memory.
uint32_t alloc_result = memory->HeapAlloc( bool alloc_result =
header->exe_address, uncompressed_size, xe::MEMORY_FLAG_ZERO); memory->LookupHeap(header->exe_address)
->AllocFixed(
header->exe_address, uncompressed_size, 4096,
xe::kMemoryAllocationReserve | xe::kMemoryAllocationCommit,
xe::kMemoryProtectRead | xe::kMemoryProtectWrite);
if (!alloc_result) { if (!alloc_result) {
XELOGE("Unable to allocate XEX memory at %.8X-%.8X.", header->exe_address, XELOGE("Unable to allocate XEX memory at %.8X-%.8X.", header->exe_address,
uncompressed_size); uncompressed_size);

View File

@ -41,7 +41,7 @@ SHIM_CALL XGetAVPack_shim(PPCContext* ppc_state, KernelState* state) {
SHIM_CALL XGetGameRegion_shim(PPCContext* ppc_state, KernelState* state) { SHIM_CALL XGetGameRegion_shim(PPCContext* ppc_state, KernelState* state) {
XELOGD("XGetGameRegion()"); XELOGD("XGetGameRegion()");
SHIM_SET_RETURN_64(XEX_REGION_ALL); SHIM_SET_RETURN_64(0xFFFF);
} }
SHIM_CALL XGetLanguage_shim(PPCContext* ppc_state, KernelState* state) { SHIM_CALL XGetLanguage_shim(PPCContext* ppc_state, KernelState* state) {

View File

@ -17,19 +17,55 @@
namespace xe { namespace xe {
namespace kernel { namespace kernel {
uint32_t ToXdkProtectFlags(uint32_t protect) {
uint32_t result = 0;
if (!(protect & kMemoryProtectRead) && !(protect & kMemoryProtectWrite)) {
result = X_PAGE_NOACCESS;
} else if ((protect & kMemoryProtectRead) &&
!(protect & kMemoryProtectWrite)) {
result = X_PAGE_READONLY;
} else {
result = X_PAGE_READWRITE;
}
if (protect & kMemoryProtectNoCache) {
result = X_PAGE_NOCACHE;
}
if (protect & kMemoryProtectWriteCombine) {
result = X_PAGE_WRITECOMBINE;
}
return result;
}
uint32_t FromXdkProtectFlags(uint32_t protect) {
uint32_t result = 0;
if ((protect & X_PAGE_READONLY) | (protect & X_PAGE_EXECUTE_READ)) {
result |= kMemoryProtectRead;
} else if ((protect & X_PAGE_READWRITE) |
(protect & X_PAGE_EXECUTE_READWRITE)) {
result |= kMemoryProtectRead | kMemoryProtectWrite;
}
if (protect & X_PAGE_NOCACHE) {
result |= kMemoryProtectNoCache;
}
if (protect & X_PAGE_WRITECOMBINE) {
result |= kMemoryProtectWriteCombine;
}
return result;
}
SHIM_CALL NtAllocateVirtualMemory_shim(PPCContext* ppc_state, SHIM_CALL NtAllocateVirtualMemory_shim(PPCContext* ppc_state,
KernelState* state) { KernelState* state) {
uint32_t base_addr_ptr = SHIM_GET_ARG_32(0); uint32_t base_addr_ptr = SHIM_GET_ARG_32(0);
uint32_t base_addr_value = SHIM_MEM_32(base_addr_ptr); uint32_t base_addr_value = SHIM_MEM_32(base_addr_ptr);
uint32_t region_size_ptr = SHIM_GET_ARG_32(1); uint32_t region_size_ptr = SHIM_GET_ARG_32(1);
uint32_t region_size_value = SHIM_MEM_32(region_size_ptr); uint32_t region_size_value = SHIM_MEM_32(region_size_ptr);
uint32_t allocation_type = SHIM_GET_ARG_32(2); // X_MEM_* bitmask uint32_t alloc_type = SHIM_GET_ARG_32(2); // X_MEM_* bitmask
uint32_t protect_bits = SHIM_GET_ARG_32(3); // X_PAGE_* bitmask uint32_t protect_bits = SHIM_GET_ARG_32(3); // X_PAGE_* bitmask
uint32_t unknown = SHIM_GET_ARG_32(4); uint32_t unknown = SHIM_GET_ARG_32(4);
XELOGD("NtAllocateVirtualMemory(%.8X(%.8X), %.8X(%.8X), %.8X, %.8X, %.8X)", XELOGD("NtAllocateVirtualMemory(%.8X(%.8X), %.8X(%.8X), %.8X, %.8X, %.8X)",
base_addr_ptr, base_addr_value, region_size_ptr, region_size_value, base_addr_ptr, base_addr_value, region_size_ptr, region_size_value,
allocation_type, protect_bits, unknown); alloc_type, protect_bits, unknown);
// NTSTATUS // NTSTATUS
// _Inout_ PVOID *BaseAddress, // _Inout_ PVOID *BaseAddress,
@ -52,12 +88,12 @@ SHIM_CALL NtAllocateVirtualMemory_shim(PPCContext* ppc_state,
return; return;
} }
// Check allocation type. // Check allocation type.
if (!(allocation_type & (X_MEM_COMMIT | X_MEM_RESET | X_MEM_RESERVE))) { if (!(alloc_type & (X_MEM_COMMIT | X_MEM_RESET | X_MEM_RESERVE))) {
SHIM_SET_RETURN_32(X_STATUS_INVALID_PARAMETER); SHIM_SET_RETURN_32(X_STATUS_INVALID_PARAMETER);
return; return;
} }
// If MEM_RESET is set only MEM_RESET can be set. // If MEM_RESET is set only MEM_RESET can be set.
if (allocation_type & X_MEM_RESET && (allocation_type & ~X_MEM_RESET)) { if (alloc_type & X_MEM_RESET && (alloc_type & ~X_MEM_RESET)) {
SHIM_SET_RETURN_32(X_STATUS_INVALID_PARAMETER); SHIM_SET_RETURN_32(X_STATUS_INVALID_PARAMETER);
return; return;
} }
@ -68,37 +104,60 @@ SHIM_CALL NtAllocateVirtualMemory_shim(PPCContext* ppc_state,
} }
// Adjust size. // Adjust size.
uint32_t adjusted_size = region_size_value; uint32_t page_size = 4096;
// TODO(benvanik): adjust based on page size flags/etc? if (alloc_type & X_MEM_LARGE_PAGES) {
page_size = 64 * 1024;
// TODO(benvanik): support different allocation types.
// Right now we treat everything as a commit and ignore allocations that have
// already happened.
if (base_addr_value) {
// Having a pointer already means that this is likely a follow-on COMMIT.
assert_true(!(allocation_type & X_MEM_RESERVE) &&
(allocation_type & X_MEM_COMMIT));
SHIM_SET_MEM_32(base_addr_ptr, base_addr_value);
SHIM_SET_MEM_32(region_size_ptr, adjusted_size);
SHIM_SET_RETURN_32(X_STATUS_SUCCESS);
return;
} }
if (int32_t(region_size_value) < 0) {
// Some games pass in negative sizes.
region_size_value = -int32_t(region_size_value);
}
uint32_t adjusted_size = xe::round_up(region_size_value, page_size);
// Allocate. // Allocate.
uint32_t flags = (allocation_type & X_MEM_NOZERO) ? 0 : MEMORY_FLAG_ZERO; uint32_t allocation_type = 0;
uint32_t addr = (uint32_t)state->memory()->HeapAlloc(base_addr_value, if (alloc_type & X_MEM_RESERVE) {
adjusted_size, flags); allocation_type |= kMemoryAllocationReserve;
if (!addr) { }
if (alloc_type & X_MEM_COMMIT) {
allocation_type |= kMemoryAllocationCommit;
}
if (alloc_type & X_MEM_RESET) {
XELOGE("X_MEM_RESET not implemented");
assert_always();
}
uint32_t protect = FromXdkProtectFlags(protect_bits);
uint32_t address = 0;
if (base_addr_value) {
auto heap = state->memory()->LookupHeap(base_addr_value);
if (heap->AllocFixed(base_addr_value, adjusted_size, page_size,
allocation_type, protect)) {
address = base_addr_value;
}
} else {
bool top_down = !!(alloc_type & X_MEM_TOP_DOWN);
auto heap = state->memory()->LookupHeapByType(false, page_size);
heap->Alloc(adjusted_size, page_size, allocation_type, protect, top_down,
&address);
}
if (!address) {
// Failed - assume no memory available. // Failed - assume no memory available.
SHIM_SET_RETURN_32(X_STATUS_NO_MEMORY); SHIM_SET_RETURN_32(X_STATUS_NO_MEMORY);
return; return;
} }
XELOGD("NtAllocateVirtualMemory = %.8X", addr); // Zero memory, if needed.
if (address && !(alloc_type & X_MEM_NOZERO)) {
if (alloc_type & X_MEM_COMMIT) {
std::memset(SHIM_MEM_ADDR(address), 0, adjusted_size);
}
}
XELOGD("NtAllocateVirtualMemory = %.8X", address);
// Stash back. // Stash back.
// Maybe set X_STATUS_ALREADY_COMMITTED if MEM_COMMIT? // Maybe set X_STATUS_ALREADY_COMMITTED if MEM_COMMIT?
SHIM_SET_MEM_32(base_addr_ptr, addr); SHIM_SET_MEM_32(base_addr_ptr, address);
SHIM_SET_MEM_32(region_size_ptr, adjusted_size); SHIM_SET_MEM_32(region_size_ptr, adjusted_size);
SHIM_SET_RETURN_32(X_STATUS_SUCCESS); SHIM_SET_RETURN_32(X_STATUS_SUCCESS);
} }
@ -130,22 +189,24 @@ SHIM_CALL NtFreeVirtualMemory_shim(PPCContext* ppc_state, KernelState* state) {
return; return;
} }
// TODO(benvanik): ignore decommits for now. auto heap = state->memory()->LookupHeap(base_addr_value);
bool result = false;
if (free_type == X_MEM_DECOMMIT) { if (free_type == X_MEM_DECOMMIT) {
SHIM_SET_RETURN_32(X_STATUS_SUCCESS); // If zero, we may need to query size (free whole region).
return; assert_not_zero(region_size_value);
}
// Free. region_size_value = xe::round_up(region_size_value, heap->page_size());
uint32_t flags = 0; result = heap->Decommit(base_addr_value, region_size_value);
uint32_t freed_size = state->memory()->HeapFree(base_addr_value, flags); } else {
if (!freed_size) { result = heap->Release(base_addr_value, &region_size_value);
}
if (!result) {
SHIM_SET_RETURN_32(X_STATUS_UNSUCCESSFUL); SHIM_SET_RETURN_32(X_STATUS_UNSUCCESSFUL);
return; return;
} }
SHIM_SET_MEM_32(base_addr_ptr, base_addr_value); SHIM_SET_MEM_32(base_addr_ptr, base_addr_value);
SHIM_SET_MEM_32(region_size_ptr, freed_size); SHIM_SET_MEM_32(region_size_ptr, region_size_value);
SHIM_SET_RETURN_32(X_STATUS_SUCCESS); SHIM_SET_RETURN_32(X_STATUS_SUCCESS);
} }
@ -168,9 +229,9 @@ SHIM_CALL NtQueryVirtualMemory_shim(PPCContext* ppc_state, KernelState* state) {
XELOGD("NtQueryVirtualMemory(%.8X, %.8X)", base_address, XELOGD("NtQueryVirtualMemory(%.8X, %.8X)", base_address,
memory_basic_information_ptr); memory_basic_information_ptr);
AllocationInfo alloc_info; auto heap = state->memory()->LookupHeap(base_address);
size_t result = state->memory()->QueryInformation(base_address, &alloc_info); HeapAllocationInfo alloc_info;
if (!result) { if (!heap->QueryRegionInfo(base_address, &alloc_info)) {
SHIM_SET_RETURN_32(X_STATUS_INVALID_PARAMETER); SHIM_SET_RETURN_32(X_STATUS_INVALID_PARAMETER);
return; return;
} }
@ -179,15 +240,21 @@ SHIM_CALL NtQueryVirtualMemory_shim(PPCContext* ppc_state, KernelState* state) {
static_cast<uint32_t>(alloc_info.base_address); static_cast<uint32_t>(alloc_info.base_address);
memory_basic_information->allocation_base = memory_basic_information->allocation_base =
static_cast<uint32_t>(alloc_info.allocation_base); static_cast<uint32_t>(alloc_info.allocation_base);
memory_basic_information->allocation_protect = alloc_info.allocation_protect; memory_basic_information->allocation_protect =
ToXdkProtectFlags(alloc_info.allocation_protect);
memory_basic_information->region_size = memory_basic_information->region_size =
static_cast<uint32_t>(alloc_info.region_size); static_cast<uint32_t>(alloc_info.region_size);
memory_basic_information->state = alloc_info.state; uint32_t x_state = 0;
memory_basic_information->protect = alloc_info.protect; if (alloc_info.state & kMemoryAllocationReserve) {
x_state |= X_MEM_RESERVE;
}
if (alloc_info.state & kMemoryAllocationCommit) {
x_state |= X_MEM_COMMIT;
}
memory_basic_information->state = x_state;
memory_basic_information->protect = ToXdkProtectFlags(alloc_info.protect);
memory_basic_information->type = alloc_info.type; memory_basic_information->type = alloc_info.type;
XELOGE("NtQueryVirtualMemory NOT IMPLEMENTED");
SHIM_SET_RETURN_32(X_STATUS_SUCCESS); SHIM_SET_RETURN_32(X_STATUS_SUCCESS);
} }
@ -242,26 +309,20 @@ SHIM_CALL MmAllocatePhysicalMemoryEx_shim(PPCContext* ppc_state,
assert_true(min_addr_range == 0); assert_true(min_addr_range == 0);
assert_true(max_addr_range == 0xFFFFFFFF); assert_true(max_addr_range == 0xFFFFFFFF);
// Allocate. uint32_t allocation_type = kMemoryAllocationReserve | kMemoryAllocationCommit;
uint32_t flags = MEMORY_FLAG_PHYSICAL; uint32_t protect = FromXdkProtectFlags(protect_bits);
uint32_t base_address = (uint32_t)state->memory()->HeapAlloc( bool top_down = true;
0, adjusted_size, flags, adjusted_alignment); auto heap = state->memory()->LookupHeapByType(true, page_size);
if (!base_address) { uint32_t base_address;
if (!heap->AllocRange(min_addr_range, max_addr_range, adjusted_size,
adjusted_alignment, allocation_type, protect, top_down,
&base_address)) {
// Failed - assume no memory available. // Failed - assume no memory available.
SHIM_SET_RETURN_32(0); SHIM_SET_RETURN_32(0);
return; return;
} }
XELOGD("MmAllocatePhysicalMemoryEx = %.8X", base_address); XELOGD("MmAllocatePhysicalMemoryEx = %.8X", base_address);
// Move the address into the right range.
// if (protect_bits & X_MEM_LARGE_PAGES) {
// base_address += 0xA0000000;
//} else if (protect_bits & X_MEM_16MB_PAGES) {
// base_address += 0xC0000000;
//} else {
// base_address += 0xE0000000;
//}
base_address += 0xA0000000;
SHIM_SET_RETURN_64(base_address); SHIM_SET_RETURN_64(base_address);
} }
@ -274,14 +335,10 @@ SHIM_CALL MmFreePhysicalMemory_shim(PPCContext* ppc_state, KernelState* state) {
// base_address = result of MmAllocatePhysicalMemory. // base_address = result of MmAllocatePhysicalMemory.
// Strip off physical bits before passing down. assert_true((base_address & 0x1F) == 0);
base_address &= ~0xE0000000;
// TODO(benvanik): free memory. auto heap = state->memory()->LookupHeap(base_address);
XELOGE("xeMmFreePhysicalMemory NOT IMPLEMENTED"); heap->Release(base_address);
// uint32_t size = ?;
// xe_memory_heap_free(
// state->memory(), base_address, size);
} }
SHIM_CALL MmQueryAddressProtect_shim(PPCContext* ppc_state, SHIM_CALL MmQueryAddressProtect_shim(PPCContext* ppc_state,
@ -290,7 +347,12 @@ SHIM_CALL MmQueryAddressProtect_shim(PPCContext* ppc_state,
XELOGD("MmQueryAddressProtect(%.8X)", base_address); XELOGD("MmQueryAddressProtect(%.8X)", base_address);
uint32_t access = state->memory()->QueryProtect(base_address); auto heap = state->memory()->LookupHeap(base_address);
uint32_t access;
if (!heap->QueryProtect(base_address, &access)) {
access = 0;
}
access = ToXdkProtectFlags(access);
SHIM_SET_RETURN_32(access); SHIM_SET_RETURN_32(access);
} }
@ -301,9 +363,13 @@ SHIM_CALL MmQueryAllocationSize_shim(PPCContext* ppc_state,
XELOGD("MmQueryAllocationSize(%.8X)", base_address); XELOGD("MmQueryAllocationSize(%.8X)", base_address);
size_t size = state->memory()->QuerySize(base_address); auto heap = state->memory()->LookupHeap(base_address);
uint32_t size;
if (!heap->QuerySize(base_address, &size)) {
size = 0;
}
SHIM_SET_RETURN_32(static_cast<uint32_t>(size)); SHIM_SET_RETURN_32(size);
} }
SHIM_CALL MmQueryStatistics_shim(PPCContext* ppc_state, KernelState* state) { SHIM_CALL MmQueryStatistics_shim(PPCContext* ppc_state, KernelState* state) {
@ -372,19 +438,12 @@ SHIM_CALL MmGetPhysicalAddress_shim(PPCContext* ppc_state, KernelState* state) {
// ); // );
// base_address = result of MmAllocatePhysicalMemory. // base_address = result of MmAllocatePhysicalMemory.
// We are always using virtual addresses, right now, since we don't need uint32_t physical_address = base_address & 0x1FFFFFFF;
// physical ones. We could munge up the address here to another mapped view if (base_address >= 0xE0000000) {
// of memory. physical_address += 0x1000;
}
/*if (protect_bits & X_MEM_LARGE_PAGES) { SHIM_SET_RETURN_64(physical_address);
base_address |= 0xA0000000;
} else if (protect_bits & X_MEM_16MB_PAGES) {
base_address |= 0xC0000000;
} else {
base_address |= 0xE0000000;
}*/
SHIM_SET_RETURN_64(base_address);
} }
SHIM_CALL MmMapIoSpace_shim(PPCContext* ppc_state, KernelState* state) { SHIM_CALL MmMapIoSpace_shim(PPCContext* ppc_state, KernelState* state) {

View File

@ -83,6 +83,11 @@ SHIM_CALL ObReferenceObjectByHandle_shim(PPCContext* ppc_state,
} break; } break;
} }
} break; } break;
case 0xD017BEEF: { // ExSemaphoreObjectType
// TODO(benvanik): implement.
assert_unhandled_case(object_type_ptr);
native_ptr = 0xDEADF00D;
} break;
case 0xD01BBEEF: { // ExThreadObjectType case 0xD01BBEEF: { // ExThreadObjectType
XThread* thread = (XThread*)object; XThread* thread = (XThread*)object;
native_ptr = thread->thread_state_ptr(); native_ptr = thread->thread_state_ptr();

View File

@ -380,6 +380,11 @@ SHIM_CALL VdPersistDisplay_shim(PPCContext* ppc_state, KernelState* state) {
// unk1_ptr needs to be populated with a pointer passed to // unk1_ptr needs to be populated with a pointer passed to
// MmFreePhysicalMemory(1, *unk1_ptr). // MmFreePhysicalMemory(1, *unk1_ptr).
auto heap = state->memory()->LookupHeapByType(true, 16 * 1024);
uint32_t unk1_value;
heap->Alloc(64, 32, kMemoryAllocationReserve | kMemoryAllocationCommit,
kMemoryProtectNoAccess, false, &unk1_value);
SHIM_SET_MEM_32(unk1_ptr, unk1_value);
// ? // ?
SHIM_SET_RETURN_64(1); SHIM_SET_RETURN_64(1);

View File

@ -113,6 +113,7 @@ X_STATUS XObject::Wait(uint32_t wait_reason, uint32_t processor_mode,
// Or X_STATUS_ALERTED? // Or X_STATUS_ALERTED?
return X_STATUS_USER_APC; return X_STATUS_USER_APC;
case WAIT_TIMEOUT: case WAIT_TIMEOUT:
YieldProcessor();
return X_STATUS_TIMEOUT; return X_STATUS_TIMEOUT;
default: default:
case WAIT_FAILED: case WAIT_FAILED:

File diff suppressed because it is too large Load Diff

View File

@ -12,6 +12,7 @@
#include <cstdint> #include <cstdint>
#include <memory> #include <memory>
#include <mutex>
#include <vector> #include <vector>
#include "xenia/base/platform.h" #include "xenia/base/platform.h"
@ -25,25 +26,129 @@ enum SystemHeapFlag : uint32_t {
kSystemHeapDefault = kSystemHeapVirtual, kSystemHeapDefault = kSystemHeapVirtual,
}; };
class MemoryHeap;
// TODO(benvanik): move to heap. enum MemoryAllocationFlag : uint32_t {
enum { kMemoryAllocationReserve = 1 << 0,
MEMORY_FLAG_64KB_PAGES = (1 << 1), kMemoryAllocationCommit = 1 << 1,
MEMORY_FLAG_ZERO = (1 << 2), };
MEMORY_FLAG_PHYSICAL = (1 << 3),
enum MemoryProtectFlag : uint32_t {
kMemoryProtectRead = 1 << 0,
kMemoryProtectWrite = 1 << 1,
kMemoryProtectNoCache = 1 << 2,
kMemoryProtectWriteCombine = 1 << 3,
kMemoryProtectNoAccess = 0,
}; };
// TODO(benvanik): move to heap.
// Equivalent to the Win32 MEMORY_BASIC_INFORMATION struct. // Equivalent to the Win32 MEMORY_BASIC_INFORMATION struct.
struct AllocationInfo { struct HeapAllocationInfo {
// A pointer to the base address of the region of pages.
uint32_t base_address; uint32_t base_address;
// A pointer to the base address of a range of pages allocated by the
// VirtualAlloc function. The page pointed to by the BaseAddress member is
// contained within this allocation range.
uint32_t allocation_base; uint32_t allocation_base;
uint32_t allocation_protect; // TBD // The memory protection option when the region was initially allocated.
size_t region_size; uint32_t allocation_protect;
uint32_t state; // TBD // The size of the region beginning at the base address in which all pages
uint32_t protect; // TBD // have identical attributes, in bytes.
uint32_t type; // TBD uint32_t region_size;
// The state of the pages in the region (commit/free/reserve).
uint32_t state;
// The access protection of the pages in the region.
uint32_t protect;
// The type of pages in the region (private).
uint32_t type;
};
union PageEntry {
struct {
uint32_t base_address : 20; // in 4k pages
uint32_t region_page_count : 20; // in 4k pages
uint32_t allocation_protect : 4;
uint32_t current_protect : 4;
uint32_t state : 2;
uint32_t reserved : 14;
};
uint64_t qword;
};
class BaseHeap {
public:
virtual ~BaseHeap();
uint32_t page_size() const { return page_size_; }
virtual void Dispose();
void DumpMap();
virtual bool Alloc(uint32_t size, uint32_t alignment,
uint32_t allocation_type, uint32_t protect, bool top_down,
uint32_t* out_address);
virtual bool AllocFixed(uint32_t base_address, uint32_t size,
uint32_t alignment, uint32_t allocation_type,
uint32_t protect);
virtual bool AllocRange(uint32_t low_address, uint32_t high_address,
uint32_t size, uint32_t alignment,
uint32_t allocation_type, uint32_t protect,
bool top_down, uint32_t* out_address);
virtual bool Decommit(uint32_t address, uint32_t size);
virtual bool Release(uint32_t address, uint32_t* out_region_size = nullptr);
virtual bool Protect(uint32_t address, uint32_t size, uint32_t protect);
bool QueryRegionInfo(uint32_t base_address, HeapAllocationInfo* out_info);
bool QuerySize(uint32_t address, uint32_t* out_size);
bool QueryProtect(uint32_t address, uint32_t* out_protect);
uint32_t GetPhysicalAddress(uint32_t address);
protected:
BaseHeap();
void Initialize(uint8_t* membase, uint32_t heap_base, uint32_t heap_size,
uint32_t page_size);
uint8_t* membase_;
uint32_t heap_base_;
uint32_t heap_size_;
uint32_t page_size_;
std::vector<PageEntry> page_table_;
std::recursive_mutex heap_mutex_;
};
class VirtualHeap : public BaseHeap {
public:
VirtualHeap();
~VirtualHeap() override;
void Initialize(uint8_t* membase, uint32_t heap_base, uint32_t heap_size,
uint32_t page_size);
};
class PhysicalHeap : public BaseHeap {
public:
PhysicalHeap();
~PhysicalHeap() override;
void Initialize(uint8_t* membase, uint32_t heap_base, uint32_t heap_size,
uint32_t page_size, VirtualHeap* parent_heap);
bool Alloc(uint32_t size, uint32_t alignment, uint32_t allocation_type,
uint32_t protect, bool top_down, uint32_t* out_address) override;
bool AllocFixed(uint32_t base_address, uint32_t size, uint32_t alignment,
uint32_t allocation_type, uint32_t protect) override;
bool AllocRange(uint32_t low_address, uint32_t high_address, uint32_t size,
uint32_t alignment, uint32_t allocation_type,
uint32_t protect, bool top_down,
uint32_t* out_address) override;
bool Decommit(uint32_t address, uint32_t size) override;
bool Release(uint32_t base_address,
uint32_t* out_region_size = nullptr) override;
bool Protect(uint32_t address, uint32_t size, uint32_t protect) override;
protected:
VirtualHeap* parent_heap_;
}; };
class Memory { class Memory {
@ -82,11 +187,12 @@ class Memory {
uint32_t SearchAligned(uint32_t start, uint32_t end, const uint32_t* values, uint32_t SearchAligned(uint32_t start, uint32_t end, const uint32_t* values,
size_t value_count); size_t value_count);
bool AddMappedRange(uint32_t address, uint32_t mask, uint32_t size, bool AddVirtualMappedRange(uint32_t virtual_address, uint32_t mask,
void* context, cpu::MMIOReadCallback read_callback, uint32_t size, void* context,
cpu::MMIOReadCallback read_callback,
cpu::MMIOWriteCallback write_callback); cpu::MMIOWriteCallback write_callback);
uintptr_t AddWriteWatch(uint32_t guest_address, uint32_t length, uintptr_t AddPhysicalWriteWatch(uint32_t physical_address, uint32_t length,
cpu::WriteWatchCallback callback, cpu::WriteWatchCallback callback,
void* callback_context, void* callback_data); void* callback_context, void* callback_data);
void CancelWriteWatch(uintptr_t watch_handle); void CancelWriteWatch(uintptr_t watch_handle);
@ -94,15 +200,11 @@ class Memory {
uint32_t SystemHeapAlloc(uint32_t size, uint32_t alignment = 0x20, uint32_t SystemHeapAlloc(uint32_t size, uint32_t alignment = 0x20,
uint32_t system_heap_flags = kSystemHeapDefault); uint32_t system_heap_flags = kSystemHeapDefault);
void SystemHeapFree(uint32_t address); void SystemHeapFree(uint32_t address);
uint32_t HeapAlloc(uint32_t base_address, uint32_t size, uint32_t flags,
uint32_t alignment = 0x20);
int HeapFree(uint32_t address, uint32_t size);
bool QueryInformation(uint32_t base_address, AllocationInfo* mem_info); BaseHeap* LookupHeap(uint32_t address);
uint32_t QuerySize(uint32_t base_address); BaseHeap* LookupHeapByType(bool physical, uint32_t page_size);
int Protect(uint32_t address, uint32_t size, uint32_t access); void DumpMap();
uint32_t QueryProtect(uint32_t address);
private: private:
int MapViews(uint8_t* mapping_base); int MapViews(uint8_t* mapping_base);
@ -122,22 +224,31 @@ class Memory {
uint8_t* v00000000; uint8_t* v00000000;
uint8_t* v40000000; uint8_t* v40000000;
uint8_t* v7F000000; uint8_t* v7F000000;
uint8_t* v7F100000;
uint8_t* v80000000; uint8_t* v80000000;
uint8_t* v90000000; uint8_t* v90000000;
uint8_t* vA0000000; uint8_t* vA0000000;
uint8_t* vC0000000; uint8_t* vC0000000;
uint8_t* vE0000000; uint8_t* vE0000000;
uint8_t* physical;
}; };
uint8_t* all_views[9]; uint8_t* all_views[9];
} views_; } views_;
std::unique_ptr<cpu::MMIOHandler> mmio_handler_; std::unique_ptr<cpu::MMIOHandler> mmio_handler_;
MemoryHeap* virtual_heap_; struct {
MemoryHeap* physical_heap_; VirtualHeap v00000000;
VirtualHeap v40000000;
VirtualHeap v80000000;
VirtualHeap v90000000;
friend class MemoryHeap; VirtualHeap physical;
PhysicalHeap vA0000000;
PhysicalHeap vC0000000;
PhysicalHeap vE0000000;
} heaps_;
friend class BaseHeap;
}; };
} // namespace xe } // namespace xe