xemu/hw/xbox/mcpx/nvnet/nvnet.c

1093 lines
30 KiB
C

/*
* QEMU nForce Ethernet Controller implementation
*
* Copyright (c) 2013 espes
* Copyright (c) 2015-2025 Matt Borgerson
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "trace.h"
#include "hw/hw.h"
#include "hw/net/mii.h"
#include "hw/pci/pci.h"
#include "hw/pci/pci_device.h"
#include "hw/qdev-properties.h"
#include "net/net.h"
#include "net/eth.h"
#include "qemu/bswap.h"
#include "qemu/iov.h"
#include "migration/vmstate.h"
#include "nvnet_regs.h"
#define IOPORT_SIZE 0x8
#define MMIO_SIZE 0x400
#define PHY_ADDR 1
#define GET_MASK(v, mask) (((v) & (mask)) >> ctz32(mask))
#ifndef DEBUG_NVNET
#define DEBUG_NVNET 0
#endif
#define NVNET_DPRINTF(fmt, ...) \
do { \
if (DEBUG_NVNET) { \
fprintf(stderr, fmt, ##__VA_ARGS__); \
} \
} while (0);
#define TYPE_NVNET "nvnet"
OBJECT_DECLARE_SIMPLE_TYPE(NvNetState, NVNET)
typedef struct NvNetState {
/*< private >*/
PCIDevice parent_obj;
/*< public >*/
NICState *nic;
NICConf conf;
MemoryRegion mmio, io;
uint8_t regs[MMIO_SIZE];
uint32_t phy_regs[6];
uint32_t tx_dma_buf_offset;
uint8_t tx_dma_buf[TX_ALLOC_BUFSIZE];
uint8_t rx_dma_buf[RX_ALLOC_BUFSIZE];
QEMUTimer *autoneg_timer;
/* Deprecated */
uint8_t tx_ring_index;
uint8_t rx_ring_index;
} NvNetState;
struct RingDesc {
uint32_t buffer_addr;
uint16_t length;
uint16_t flags;
} QEMU_PACKED;
#define R(r) \
case r: \
return #r;
static const char *get_reg_name(hwaddr addr)
{
switch (addr & ~3) {
R(NVNET_IRQ_STATUS)
R(NVNET_IRQ_MASK)
R(NVNET_UNKNOWN_SETUP_REG6)
R(NVNET_POLLING_INTERVAL)
R(NVNET_MISC1)
R(NVNET_TRANSMITTER_CONTROL)
R(NVNET_TRANSMITTER_STATUS)
R(NVNET_PACKET_FILTER)
R(NVNET_OFFLOAD)
R(NVNET_RECEIVER_CONTROL)
R(NVNET_RECEIVER_STATUS)
R(NVNET_RANDOM_SEED)
R(NVNET_UNKNOWN_SETUP_REG1)
R(NVNET_UNKNOWN_SETUP_REG2)
R(NVNET_MAC_ADDR_A)
R(NVNET_MAC_ADDR_B)
R(NVNET_MULTICAST_ADDR_A)
R(NVNET_MULTICAST_ADDR_B)
R(NVNET_MULTICAST_MASK_A)
R(NVNET_MULTICAST_MASK_B)
R(NVNET_TX_RING_PHYS_ADDR)
R(NVNET_RX_RING_PHYS_ADDR)
R(NVNET_RING_SIZE)
R(NVNET_UNKNOWN_TRANSMITTER_REG)
R(NVNET_LINKSPEED)
R(NVNET_TX_RING_CURRENT_DESC_PHYS_ADDR)
R(NVNET_RX_RING_CURRENT_DESC_PHYS_ADDR)
R(NVNET_TX_CURRENT_BUFFER_PHYS_ADDR)
R(NVNET_RX_CURRENT_BUFFER_PHYS_ADDR)
R(NVNET_UNKNOWN_SETUP_REG5)
R(NVNET_TX_RING_NEXT_DESC_PHYS_ADDR)
R(NVNET_RX_RING_NEXT_DESC_PHYS_ADDR)
R(NVNET_UNKNOWN_SETUP_REG8)
R(NVNET_UNKNOWN_SETUP_REG7)
R(NVNET_TX_RX_CONTROL)
R(NVNET_MII_STATUS)
R(NVNET_UNKNOWN_SETUP_REG4)
R(NVNET_ADAPTER_CONTROL)
R(NVNET_MII_SPEED)
R(NVNET_MDIO_ADDR)
R(NVNET_MDIO_DATA)
R(NVNET_WAKEUPFLAGS)
R(NVNET_PATTERN_CRC)
R(NVNET_PATTERN_MASK)
R(NVNET_POWERCAP)
R(NVNET_POWERSTATE)
default:
return "Unknown";
}
}
static const char *get_phy_reg_name(uint8_t reg)
{
switch (reg) {
R(MII_PHYID1)
R(MII_PHYID2)
R(MII_BMCR)
R(MII_BMSR)
R(MII_ANAR)
R(MII_ANLPAR)
default:
return "Unknown";
}
}
#undef R
static uint32_t get_reg_ext(NvNetState *s, hwaddr addr, unsigned int size)
{
assert(addr < MMIO_SIZE);
assert((addr & (size - 1)) == 0);
switch (size) {
case 4:
return le32_to_cpu(*(uint32_t *)&s->regs[addr]);
case 2:
return le16_to_cpu(*(uint16_t *)&s->regs[addr]);
case 1:
return s->regs[addr];
default:
assert(!"Unsupported register access");
return 0;
}
}
static uint32_t get_reg(NvNetState *s, hwaddr addr)
{
return get_reg_ext(s, addr, 4);
}
static void set_reg_ext(NvNetState *s, hwaddr addr, uint32_t val,
unsigned int size)
{
assert(addr < MMIO_SIZE);
assert((addr & (size - 1)) == 0);
switch (size) {
case 4:
*(uint32_t *)&s->regs[addr] = cpu_to_le32((uint32_t)val);
break;
case 2:
*(uint16_t *)&s->regs[addr] = cpu_to_le16((uint16_t)val);
break;
case 1:
s->regs[addr] = (uint8_t)val;
break;
default:
assert(!"Unsupported register access");
}
}
static void set_reg(NvNetState *s, hwaddr addr, uint32_t val)
{
set_reg_ext(s, addr, val, 4);
}
static void or_reg(NvNetState *s, hwaddr addr, uint32_t val)
{
set_reg(s, addr, get_reg(s, addr) | val);
}
static void and_reg(NvNetState *s, hwaddr addr, uint32_t val)
{
set_reg(s, addr, get_reg(s, addr) & val);
}
static void set_reg_with_mask(NvNetState *s, hwaddr addr, uint32_t val, uint32_t w_mask)
{
set_reg(s, addr, ((get_reg(s, addr) & (val | ~w_mask)) | (val & w_mask)));
}
static void update_irq(NvNetState *s)
{
PCIDevice *d = PCI_DEVICE(s);
uint32_t irq_mask = get_reg(s, NVNET_IRQ_MASK);
uint32_t irq_status = get_reg(s, NVNET_IRQ_STATUS);
if (irq_mask & irq_status) {
NVNET_DPRINTF("Asserting IRQ\n");
pci_irq_assert(d);
} else {
pci_irq_deassert(d);
}
}
static void set_intr_status(NvNetState *s, uint32_t status)
{
or_reg(s, NVNET_IRQ_STATUS, status);
update_irq(s);
}
static void set_mii_intr_status(NvNetState *s, uint32_t status)
{
or_reg(s, NVNET_MII_STATUS, status);
set_intr_status(s, NVNET_IRQ_STATUS_MIIEVENT);
// FIXME: MII status mask?
}
static void send_packet(NvNetState *s, const uint8_t *buf, int size)
{
NetClientState *nc = qemu_get_queue(s->nic);
NVNET_DPRINTF("nvnet: Sending packet!\n");
qemu_send_packet(nc, buf, size);
}
static uint16_t get_tx_ring_size(NvNetState *s)
{
uint32_t ring_size = get_reg(s, NVNET_RING_SIZE);
return GET_MASK(ring_size, NVNET_RING_SIZE_TX) + 1;
}
static uint16_t get_rx_ring_size(NvNetState *s)
{
uint32_t ring_size = get_reg(s, NVNET_RING_SIZE);
return GET_MASK(ring_size, NVNET_RING_SIZE_RX) + 1;
}
static void reset_descriptor_ring_pointers(NvNetState *s)
{
uint32_t base_desc_addr;
base_desc_addr = get_reg(s, NVNET_TX_RING_PHYS_ADDR);
set_reg(s, NVNET_TX_RING_CURRENT_DESC_PHYS_ADDR, base_desc_addr);
set_reg(s, NVNET_TX_RING_NEXT_DESC_PHYS_ADDR, base_desc_addr);
base_desc_addr = get_reg(s, NVNET_RX_RING_PHYS_ADDR);
set_reg(s, NVNET_RX_RING_CURRENT_DESC_PHYS_ADDR, base_desc_addr);
set_reg(s, NVNET_RX_RING_NEXT_DESC_PHYS_ADDR, base_desc_addr);
}
static bool link_up(NvNetState *s)
{
return s->phy_regs[MII_BMSR] & MII_BMSR_LINK_ST;
}
static bool dma_enabled(NvNetState *s)
{
return (get_reg(s, NVNET_TX_RX_CONTROL) & NVNET_TX_RX_CONTROL_BIT2) == 0;
}
static void set_dma_idle(NvNetState *s, bool idle)
{
if (idle) {
or_reg(s, NVNET_TX_RX_CONTROL, NVNET_TX_RX_CONTROL_IDLE);
} else {
and_reg(s, NVNET_TX_RX_CONTROL, ~NVNET_TX_RX_CONTROL_IDLE);
}
}
static bool rx_enabled(NvNetState *s)
{
return get_reg(s, NVNET_RECEIVER_CONTROL) & NVNET_RECEIVER_CONTROL_START;
}
static uint32_t update_current_rx_ring_desc_addr(NvNetState *s)
{
uint32_t base_desc_addr = get_reg(s, NVNET_RX_RING_PHYS_ADDR);
uint32_t max_desc_addr =
base_desc_addr + get_rx_ring_size(s) * sizeof(struct RingDesc);
uint32_t cur_desc_addr = get_reg(s, NVNET_RX_RING_NEXT_DESC_PHYS_ADDR);
if ((cur_desc_addr < base_desc_addr) ||
((cur_desc_addr + sizeof(struct RingDesc)) > max_desc_addr)) {
cur_desc_addr = base_desc_addr;
}
set_reg(s, NVNET_RX_RING_CURRENT_DESC_PHYS_ADDR, cur_desc_addr);
return cur_desc_addr;
}
static void advance_next_rx_ring_desc_addr(NvNetState *s)
{
uint32_t base_desc_addr = get_reg(s, NVNET_RX_RING_PHYS_ADDR);
uint32_t max_desc_addr =
base_desc_addr + get_rx_ring_size(s) * sizeof(struct RingDesc);
uint32_t cur_desc_addr = get_reg(s, NVNET_RX_RING_CURRENT_DESC_PHYS_ADDR);
uint32_t next_desc_addr = cur_desc_addr + sizeof(struct RingDesc);
if (next_desc_addr >= max_desc_addr) {
next_desc_addr = base_desc_addr;
}
set_reg(s, NVNET_RX_RING_NEXT_DESC_PHYS_ADDR, next_desc_addr);
}
static struct RingDesc load_ring_desc(NvNetState *s, dma_addr_t desc_addr)
{
PCIDevice *d = PCI_DEVICE(s);
struct RingDesc raw_desc;
pci_dma_read(d, desc_addr, &raw_desc, sizeof(raw_desc));
return (struct RingDesc){
.buffer_addr = le32_to_cpu(raw_desc.buffer_addr),
.length = le16_to_cpu(raw_desc.length),
.flags = le16_to_cpu(raw_desc.flags),
};
}
static void store_ring_desc(NvNetState *s, dma_addr_t desc_addr,
struct RingDesc desc)
{
PCIDevice *d = PCI_DEVICE(s);
struct RingDesc raw_desc = {
.buffer_addr = cpu_to_le32(desc.buffer_addr),
.length = cpu_to_le16(desc.length),
.flags = cpu_to_le16(desc.flags),
};
pci_dma_write(d, desc_addr, &raw_desc, sizeof(raw_desc));
}
static bool rx_buf_available(NvNetState *s)
{
uint32_t cur_desc_addr = update_current_rx_ring_desc_addr(s);
struct RingDesc desc = load_ring_desc(s, cur_desc_addr);
return desc.flags & NV_RX_AVAIL;
}
static bool nvnet_can_receive(NetClientState *nc)
{
NVNET_DPRINTF("nvnet_can_receive called\n");
NvNetState *s = qemu_get_nic_opaque(nc);
return rx_enabled(s) && dma_enabled(s) && link_up(s) && rx_buf_available(s);
}
static ssize_t dma_packet_to_guest(NvNetState *s, const uint8_t *buf,
size_t size)
{
PCIDevice *d = PCI_DEVICE(s);
NetClientState *nc = qemu_get_queue(s->nic);
ssize_t rval;
if (!nvnet_can_receive(nc)) {
return -1;
}
set_dma_idle(s, false);
uint32_t base_desc_addr = get_reg(s, NVNET_RX_RING_PHYS_ADDR);
uint32_t cur_desc_addr = update_current_rx_ring_desc_addr(s);
struct RingDesc desc = load_ring_desc(s, cur_desc_addr);
NVNET_DPRINTF("RX: Looking at ring descriptor %zd (0x%x): "
"Buffer: 0x%x, Length: 0x%x, Flags: 0x%x\n",
(cur_desc_addr - base_desc_addr) / sizeof(struct RingDesc),
cur_desc_addr, desc.buffer_addr, desc.length, desc.flags);
if (desc.flags & NV_RX_AVAIL) {
assert((desc.length + 1) >= size); // FIXME
NVNET_DPRINTF("Transferring packet, size 0x%zx, to memory at 0x%x\n",
size, desc.buffer_addr);
pci_dma_write(d, desc.buffer_addr, buf, size);
desc.length = size;
desc.flags = NV_RX_BIT4 | NV_RX_DESCRIPTORVALID;
store_ring_desc(s, cur_desc_addr, desc);
NVNET_DPRINTF("Updated ring descriptor: Length: 0x%x, Flags: 0x%x\n",
desc.length, desc.flags);
set_intr_status(s, NVNET_IRQ_STATUS_RX);
advance_next_rx_ring_desc_addr(s);
rval = size;
} else {
NVNET_DPRINTF("Could not find free buffer!\n");
rval = -1;
}
set_dma_idle(s, true);
return rval;
}
static bool tx_enabled(NvNetState *s)
{
return get_reg(s, NVNET_TRANSMITTER_CONTROL) &
NVNET_TRANSMITTER_CONTROL_START;
}
static bool can_transmit(NvNetState *s)
{
return tx_enabled(s) && dma_enabled(s) && link_up(s);
}
static uint32_t update_current_tx_ring_desc_addr(NvNetState *s)
{
uint32_t base_desc_addr = get_reg(s, NVNET_TX_RING_PHYS_ADDR);
uint32_t max_desc_addr =
base_desc_addr + get_tx_ring_size(s) * sizeof(struct RingDesc);
uint32_t cur_desc_addr = get_reg(s, NVNET_TX_RING_NEXT_DESC_PHYS_ADDR);
if ((cur_desc_addr < base_desc_addr) ||
((cur_desc_addr + sizeof(struct RingDesc)) > max_desc_addr)) {
cur_desc_addr = base_desc_addr;
}
set_reg(s, NVNET_TX_RING_CURRENT_DESC_PHYS_ADDR, cur_desc_addr);
return cur_desc_addr;
}
static void advance_next_tx_ring_desc_addr(NvNetState *s)
{
uint32_t base_desc_addr = get_reg(s, NVNET_TX_RING_PHYS_ADDR);
uint32_t max_desc_addr =
base_desc_addr + get_tx_ring_size(s) * sizeof(struct RingDesc);
uint32_t cur_desc_addr = get_reg(s, NVNET_TX_RING_CURRENT_DESC_PHYS_ADDR);
uint32_t next_desc_addr = cur_desc_addr + sizeof(struct RingDesc);
if (next_desc_addr >= max_desc_addr) {
next_desc_addr = base_desc_addr;
}
set_reg(s, NVNET_TX_RING_NEXT_DESC_PHYS_ADDR, next_desc_addr);
}
static void dma_packet_from_guest(NvNetState *s)
{
PCIDevice *d = PCI_DEVICE(s);
bool packet_sent = false;
if (!can_transmit(s)) {
return;
}
set_dma_idle(s, false);
uint32_t base_desc_addr = get_reg(s, NVNET_TX_RING_PHYS_ADDR);
for (int i = 0; i < get_tx_ring_size(s); i++) {
uint32_t cur_desc_addr = update_current_tx_ring_desc_addr(s);
struct RingDesc desc = load_ring_desc(s, cur_desc_addr);
uint16_t length = desc.length + 1;
NVNET_DPRINTF("TX: Looking at ring desc %zd (%x): "
"Buffer: 0x%x, Length: 0x%x, Flags: 0x%x\n",
(cur_desc_addr - base_desc_addr) /
sizeof(struct RingDesc),
cur_desc_addr, desc.buffer_addr, length, desc.flags);
if (!(desc.flags & NV_TX_VALID)) {
break;
}
assert((s->tx_dma_buf_offset + length) <= sizeof(s->tx_dma_buf));
pci_dma_read(d, desc.buffer_addr, &s->tx_dma_buf[s->tx_dma_buf_offset],
length);
s->tx_dma_buf_offset += length;
bool is_last_packet = desc.flags & NV_TX_LASTPACKET;
if (is_last_packet) {
send_packet(s, s->tx_dma_buf, s->tx_dma_buf_offset);
s->tx_dma_buf_offset = 0;
packet_sent = true;
}
desc.flags &= ~(NV_TX_VALID | NV_TX_RETRYERROR | NV_TX_DEFERRED |
NV_TX_CARRIERLOST | NV_TX_LATECOLLISION |
NV_TX_UNDERFLOW | NV_TX_ERROR);
store_ring_desc(s, cur_desc_addr, desc);
advance_next_tx_ring_desc_addr(s);
if (is_last_packet) {
// FIXME
break;
}
}
set_dma_idle(s, true);
if (packet_sent) {
set_intr_status(s, NVNET_IRQ_STATUS_TX);
}
}
static bool is_packet_oversized(size_t size)
{
return size > RX_ALLOC_BUFSIZE;
}
static bool receive_filter(NvNetState *s, const uint8_t *buf, int size)
{
if (size < 6) {
return false;
}
uint32_t rctl = get_reg(s, NVNET_PACKET_FILTER);
/* Broadcast */
if (is_broadcast_ether_addr(buf)) {
/* FIXME: bcast filtering */
trace_nvnet_rx_filter_bcast_match();
return true;
}
if (!(rctl & NVNET_PACKET_FILTER_MYADDR)) {
/* FIXME: Confirm PFF_MYADDR filters mcast */
return true;
}
/* Multicast */
uint32_t addr[2];
addr[0] = cpu_to_le32(get_reg(s, NVNET_MULTICAST_ADDR_A));
addr[1] = cpu_to_le32(get_reg(s, NVNET_MULTICAST_ADDR_B));
if (!is_broadcast_ether_addr((uint8_t *)addr)) {
uint32_t dest_addr[2];
memcpy(dest_addr, buf, 6);
dest_addr[0] &= cpu_to_le32(get_reg(s, NVNET_MULTICAST_MASK_A));
dest_addr[1] &= cpu_to_le32(get_reg(s, NVNET_MULTICAST_MASK_B));
if (!memcmp(dest_addr, addr, 6)) {
trace_nvnet_rx_filter_mcast_match(MAC_ARG(dest_addr));
return true;
} else {
trace_nvnet_rx_filter_mcast_mismatch(MAC_ARG(dest_addr));
}
}
/* Unicast */
addr[0] = cpu_to_le32(get_reg(s, NVNET_MAC_ADDR_A));
addr[1] = cpu_to_le32(get_reg(s, NVNET_MAC_ADDR_B));
if (!memcmp(buf, addr, 6)) {
trace_nvnet_rx_filter_ucast_match(MAC_ARG(buf));
return true;
} else {
trace_nvnet_rx_filter_ucast_mismatch(MAC_ARG(buf));
}
return false;
}
static ssize_t nvnet_receive_iov(NetClientState *nc, const struct iovec *iov,
int iovcnt)
{
NvNetState *s = qemu_get_nic_opaque(nc);
size_t size = iov_size(iov, iovcnt);
NVNET_DPRINTF("nvnet: Packet received!\n");
if (is_packet_oversized(size)) {
trace_nvnet_rx_oversized(size);
return size;
}
iov_to_buf(iov, iovcnt, 0, s->rx_dma_buf, size);
if (!receive_filter(s, s->rx_dma_buf, size)) {
trace_nvnet_rx_filter_dropped();
return size;
}
return dma_packet_to_guest(s, s->rx_dma_buf, size);
}
static ssize_t nvnet_receive(NetClientState *nc, const uint8_t *buf,
size_t size)
{
const struct iovec iov = { .iov_base = (uint8_t *)buf, .iov_len = size };
NVNET_DPRINTF("nvnet_receive called\n");
return nvnet_receive_iov(nc, &iov, 1);
}
static void update_regs_on_link_down(NvNetState *s)
{
s->phy_regs[MII_BMSR] &= ~MII_BMSR_LINK_ST;
s->phy_regs[MII_BMSR] &= ~MII_BMSR_AN_COMP;
s->phy_regs[MII_ANLPAR] &= ~MII_ANLPAR_ACK;
and_reg(s, NVNET_ADAPTER_CONTROL, ~NVNET_ADAPTER_CONTROL_LINKUP);
}
static void set_link_down(NvNetState *s)
{
update_regs_on_link_down(s);
set_mii_intr_status(s, NVNET_MII_STATUS_LINKCHANGE);
}
static void update_regs_on_link_up(NvNetState *s)
{
s->phy_regs[MII_BMSR] |= MII_BMSR_LINK_ST;
or_reg(s, NVNET_ADAPTER_CONTROL, NVNET_ADAPTER_CONTROL_LINKUP);
}
static void set_link_up(NvNetState *s)
{
update_regs_on_link_up(s);
set_mii_intr_status(s, NVNET_MII_STATUS_LINKCHANGE);
}
static void restart_autoneg(NvNetState *s)
{
trace_nvnet_link_negotiation_start();
timer_mod(s->autoneg_timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
}
static void autoneg_done(void *opaque)
{
NvNetState *s = opaque;
trace_nvnet_link_negotiation_done();
s->phy_regs[MII_ANLPAR] |= MII_ANLPAR_ACK;
s->phy_regs[MII_BMSR] |= MII_BMSR_AN_COMP;
set_link_up(s);
}
static void autoneg_timer(void *opaque)
{
NvNetState *s = opaque;
if (!qemu_get_queue(s->nic)->link_down) {
autoneg_done(s);
}
}
static bool have_autoneg(NvNetState *s)
{
return (s->phy_regs[MII_BMCR] & MII_BMCR_AUTOEN);
}
static void nvnet_set_link_status(NetClientState *nc)
{
NvNetState *s = qemu_get_nic_opaque(nc);
trace_nvnet_link_status_changed(nc->link_down ? false : true);
if (nc->link_down) {
set_link_down(s);
} else {
if (have_autoneg(s) && !(s->phy_regs[MII_BMSR] & MII_BMSR_AN_COMP)) {
restart_autoneg(s);
} else {
set_link_up(s);
}
}
}
static NetClientInfo nvnet_client_info = {
.type = NET_CLIENT_DRIVER_NIC,
.size = sizeof(NICState),
.can_receive = nvnet_can_receive,
.receive = nvnet_receive,
.receive_iov = nvnet_receive_iov,
.link_status_changed = nvnet_set_link_status,
};
static uint16_t phy_reg_read(NvNetState *s, uint8_t reg)
{
uint16_t value;
if (reg < ARRAY_SIZE(s->phy_regs)) {
value = s->phy_regs[reg];
} else {
value = 0;
}
trace_nvnet_phy_reg_read(PHY_ADDR, reg, get_phy_reg_name(reg), value);
return value;
}
static void phy_reg_write(NvNetState *s, uint8_t reg, uint16_t value)
{
trace_nvnet_phy_reg_write(PHY_ADDR, reg, get_phy_reg_name(reg),
value);
if (reg < ARRAY_SIZE(s->phy_regs)) {
s->phy_regs[reg] = value;
}
}
static void mdio_read(NvNetState *s)
{
uint32_t mdio_addr = get_reg(s, NVNET_MDIO_ADDR);
uint32_t mdio_data = -1;
uint8_t phy_addr = GET_MASK(mdio_addr, NVNET_MDIO_ADDR_PHYADDR);
uint8_t phy_reg = GET_MASK(mdio_addr, NVNET_MDIO_ADDR_PHYREG);
if (phy_addr == PHY_ADDR) {
mdio_data = phy_reg_read(s, phy_reg);
}
set_reg(s, NVNET_MDIO_DATA, mdio_data);
and_reg(s, NVNET_MDIO_ADDR, ~NVNET_MDIO_ADDR_INUSE);
}
static void mdio_write(NvNetState *s)
{
uint32_t mdio_addr = get_reg(s, NVNET_MDIO_ADDR);
uint32_t mdio_data = get_reg(s, NVNET_MDIO_DATA);
uint8_t phy_addr = GET_MASK(mdio_addr, NVNET_MDIO_ADDR_PHYADDR);
uint8_t phy_reg = GET_MASK(mdio_addr, NVNET_MDIO_ADDR_PHYREG);
if (phy_addr == PHY_ADDR) {
phy_reg_write(s, phy_reg, mdio_data);
}
and_reg(s, NVNET_MDIO_ADDR, ~NVNET_MDIO_ADDR_INUSE);
}
static uint64_t nvnet_mmio_read(void *opaque, hwaddr addr, unsigned int size)
{
NvNetState *s = NVNET(opaque);
uint64_t retval;
switch (addr) {
case NVNET_MII_STATUS:
retval = 0;
break;
default:
retval = get_reg_ext(s, addr, size);
break;
}
trace_nvnet_reg_read(addr, get_reg_name(addr), size, retval);
return retval;
}
static void dump_ring_descriptors(NvNetState *s)
{
#if DEBUG_NVNET
PCIDevice *d = PCI_DEVICE(s);
NVNET_DPRINTF("------------------------------------------------\n");
for (int i = 0; i < get_tx_ring_size(s); i++) {
struct RingDesc desc;
dma_addr_t tx_ring_addr = get_reg(s, NVNET_TX_RING_PHYS_ADDR);
tx_ring_addr += i * sizeof(desc);
pci_dma_read(d, tx_ring_addr, &desc, sizeof(desc));
NVNET_DPRINTF("TX desc %d (%" HWADDR_PRIx "): "
"Buffer: 0x%x, Length: 0x%x, Flags: 0x%x\n",
i, tx_ring_addr, le32_to_cpu(desc.buffer_addr),
le16_to_cpu(desc.length), le16_to_cpu(desc.flags));
}
NVNET_DPRINTF("------------------------------------------------\n");
for (int i = 0; i < get_rx_ring_size(s); i++) {
struct RingDesc desc;
dma_addr_t rx_ring_addr = get_reg(s, NVNET_RX_RING_PHYS_ADDR);
rx_ring_addr += i * sizeof(desc);
pci_dma_read(d, rx_ring_addr, &desc, sizeof(desc));
NVNET_DPRINTF("RX desc %d (%" HWADDR_PRIx "): "
"Buffer: 0x%x, Length: 0x%x, Flags: 0x%x\n",
i, rx_ring_addr, le32_to_cpu(desc.buffer_addr),
le16_to_cpu(desc.length), le16_to_cpu(desc.flags));
}
NVNET_DPRINTF("------------------------------------------------\n");
#endif
}
static void nvnet_mmio_write(void *opaque, hwaddr addr, uint64_t val,
unsigned int size)
{
NvNetState *s = NVNET(opaque);
trace_nvnet_reg_write(addr, get_reg_name(addr), size, val);
switch (addr) {
case NVNET_MDIO_ADDR:
assert(size == 4);
set_reg_ext(s, addr, val, size);
if (val & NVNET_MDIO_ADDR_WRITE) {
mdio_write(s);
} else {
mdio_read(s);
}
break;
case NVNET_TX_RX_CONTROL:
set_reg_with_mask(s, addr, val, ~NVNET_TX_RX_CONTROL_IDLE);
if (val & NVNET_TX_RX_CONTROL_KICK) {
NVNET_DPRINTF("NVNET_TX_RX_CONTROL = NVNET_TX_RX_CONTROL_KICK!\n");
dump_ring_descriptors(s);
dma_packet_from_guest(s);
}
if (val & NVNET_TX_RX_CONTROL_RESET) {
reset_descriptor_ring_pointers(s);
s->tx_dma_buf_offset = 0;
}
if (val & NVNET_TX_RX_CONTROL_BIT1) {
// FIXME
set_reg(s, NVNET_IRQ_STATUS, 0);
break;
} else if (val == 0) {
/* forcedeth waits for this bit to be set... */
set_reg(s, NVNET_UNKNOWN_SETUP_REG5,
NVNET_UNKNOWN_SETUP_REG5_BIT31);
}
break;
case NVNET_IRQ_STATUS:
case NVNET_MII_STATUS:
set_reg_ext(s, addr, get_reg_ext(s, addr, size) & ~val, size);
update_irq(s);
break;
case NVNET_IRQ_MASK:
set_reg_ext(s, addr, val, size);
update_irq(s);
break;
default:
set_reg_ext(s, addr, val, size);
break;
}
}
static const MemoryRegionOps nvnet_mmio_ops = {
.read = nvnet_mmio_read,
.write = nvnet_mmio_write,
};
static uint64_t nvnet_io_read(void *opaque, hwaddr addr, unsigned int size)
{
uint64_t r = 0;
trace_nvnet_io_read(addr, size, r);
return r;
}
static void nvnet_io_write(void *opaque, hwaddr addr, uint64_t val,
unsigned int size)
{
trace_nvnet_io_write(addr, size, val);
}
static const MemoryRegionOps nvnet_io_ops = {
.read = nvnet_io_read,
.write = nvnet_io_write,
};
static void nvnet_realize(PCIDevice *pci_dev, Error **errp)
{
DeviceState *dev = DEVICE(pci_dev);
NvNetState *s = NVNET(pci_dev);
PCIDevice *d = PCI_DEVICE(s);
pci_dev->config[PCI_INTERRUPT_PIN] = 0x01;
memset(s->regs, 0, sizeof(s->regs));
memory_region_init_io(&s->mmio, OBJECT(dev), &nvnet_mmio_ops, s,
"nvnet-mmio", MMIO_SIZE);
pci_register_bar(d, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->mmio);
memory_region_init_io(&s->io, OBJECT(dev), &nvnet_io_ops, s, "nvnet-io",
IOPORT_SIZE);
pci_register_bar(d, 1, PCI_BASE_ADDRESS_SPACE_IO, &s->io);
qemu_macaddr_default_if_unset(&s->conf.macaddr);
s->nic = qemu_new_nic(&nvnet_client_info, &s->conf,
object_get_typename(OBJECT(s)), dev->id,
&dev->mem_reentrancy_guard, s);
assert(s->nic);
s->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, autoneg_timer, s);
}
static void nvnet_uninit(PCIDevice *dev)
{
NvNetState *s = NVNET(dev);
qemu_del_nic(s->nic);
timer_free(s->autoneg_timer);
}
// clang-format off
static const uint32_t phy_reg_init[] = {
[MII_BMCR] =
MII_BMCR_FD |
MII_BMCR_AUTOEN,
[MII_BMSR] =
MII_BMSR_AUTONEG |
MII_BMSR_AN_COMP |
MII_BMSR_LINK_ST,
[MII_ANAR] =
MII_ANLPAR_10 |
MII_ANLPAR_10FD |
MII_ANLPAR_TX |
MII_ANLPAR_TXFD |
MII_ANLPAR_T4,
[MII_ANLPAR] =
MII_ANLPAR_10 |
MII_ANLPAR_10FD |
MII_ANLPAR_TX |
MII_ANLPAR_TXFD |
MII_ANLPAR_T4,
};
// clang-format on
static void reset_phy_regs(NvNetState *s)
{
assert(sizeof(s->phy_regs) >= sizeof(phy_reg_init));
memset(s->phy_regs, 0, sizeof(s->phy_regs));
memcpy(s->phy_regs, phy_reg_init, sizeof(phy_reg_init));
}
static void nvnet_reset(void *opaque)
{
NvNetState *s = opaque;
memset(&s->regs, 0, sizeof(s->regs));
or_reg(s, NVNET_TX_RX_CONTROL, NVNET_TX_RX_CONTROL_IDLE);
reset_phy_regs(s);
memset(&s->tx_dma_buf, 0, sizeof(s->tx_dma_buf));
memset(&s->rx_dma_buf, 0, sizeof(s->rx_dma_buf));
s->tx_dma_buf_offset = 0;
timer_del(s->autoneg_timer);
if (qemu_get_queue(s->nic)->link_down) {
update_regs_on_link_down(s);
}
/* Deprecated */
s->tx_ring_index = 0;
s->rx_ring_index = 0;
}
static void nvnet_reset_hold(Object *obj, ResetType type)
{
NvNetState *s = NVNET(obj);
nvnet_reset(s);
}
static int nvnet_post_load(void *opaque, int version_id)
{
NvNetState *s = NVNET(opaque);
NetClientState *nc = qemu_get_queue(s->nic);
if (version_id < 2) {
/* PHY regs were stored but not used until version 2 */
reset_phy_regs(s);
/* Migrate old snapshot tx descriptor index */
uint32_t next_desc_addr =
get_reg(s, NVNET_TX_RING_PHYS_ADDR) +
(s->tx_ring_index % get_tx_ring_size(s)) * sizeof(struct RingDesc);
set_reg(s, NVNET_TX_RING_NEXT_DESC_PHYS_ADDR, next_desc_addr);
s->tx_ring_index = 0;
/* Migrate old snapshot rx descriptor index */
next_desc_addr =
get_reg(s, NVNET_RX_RING_PHYS_ADDR) +
(s->rx_ring_index % get_rx_ring_size(s)) * sizeof(struct RingDesc);
set_reg(s, NVNET_RX_RING_NEXT_DESC_PHYS_ADDR, next_desc_addr);
s->rx_ring_index = 0;
}
/* nc.link_down can't be migrated, so infer link_down according
* to link status bit in PHY regs.
* Alternatively, restart link negotiation if it was in progress. */
nc->link_down = (s->phy_regs[MII_BMSR] & MII_BMSR_LINK_ST) == 0;
if (have_autoneg(s) && !(s->phy_regs[MII_BMSR] & MII_BMSR_AN_COMP)) {
nc->link_down = false;
restart_autoneg(s);
}
return 0;
}
static const VMStateDescription vmstate_nvnet = {
.name = "nvnet",
.version_id = 2,
.minimum_version_id = 1,
.post_load = nvnet_post_load,
// clang-format off
.fields = (VMStateField[]){
VMSTATE_PCI_DEVICE(parent_obj, NvNetState),
VMSTATE_UINT8_ARRAY(regs, NvNetState, MMIO_SIZE),
VMSTATE_UINT32_ARRAY(phy_regs, NvNetState, 6),
VMSTATE_UINT8(tx_ring_index, NvNetState),
VMSTATE_UNUSED(1),
VMSTATE_UINT8(rx_ring_index, NvNetState),
VMSTATE_UNUSED(1),
VMSTATE_END_OF_LIST()
},
// clang-format on
};
static Property nvnet_properties[] = {
DEFINE_NIC_PROPERTIES(NvNetState, conf),
DEFINE_PROP_END_OF_LIST(),
};
static void nvnet_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ResettableClass *rc = RESETTABLE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
k->vendor_id = PCI_VENDOR_ID_NVIDIA;
k->device_id = PCI_DEVICE_ID_NVIDIA_NVENET_1;
k->revision = 177;
k->class_id = PCI_CLASS_NETWORK_ETHERNET;
k->realize = nvnet_realize;
k->exit = nvnet_uninit;
rc->phases.hold = nvnet_reset_hold;
set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
dc->desc = "nForce Ethernet Controller";
dc->vmsd = &vmstate_nvnet;
device_class_set_props(dc, nvnet_properties);
}
static const TypeInfo nvnet_info = {
.name = "nvnet",
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(NvNetState),
.class_init = nvnet_class_init,
.interfaces =
(InterfaceInfo[]){
{ INTERFACE_CONVENTIONAL_PCI_DEVICE },
{},
},
};
static void nvnet_register(void)
{
type_register_static(&nvnet_info);
}
type_init(nvnet_register)