mirror of https://github.com/xemu-project/xemu.git
![]() Any device that has request_alignment greater than 512 should be unable to report status at a finer granularity; it may also be simpler for such devices to be guaranteed that the block layer has rounded things out to the granularity boundary (the way the block layer already rounds all other I/O out). Besides, getting the code correct for super-sector alignment also benefits us for the fact that our public interface now has byte granularity, even though none of our drivers have byte-level callbacks. Add an assertion in blkdebug that proves that the block layer never requests status of unaligned sections, similar to what it does on other requests (while still keeping the generic helper in place for when future patches add a throttle driver). Note that iotest 177 already covers this (it would fail if you use just the blkdebug.c hunk without the io.c changes). Meanwhile, we can drop assertions in callers that no longer have to pass in sector-aligned addresses. There is a mid-function scope added for 'count' and 'longret', for a couple of reasons: first, an upcoming patch will add an 'if' statement that checks whether a driver has an old- or new-style callback, and can conveniently use the same scope for less indentation churn at that time. Second, since we are trying to get rid of sector-based computations, wrapping things in a scope makes it easier to group and see what will be deleted in a final cleanup patch once all drivers have been converted to the new-style callback. Signed-off-by: Eric Blake <eblake@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com> |
||
---|---|---|
accel | ||
audio | ||
backends | ||
block | ||
bsd-user | ||
chardev | ||
contrib | ||
crypto | ||
default-configs | ||
disas | ||
docs | ||
dtc@558cd81bdd | ||
fpu | ||
fsdev | ||
gdb-xml | ||
hw | ||
include | ||
io | ||
libdecnumber | ||
linux-headers | ||
linux-user | ||
migration | ||
nbd | ||
net | ||
pc-bios | ||
po | ||
qapi | ||
qga | ||
qobject | ||
qom | ||
replay | ||
roms | ||
scripts | ||
scsi | ||
slirp | ||
stubs | ||
target | ||
tcg | ||
tests | ||
trace | ||
ui | ||
util | ||
.dir-locals.el | ||
.editorconfig | ||
.exrc | ||
.gdbinit | ||
.gitignore | ||
.gitmodules | ||
.mailmap | ||
.shippable.yml | ||
.travis.yml | ||
CODING_STYLE | ||
COPYING | ||
COPYING.LIB | ||
COPYING.PYTHON | ||
Changelog | ||
HACKING | ||
LICENSE | ||
MAINTAINERS | ||
Makefile | ||
Makefile.objs | ||
Makefile.target | ||
README | ||
VERSION | ||
arch_init.c | ||
balloon.c | ||
block.c | ||
blockdev-nbd.c | ||
blockdev.c | ||
blockjob.c | ||
bootdevice.c | ||
bt-host.c | ||
bt-vhci.c | ||
configure | ||
cpus-common.c | ||
cpus.c | ||
device-hotplug.c | ||
device_tree.c | ||
disas.c | ||
dma-helpers.c | ||
dump.c | ||
exec.c | ||
gdbstub.c | ||
hmp-commands-info.hx | ||
hmp-commands.hx | ||
hmp.c | ||
hmp.h | ||
ioport.c | ||
iothread.c | ||
memory.c | ||
memory_ldst.inc.c | ||
memory_mapping.c | ||
module-common.c | ||
monitor.c | ||
numa.c | ||
os-posix.c | ||
os-win32.c | ||
qapi-schema.json | ||
qdev-monitor.c | ||
qdict-test-data.txt | ||
qemu-bridge-helper.c | ||
qemu-doc.texi | ||
qemu-ga.texi | ||
qemu-img-cmds.hx | ||
qemu-img.c | ||
qemu-img.texi | ||
qemu-io-cmds.c | ||
qemu-io.c | ||
qemu-keymap.c | ||
qemu-nbd.c | ||
qemu-nbd.texi | ||
qemu-option-trace.texi | ||
qemu-options-wrapper.h | ||
qemu-options.h | ||
qemu-options.hx | ||
qemu-seccomp.c | ||
qemu-tech.texi | ||
qemu.nsi | ||
qemu.sasl | ||
qmp.c | ||
qtest.c | ||
replication.c | ||
replication.h | ||
rules.mak | ||
thunk.c | ||
tpm.c | ||
trace-events | ||
version.rc | ||
vl.c |
README
QEMU README =========== QEMU is a generic and open source machine & userspace emulator and virtualizer. QEMU is capable of emulating a complete machine in software without any need for hardware virtualization support. By using dynamic translation, it achieves very good performance. QEMU can also integrate with the Xen and KVM hypervisors to provide emulated hardware while allowing the hypervisor to manage the CPU. With hypervisor support, QEMU can achieve near native performance for CPUs. When QEMU emulates CPUs directly it is capable of running operating systems made for one machine (e.g. an ARMv7 board) on a different machine (e.g. an x86_64 PC board). QEMU is also capable of providing userspace API virtualization for Linux and BSD kernel interfaces. This allows binaries compiled against one architecture ABI (e.g. the Linux PPC64 ABI) to be run on a host using a different architecture ABI (e.g. the Linux x86_64 ABI). This does not involve any hardware emulation, simply CPU and syscall emulation. QEMU aims to fit into a variety of use cases. It can be invoked directly by users wishing to have full control over its behaviour and settings. It also aims to facilitate integration into higher level management layers, by providing a stable command line interface and monitor API. It is commonly invoked indirectly via the libvirt library when using open source applications such as oVirt, OpenStack and virt-manager. QEMU as a whole is released under the GNU General Public License, version 2. For full licensing details, consult the LICENSE file. Building ======== QEMU is multi-platform software intended to be buildable on all modern Linux platforms, OS-X, Win32 (via the Mingw64 toolchain) and a variety of other UNIX targets. The simple steps to build QEMU are: mkdir build cd build ../configure make Additional information can also be found online via the QEMU website: http://qemu-project.org/Hosts/Linux http://qemu-project.org/Hosts/Mac http://qemu-project.org/Hosts/W32 Submitting patches ================== The QEMU source code is maintained under the GIT version control system. git clone git://git.qemu-project.org/qemu.git When submitting patches, the preferred approach is to use 'git format-patch' and/or 'git send-email' to format & send the mail to the qemu-devel@nongnu.org mailing list. All patches submitted must contain a 'Signed-off-by' line from the author. Patches should follow the guidelines set out in the HACKING and CODING_STYLE files. Additional information on submitting patches can be found online via the QEMU website http://qemu-project.org/Contribute/SubmitAPatch http://qemu-project.org/Contribute/TrivialPatches Bug reporting ============= The QEMU project uses Launchpad as its primary upstream bug tracker. Bugs found when running code built from QEMU git or upstream released sources should be reported via: https://bugs.launchpad.net/qemu/ If using QEMU via an operating system vendor pre-built binary package, it is preferable to report bugs to the vendor's own bug tracker first. If the bug is also known to affect latest upstream code, it can also be reported via launchpad. For additional information on bug reporting consult: http://qemu-project.org/Contribute/ReportABug Contact ======= The QEMU community can be contacted in a number of ways, with the two main methods being email and IRC - qemu-devel@nongnu.org http://lists.nongnu.org/mailman/listinfo/qemu-devel - #qemu on irc.oftc.net Information on additional methods of contacting the community can be found online via the QEMU website: http://qemu-project.org/Contribute/StartHere -- End