xemu/hw/xbox/mcpx/nvnet/nvnet.c

807 lines
23 KiB
C

/*
* QEMU nForce Ethernet Controller implementation
*
* Copyright (c) 2013 espes
* Copyright (c) 2015-2025 Matt Borgerson
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "trace.h"
#include "hw/hw.h"
#include "hw/net/mii.h"
#include "hw/pci/pci.h"
#include "hw/pci/pci_device.h"
#include "hw/qdev-properties.h"
#include "net/net.h"
#include "net/eth.h"
#include "qemu/bswap.h"
#include "qemu/iov.h"
#include "migration/vmstate.h"
#include "nvnet_regs.h"
#define IOPORT_SIZE 0x8
#define MMIO_SIZE 0x400
#define PHY_ADDR 1
#define GET_MASK(v, mask) (((v) & (mask)) >> ctz32(mask))
#ifndef DEBUG_NVNET
#define DEBUG_NVNET 0
#endif
#define NVNET_DPRINTF(fmt, ...) \
do { \
if (DEBUG_NVNET) { \
fprintf(stderr, fmt, ##__VA_ARGS__); \
} \
} while (0);
#define TYPE_NVNET "nvnet"
OBJECT_DECLARE_SIMPLE_TYPE(NvNetState, NVNET)
typedef struct NvNetState {
/*< private >*/
PCIDevice parent_obj;
/*< public >*/
NICState *nic;
NICConf conf;
MemoryRegion mmio, io;
uint8_t regs[MMIO_SIZE];
uint32_t phy_regs[6];
uint8_t tx_ring_index;
uint8_t tx_ring_size;
uint8_t rx_ring_index;
uint8_t rx_ring_size;
uint8_t tx_dma_buf[TX_ALLOC_BUFSIZE];
uint32_t tx_dma_buf_offset;
uint8_t rx_dma_buf[RX_ALLOC_BUFSIZE];
} NvNetState;
struct RingDesc {
uint32_t packet_buffer;
uint16_t length;
uint16_t flags;
} QEMU_PACKED;
#define R(r) \
case r: \
return #r;
static const char *nvnet_get_reg_name(hwaddr addr)
{
switch (addr) {
R(NVNET_IRQ_STATUS)
R(NVNET_IRQ_MASK)
R(NVNET_UNKNOWN_SETUP_REG6)
R(NVNET_POLLING_INTERVAL)
R(NVNET_MISC1)
R(NVNET_TRANSMITTER_CONTROL)
R(NVNET_TRANSMITTER_STATUS)
R(NVNET_PACKET_FILTER)
R(NVNET_OFFLOAD)
R(NVNET_RECEIVER_CONTROL)
R(NVNET_RECEIVER_STATUS)
R(NVNET_RANDOM_SEED)
R(NVNET_UNKNOWN_SETUP_REG1)
R(NVNET_UNKNOWN_SETUP_REG2)
R(NVNET_MAC_ADDR_A)
R(NVNET_MAC_ADDR_B)
R(NVNET_MULTICAST_ADDR_A)
R(NVNET_MULTICAST_ADDR_B)
R(NVNET_MULTICAST_MASK_A)
R(NVNET_MULTICAST_MASK_B)
R(NVNET_TX_RING_PHYS_ADDR)
R(NVNET_RX_RING_PHYS_ADDR)
R(NVNET_RING_SIZE)
R(NVNET_UNKNOWN_TRANSMITTER_REG)
R(NVNET_LINKSPEED)
R(NVNET_UNKNOWN_SETUP_REG5)
R(NVNET_UNKNOWN_SETUP_REG3)
R(NVNET_UNKNOWN_SETUP_REG8)
R(NVNET_UNKNOWN_SETUP_REG7)
R(NVNET_TX_RX_CONTROL)
R(NVNET_MII_STATUS)
R(NVNET_UNKNOWN_SETUP_REG4)
R(NVNET_ADAPTER_CONTROL)
R(NVNET_MII_SPEED)
R(NVNET_MDIO_ADDR)
R(NVNET_MDIO_DATA)
R(NVNET_WAKEUPFLAGS)
R(NVNET_PATTERN_CRC)
R(NVNET_PATTERN_MASK)
R(NVNET_POWERCAP)
R(NVNET_POWERSTATE)
default:
return "Unknown";
}
}
static const char *nvnet_get_phy_reg_name(uint8_t reg)
{
switch (reg) {
R(MII_PHYID1)
R(MII_PHYID2)
R(MII_BMCR)
R(MII_BMSR)
R(MII_ANAR)
R(MII_ANLPAR)
default:
return "Unknown";
}
}
#undef R
static uint32_t nvnet_get_reg(NvNetState *s, hwaddr addr, unsigned int size)
{
assert(addr < MMIO_SIZE);
switch (size) {
case 4:
assert((addr & 3) == 0);
return ((uint32_t *)s->regs)[addr >> 2];
case 2:
assert((addr & 1) == 0);
return ((uint16_t *)s->regs)[addr >> 1];
case 1:
return s->regs[addr];
default:
assert(!"Unsupported register access");
return 0;
}
}
static void nvnet_set_reg(NvNetState *s, hwaddr addr, uint32_t val,
unsigned int size)
{
assert(addr < MMIO_SIZE);
switch (size) {
case 4:
assert((addr & 3) == 0);
((uint32_t *)s->regs)[addr >> 2] = val;
break;
case 2:
assert((addr & 1) == 0);
((uint16_t *)s->regs)[addr >> 1] = (uint16_t)val;
break;
case 1:
s->regs[addr] = (uint8_t)val;
break;
default:
assert(!"Unsupported register access");
}
}
static void nvnet_update_irq(NvNetState *s)
{
PCIDevice *d = PCI_DEVICE(s);
uint32_t irq_mask = nvnet_get_reg(s, NVNET_IRQ_MASK, 4);
uint32_t irq_status = nvnet_get_reg(s, NVNET_IRQ_STATUS, 4);
if (irq_mask & irq_status) {
NVNET_DPRINTF("Asserting IRQ\n");
pci_irq_assert(d);
} else {
pci_irq_deassert(d);
}
}
static void nvnet_send_packet(NvNetState *s, const uint8_t *buf, int size)
{
NetClientState *nc = qemu_get_queue(s->nic);
NVNET_DPRINTF("nvnet: Sending packet!\n");
qemu_send_packet(nc, buf, size);
}
static ssize_t nvnet_dma_packet_to_guest(NvNetState *s, const uint8_t *buf,
size_t size)
{
PCIDevice *d = PCI_DEVICE(s);
ssize_t rval;
uint32_t ctrl = nvnet_get_reg(s, NVNET_TX_RX_CONTROL, 4);
nvnet_set_reg(s, NVNET_TX_RX_CONTROL, ctrl & ~NVNET_TX_RX_CONTROL_IDLE, 4);
struct RingDesc desc;
s->rx_ring_index %= s->rx_ring_size;
dma_addr_t rx_ring_addr = nvnet_get_reg(s, NVNET_RX_RING_PHYS_ADDR, 4);
rx_ring_addr += s->rx_ring_index * sizeof(desc);
pci_dma_read(d, rx_ring_addr, &desc, sizeof(desc));
uint32_t packet_buffer = le32_to_cpu(desc.packet_buffer);
uint16_t length = le16_to_cpu(desc.length);
uint16_t flags = le16_to_cpu(desc.flags);
NVNET_DPRINTF("RX: Looking at ring descriptor %d (0x%" HWADDR_PRIx "): "
"Buffer: 0x%x, Length: 0x%x, Flags: 0x%x\n",
s->rx_ring_index, rx_ring_addr, packet_buffer, length, flags);
if (flags & NV_RX_AVAIL) {
assert((length + 1) >= size); // FIXME
NVNET_DPRINTF("Transferring packet, size 0x%zx, to memory at 0x%x\n",
size, packet_buffer);
pci_dma_write(d, packet_buffer, buf, size);
length = size;
flags = NV_RX_BIT4 | NV_RX_DESCRIPTORVALID;
desc.length = cpu_to_le16(length);
desc.flags = cpu_to_le16(flags);
pci_dma_write(d, rx_ring_addr, &desc, sizeof(desc));
NVNET_DPRINTF("Updated ring descriptor: Length: 0x%x, Flags: 0x%x\n",
length, flags);
NVNET_DPRINTF("Triggering interrupt\n");
uint32_t irq_status = nvnet_get_reg(s, NVNET_IRQ_STATUS, 4);
nvnet_set_reg(s, NVNET_IRQ_STATUS, irq_status | NVNET_IRQ_STATUS_RX, 4);
nvnet_update_irq(s);
s->rx_ring_index += 1;
rval = size;
} else {
NVNET_DPRINTF("Could not find free buffer!\n");
rval = -1;
}
ctrl = nvnet_get_reg(s, NVNET_TX_RX_CONTROL, 4);
nvnet_set_reg(s, NVNET_TX_RX_CONTROL, ctrl | NVNET_TX_RX_CONTROL_IDLE, 4);
return rval;
}
static ssize_t nvnet_dma_packet_from_guest(NvNetState *s)
{
PCIDevice *d = PCI_DEVICE(s);
bool packet_sent = false;
uint32_t ctrl = nvnet_get_reg(s, NVNET_TX_RX_CONTROL, 4);
nvnet_set_reg(s, NVNET_TX_RX_CONTROL, ctrl & ~NVNET_TX_RX_CONTROL_IDLE, 4);
for (int i = 0; i < s->tx_ring_size; i++) {
struct RingDesc desc;
s->tx_ring_index %= s->tx_ring_size;
dma_addr_t tx_ring_addr = nvnet_get_reg(s, NVNET_TX_RING_PHYS_ADDR, 4);
tx_ring_addr += s->tx_ring_index * sizeof(desc);
pci_dma_read(d, tx_ring_addr, &desc, sizeof(desc));
uint32_t packet_buffer = le32_to_cpu(desc.packet_buffer);
uint16_t length = le16_to_cpu(desc.length);
uint16_t flags = le16_to_cpu(desc.flags);
NVNET_DPRINTF("TX: Looking at ring desc %d (%" HWADDR_PRIx "): "
"Buffer: 0x%x, Length: 0x%x, Flags: 0x%x\n",
s->tx_ring_index, tx_ring_addr, packet_buffer, length,
flags);
if (!(flags & NV_TX_VALID)) {
break;
}
s->tx_ring_index += 1;
assert((s->tx_dma_buf_offset + length + 1) <=
sizeof(s->tx_dma_buf));
pci_dma_read(d, packet_buffer, &s->tx_dma_buf[s->tx_dma_buf_offset],
length + 1);
s->tx_dma_buf_offset += length + 1;
bool is_last_packet = flags & NV_TX_LASTPACKET;
if (is_last_packet) {
NVNET_DPRINTF("Sending packet...\n");
nvnet_send_packet(s, s->tx_dma_buf, s->tx_dma_buf_offset);
s->tx_dma_buf_offset = 0;
packet_sent = true;
}
flags &= ~(NV_TX_VALID | NV_TX_RETRYERROR | NV_TX_DEFERRED |
NV_TX_CARRIERLOST | NV_TX_LATECOLLISION | NV_TX_UNDERFLOW |
NV_TX_ERROR);
length += 5; // FIXME
desc.flags = cpu_to_le16(flags);
desc.length = cpu_to_le16(length);
pci_dma_write(d, tx_ring_addr, &desc, sizeof(desc));
if (is_last_packet) {
// FIXME
break;
}
}
if (packet_sent) {
NVNET_DPRINTF("Triggering interrupt\n");
uint32_t irq_status = nvnet_get_reg(s, NVNET_IRQ_STATUS, 4);
nvnet_set_reg(s, NVNET_IRQ_STATUS, irq_status | NVNET_IRQ_STATUS_TX, 4);
nvnet_update_irq(s);
}
ctrl = nvnet_get_reg(s, NVNET_TX_RX_CONTROL, 4);
nvnet_set_reg(s, NVNET_TX_RX_CONTROL, ctrl | NVNET_TX_RX_CONTROL_IDLE, 4);
return 0;
}
static bool nvnet_can_receive(NetClientState *nc)
{
NVNET_DPRINTF("nvnet_can_receive called\n");
return true;
}
static bool nvnet_is_packet_oversized(size_t size)
{
return size > RX_ALLOC_BUFSIZE;
}
static bool receive_filter(NvNetState *s, const uint8_t *buf, int size)
{
if (size < 6) {
return false;
}
uint32_t rctl = nvnet_get_reg(s, NVNET_PACKET_FILTER, 4);
/* Broadcast */
if (is_broadcast_ether_addr(buf)) {
/* FIXME: bcast filtering */
trace_nvnet_rx_filter_bcast_match();
return true;
}
if (!(rctl & NVNET_PACKET_FILTER_MYADDR)) {
/* FIXME: Confirm PFF_MYADDR filters mcast */
return true;
}
/* Multicast */
uint32_t addr[2];
addr[0] = cpu_to_le32(nvnet_get_reg(s, NVNET_MULTICAST_ADDR_A, 4));
addr[1] = cpu_to_le32(nvnet_get_reg(s, NVNET_MULTICAST_ADDR_B, 4));
if (!is_broadcast_ether_addr((uint8_t *)addr)) {
uint32_t dest_addr[2];
memcpy(dest_addr, buf, 6);
dest_addr[0] &=
cpu_to_le32(nvnet_get_reg(s, NVNET_MULTICAST_MASK_A, 4));
dest_addr[1] &=
cpu_to_le32(nvnet_get_reg(s, NVNET_MULTICAST_MASK_B, 4));
if (!memcmp(dest_addr, addr, 6)) {
trace_nvnet_rx_filter_mcast_match(MAC_ARG(dest_addr));
return true;
} else {
trace_nvnet_rx_filter_mcast_mismatch(MAC_ARG(dest_addr));
}
}
/* Unicast */
addr[0] = cpu_to_le32(nvnet_get_reg(s, NVNET_MAC_ADDR_A, 4));
addr[1] = cpu_to_le32(nvnet_get_reg(s, NVNET_MAC_ADDR_B, 4));
if (!memcmp(buf, addr, 6)) {
trace_nvnet_rx_filter_ucast_match(MAC_ARG(buf));
return true;
} else {
trace_nvnet_rx_filter_ucast_mismatch(MAC_ARG(buf));
}
return false;
}
static ssize_t nvnet_receive_iov(NetClientState *nc, const struct iovec *iov,
int iovcnt)
{
NvNetState *s = qemu_get_nic_opaque(nc);
size_t size = iov_size(iov, iovcnt);
NVNET_DPRINTF("nvnet: Packet received!\n");
if (nvnet_is_packet_oversized(size)) {
NVNET_DPRINTF("%s packet too large!\n", __func__);
trace_nvnet_rx_oversized(size);
return size;
}
iov_to_buf(iov, iovcnt, 0, s->rx_dma_buf, size);
if (!receive_filter(s, s->rx_dma_buf, size)) {
trace_nvnet_rx_filter_dropped();
return size;
}
return nvnet_dma_packet_to_guest(s, s->rx_dma_buf, size);
}
static ssize_t nvnet_receive(NetClientState *nc, const uint8_t *buf,
size_t size)
{
const struct iovec iov = { .iov_base = (uint8_t *)buf, .iov_len = size };
NVNET_DPRINTF("nvnet_receive called\n");
return nvnet_receive_iov(nc, &iov, 1);
}
static void nvnet_link_down(NvNetState *s)
{
NVNET_DPRINTF("nvnet_link_down called\n");
}
static void nvnet_link_up(NvNetState *s)
{
NVNET_DPRINTF("nvnet_link_up called\n");
}
static void nvnet_set_link_status(NetClientState *nc)
{
NvNetState *s = qemu_get_nic_opaque(nc);
if (nc->link_down) {
nvnet_link_down(s);
} else {
nvnet_link_up(s);
}
}
static NetClientInfo net_nvnet_info = {
.type = NET_CLIENT_DRIVER_NIC,
.size = sizeof(NICState),
.can_receive = nvnet_can_receive,
.receive = nvnet_receive,
.receive_iov = nvnet_receive_iov,
.link_status_changed = nvnet_set_link_status,
};
static uint16_t nvnet_phy_reg_read(NvNetState *s, uint8_t reg)
{
uint16_t value;
switch (reg) {
case MII_BMSR:
value = MII_BMSR_AN_COMP | MII_BMSR_LINK_ST;
break;
case MII_ANAR:
/* Fall through... */
case MII_ANLPAR:
value = MII_ANLPAR_10 | MII_ANLPAR_10FD | MII_ANLPAR_TX |
MII_ANLPAR_TXFD | MII_ANLPAR_T4;
break;
default:
value = 0;
break;
}
trace_nvnet_phy_reg_read(PHY_ADDR, reg, nvnet_get_phy_reg_name(reg), value);
return value;
}
static void nvnet_phy_reg_write(NvNetState *s, uint8_t reg, uint16_t value)
{
trace_nvnet_phy_reg_write(PHY_ADDR, reg, nvnet_get_phy_reg_name(reg), value);
}
static void nvnet_mdio_read(NvNetState *s)
{
uint32_t mdio_addr = nvnet_get_reg(s, NVNET_MDIO_ADDR, 4);
uint32_t mdio_data = -1;
uint8_t phy_addr = GET_MASK(mdio_addr, NVNET_MDIO_ADDR_PHYADDR);
uint8_t phy_reg = GET_MASK(mdio_addr, NVNET_MDIO_ADDR_PHYREG);
if (phy_addr == PHY_ADDR) {
mdio_data = nvnet_phy_reg_read(s, phy_reg);
}
mdio_addr &= ~NVNET_MDIO_ADDR_INUSE;
nvnet_set_reg(s, NVNET_MDIO_ADDR, mdio_addr, 4);
nvnet_set_reg(s, NVNET_MDIO_DATA, mdio_data, 4);
}
static void nvnet_mdio_write(NvNetState *s)
{
uint32_t mdio_addr = nvnet_get_reg(s, NVNET_MDIO_ADDR, 4);
uint32_t mdio_data = nvnet_get_reg(s, NVNET_MDIO_DATA, 4);
uint8_t phy_addr = GET_MASK(mdio_addr, NVNET_MDIO_ADDR_PHYADDR);
uint8_t phy_reg = GET_MASK(mdio_addr, NVNET_MDIO_ADDR_PHYREG);
if (phy_addr == PHY_ADDR) {
nvnet_phy_reg_write(s, phy_reg, mdio_data);
}
mdio_addr &= ~NVNET_MDIO_ADDR_INUSE;
nvnet_set_reg(s, NVNET_MDIO_ADDR, mdio_addr, 4);
}
static uint64_t nvnet_mmio_read(void *opaque, hwaddr addr, unsigned int size)
{
NvNetState *s = NVNET(opaque);
uint64_t retval;
switch (addr) {
case NVNET_MII_STATUS:
retval = 0;
break;
default:
retval = nvnet_get_reg(s, addr, size);
break;
}
trace_nvnet_reg_read(addr, nvnet_get_reg_name(addr & ~3), size, retval);
return retval;
}
static void nvnet_dump_ring_descriptors(NvNetState *s)
{
#if DEBUG_NVNET
PCIDevice *d = PCI_DEVICE(s);
NVNET_DPRINTF("------------------------------------------------\n");
for (int i = 0; i < s->tx_ring_size; i++) {
struct RingDesc desc;
dma_addr_t tx_ring_addr = nvnet_get_reg(s, NVNET_TX_RING_PHYS_ADDR, 4);
tx_ring_addr += i * sizeof(desc);
pci_dma_read(d, tx_ring_addr, &desc, sizeof(desc));
NVNET_DPRINTF("TX desc %d (%" HWADDR_PRIx "): "
"Buffer: 0x%x, Length: 0x%x, Flags: 0x%x\n",
i, tx_ring_addr, le32_to_cpu(desc.packet_buffer),
le16_to_cpu(desc.length), le16_to_cpu(desc.flags));
}
NVNET_DPRINTF("------------------------------------------------\n");
for (int i = 0; i < s->rx_ring_size; i++) {
struct RingDesc desc;
dma_addr_t rx_ring_addr = nvnet_get_reg(s, NVNET_RX_RING_PHYS_ADDR, 4);
rx_ring_addr += i * sizeof(desc);
pci_dma_read(d, rx_ring_addr, &desc, sizeof(desc));
NVNET_DPRINTF("RX desc %d (%" HWADDR_PRIx "): "
"Buffer: 0x%x, Length: 0x%x, Flags: 0x%x\n",
i, rx_ring_addr, le32_to_cpu(desc.packet_buffer),
le16_to_cpu(desc.length), le16_to_cpu(desc.flags));
}
NVNET_DPRINTF("------------------------------------------------\n");
#endif
}
static void nvnet_mmio_write(void *opaque, hwaddr addr, uint64_t val,
unsigned int size)
{
NvNetState *s = NVNET(opaque);
nvnet_set_reg(s, addr, val, size);
trace_nvnet_reg_write(addr, nvnet_get_reg_name(addr & ~3), size, val);
switch (addr) {
case NVNET_RING_SIZE:
s->rx_ring_size = GET_MASK(val, NVNET_RING_SIZE_RX) + 1;
s->tx_ring_size = GET_MASK(val, NVNET_RING_SIZE_TX) + 1;
break;
case NVNET_MDIO_ADDR:
assert(size == 4);
if (val & NVNET_MDIO_ADDR_WRITE) {
nvnet_mdio_write(s);
} else {
nvnet_mdio_read(s);
}
break;
case NVNET_TX_RX_CONTROL:
if (val == NVNET_TX_RX_CONTROL_KICK) {
NVNET_DPRINTF("NVNET_TX_RX_CONTROL = NVNET_TX_RX_CONTROL_KICK!\n");
nvnet_dump_ring_descriptors(s);
nvnet_dma_packet_from_guest(s);
}
if (val & NVNET_TX_RX_CONTROL_BIT2) {
nvnet_set_reg(s, NVNET_TX_RX_CONTROL, NVNET_TX_RX_CONTROL_IDLE, 4);
break;
}
if (val & NVNET_TX_RX_CONTROL_RESET) {
s->tx_ring_index = 0;
s->rx_ring_index = 0;
s->tx_dma_buf_offset = 0;
}
if (val & NVNET_TX_RX_CONTROL_BIT1) {
// FIXME
nvnet_set_reg(s, NVNET_IRQ_STATUS, 0, 4);
break;
} else if (val == 0) {
uint32_t temp = nvnet_get_reg(s, NVNET_UNKNOWN_SETUP_REG3, 4);
if (temp == NVNET_UNKNOWN_SETUP_REG3_VAL1) {
/* forcedeth waits for this bit to be set... */
nvnet_set_reg(s, NVNET_UNKNOWN_SETUP_REG5,
NVNET_UNKNOWN_SETUP_REG5_BIT31, 4);
break;
}
}
break;
case NVNET_IRQ_MASK:
nvnet_update_irq(s);
break;
case NVNET_IRQ_STATUS:
nvnet_set_reg(s, addr, nvnet_get_reg(s, addr, size) & ~val, size);
nvnet_update_irq(s);
break;
default:
break;
}
}
static const MemoryRegionOps nvnet_mmio_ops = {
.read = nvnet_mmio_read,
.write = nvnet_mmio_write,
};
static uint64_t nvnet_io_read(void *opaque, hwaddr addr, unsigned int size)
{
uint64_t r = 0;
trace_nvnet_io_read(addr, size, r);
return r;
}
static void nvnet_io_write(void *opaque, hwaddr addr, uint64_t val,
unsigned int size)
{
trace_nvnet_io_write(addr, size, val);
}
static const MemoryRegionOps nvnet_io_ops = {
.read = nvnet_io_read,
.write = nvnet_io_write,
};
static void nvnet_realize(PCIDevice *pci_dev, Error **errp)
{
DeviceState *dev = DEVICE(pci_dev);
NvNetState *s = NVNET(pci_dev);
PCIDevice *d = PCI_DEVICE(s);
pci_dev->config[PCI_INTERRUPT_PIN] = 0x01;
memset(s->regs, 0, sizeof(s->regs));
s->rx_ring_index = 0;
s->rx_ring_size = 0;
s->tx_ring_index = 0;
s->tx_ring_size = 0;
memory_region_init_io(&s->mmio, OBJECT(dev), &nvnet_mmio_ops, s,
"nvnet-mmio", MMIO_SIZE);
pci_register_bar(d, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->mmio);
memory_region_init_io(&s->io, OBJECT(dev), &nvnet_io_ops, s, "nvnet-io",
IOPORT_SIZE);
pci_register_bar(d, 1, PCI_BASE_ADDRESS_SPACE_IO, &s->io);
qemu_macaddr_default_if_unset(&s->conf.macaddr);
s->nic =
qemu_new_nic(&net_nvnet_info, &s->conf, object_get_typename(OBJECT(s)),
dev->id, &dev->mem_reentrancy_guard, s);
assert(s->nic);
}
static void nvnet_uninit(PCIDevice *dev)
{
NvNetState *s = NVNET(dev);
qemu_del_nic(s->nic);
}
static void nvnet_reset(void *opaque)
{
NvNetState *s = opaque;
if (qemu_get_queue(s->nic)->link_down) {
nvnet_link_down(s);
}
memset(&s->regs, 0, sizeof(s->regs));
memset(&s->phy_regs, 0, sizeof(s->phy_regs));
s->tx_ring_index = 0;
s->tx_ring_size = 0;
s->rx_ring_index = 0;
s->rx_ring_size = 0;
memset(&s->tx_dma_buf, 0, sizeof(s->tx_dma_buf));
s->tx_dma_buf_offset = 0;
memset(&s->rx_dma_buf, 0, sizeof(s->rx_dma_buf));
}
static void nvnet_reset_hold(Object *obj, ResetType type)
{
NvNetState *s = NVNET(obj);
nvnet_reset(s);
}
static const VMStateDescription vmstate_nvnet = {
.name = "nvnet",
.version_id = 1,
.minimum_version_id = 1,
.fields =
(VMStateField[]){ VMSTATE_PCI_DEVICE(parent_obj, NvNetState),
VMSTATE_UINT8_ARRAY(regs, NvNetState, MMIO_SIZE),
VMSTATE_UINT32_ARRAY(phy_regs, NvNetState, 6),
VMSTATE_UINT8(tx_ring_index, NvNetState),
VMSTATE_UINT8(tx_ring_size, NvNetState),
VMSTATE_UINT8(rx_ring_index, NvNetState),
VMSTATE_UINT8(rx_ring_size, NvNetState),
VMSTATE_END_OF_LIST() },
};
static Property nvnet_properties[] = {
DEFINE_NIC_PROPERTIES(NvNetState, conf),
DEFINE_PROP_END_OF_LIST(),
};
static void nvnet_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ResettableClass *rc = RESETTABLE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
k->vendor_id = PCI_VENDOR_ID_NVIDIA;
k->device_id = PCI_DEVICE_ID_NVIDIA_NVENET_1;
k->revision = 177;
k->class_id = PCI_CLASS_NETWORK_ETHERNET;
k->realize = nvnet_realize;
k->exit = nvnet_uninit;
rc->phases.hold = nvnet_reset_hold;
set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
dc->desc = "nForce Ethernet Controller";
dc->vmsd = &vmstate_nvnet;
device_class_set_props(dc, nvnet_properties);
}
static const TypeInfo nvnet_info = {
.name = "nvnet",
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(NvNetState),
.class_init = nvnet_class_init,
.interfaces =
(InterfaceInfo[]){
{ INTERFACE_CONVENTIONAL_PCI_DEVICE },
{},
},
};
static void nvnet_register(void)
{
type_register_static(&nvnet_info);
}
type_init(nvnet_register)