/* * New-style TCG opcode generator for i386 instructions * * Copyright (c) 2022 Red Hat, Inc. * * Author: Paolo Bonzini * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ static void gen_NM_exception(DisasContext *s) { gen_exception(s, EXCP07_PREX); } static void gen_illegal(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { gen_illegal_opcode(s); } static void gen_load_ea(DisasContext *s, AddressParts *mem, bool is_vsib) { TCGv ea = gen_lea_modrm_1(s, *mem, is_vsib); gen_lea_v_seg(s, s->aflag, ea, mem->def_seg, s->override); } static inline int mmx_offset(MemOp ot) { switch (ot) { case MO_8: return offsetof(MMXReg, MMX_B(0)); case MO_16: return offsetof(MMXReg, MMX_W(0)); case MO_32: return offsetof(MMXReg, MMX_L(0)); case MO_64: return offsetof(MMXReg, MMX_Q(0)); default: g_assert_not_reached(); } } static inline int xmm_offset(MemOp ot) { switch (ot) { case MO_8: return offsetof(ZMMReg, ZMM_B(0)); case MO_16: return offsetof(ZMMReg, ZMM_W(0)); case MO_32: return offsetof(ZMMReg, ZMM_L(0)); case MO_64: return offsetof(ZMMReg, ZMM_Q(0)); case MO_128: return offsetof(ZMMReg, ZMM_X(0)); case MO_256: return offsetof(ZMMReg, ZMM_Y(0)); default: g_assert_not_reached(); } } static int vector_reg_offset(X86DecodedOp *op) { assert(op->unit == X86_OP_MMX || op->unit == X86_OP_SSE); if (op->unit == X86_OP_MMX) { return op->offset - mmx_offset(op->ot); } else { return op->offset - xmm_offset(op->ot); } } static int vector_elem_offset(X86DecodedOp *op, MemOp ot, int n) { int base_ofs = vector_reg_offset(op); switch(ot) { case MO_8: if (op->unit == X86_OP_MMX) { return base_ofs + offsetof(MMXReg, MMX_B(n)); } else { return base_ofs + offsetof(ZMMReg, ZMM_B(n)); } case MO_16: if (op->unit == X86_OP_MMX) { return base_ofs + offsetof(MMXReg, MMX_W(n)); } else { return base_ofs + offsetof(ZMMReg, ZMM_W(n)); } case MO_32: if (op->unit == X86_OP_MMX) { return base_ofs + offsetof(MMXReg, MMX_L(n)); } else { return base_ofs + offsetof(ZMMReg, ZMM_L(n)); } case MO_64: if (op->unit == X86_OP_MMX) { return base_ofs; } else { return base_ofs + offsetof(ZMMReg, ZMM_Q(n)); } case MO_128: assert(op->unit == X86_OP_SSE); return base_ofs + offsetof(ZMMReg, ZMM_X(n)); case MO_256: assert(op->unit == X86_OP_SSE); return base_ofs + offsetof(ZMMReg, ZMM_Y(n)); default: g_assert_not_reached(); } } static void compute_mmx_offset(X86DecodedOp *op) { if (!op->has_ea) { op->offset = offsetof(CPUX86State, fpregs[op->n].mmx) + mmx_offset(op->ot); } else { op->offset = offsetof(CPUX86State, mmx_t0) + mmx_offset(op->ot); } } static void compute_xmm_offset(X86DecodedOp *op) { if (!op->has_ea) { op->offset = ZMM_OFFSET(op->n) + xmm_offset(op->ot); } else { op->offset = offsetof(CPUX86State, xmm_t0) + xmm_offset(op->ot); } } static void gen_load_sse(DisasContext *s, TCGv temp, MemOp ot, int dest_ofs, bool aligned) { switch(ot) { case MO_8: gen_op_ld_v(s, MO_8, temp, s->A0); tcg_gen_st8_tl(temp, cpu_env, dest_ofs); break; case MO_16: gen_op_ld_v(s, MO_16, temp, s->A0); tcg_gen_st16_tl(temp, cpu_env, dest_ofs); break; case MO_32: gen_op_ld_v(s, MO_32, temp, s->A0); tcg_gen_st32_tl(temp, cpu_env, dest_ofs); break; case MO_64: gen_ldq_env_A0(s, dest_ofs); break; case MO_128: gen_ldo_env_A0(s, dest_ofs, aligned); break; case MO_256: gen_ldy_env_A0(s, dest_ofs, aligned); break; default: g_assert_not_reached(); } } static bool sse_needs_alignment(DisasContext *s, X86DecodedInsn *decode, MemOp ot) { switch (decode->e.vex_class) { case 2: case 4: if ((s->prefix & PREFIX_VEX) || decode->e.vex_special == X86_VEX_SSEUnaligned) { /* MOST legacy SSE instructions require aligned memory operands, but not all. */ return false; } /* fall through */ case 1: return ot >= MO_128; default: return false; } } static void gen_load(DisasContext *s, X86DecodedInsn *decode, int opn, TCGv v) { X86DecodedOp *op = &decode->op[opn]; switch (op->unit) { case X86_OP_SKIP: return; case X86_OP_SEG: tcg_gen_ld32u_tl(v, cpu_env, offsetof(CPUX86State,segs[op->n].selector)); break; case X86_OP_CR: tcg_gen_ld_tl(v, cpu_env, offsetof(CPUX86State, cr[op->n])); break; case X86_OP_DR: tcg_gen_ld_tl(v, cpu_env, offsetof(CPUX86State, dr[op->n])); break; case X86_OP_INT: if (op->has_ea) { gen_op_ld_v(s, op->ot, v, s->A0); } else { gen_op_mov_v_reg(s, op->ot, v, op->n); } break; case X86_OP_IMM: tcg_gen_movi_tl(v, decode->immediate); break; case X86_OP_MMX: compute_mmx_offset(op); goto load_vector; case X86_OP_SSE: compute_xmm_offset(op); load_vector: if (op->has_ea) { bool aligned = sse_needs_alignment(s, decode, op->ot); gen_load_sse(s, v, op->ot, op->offset, aligned); } break; default: g_assert_not_reached(); } } static TCGv_ptr op_ptr(X86DecodedInsn *decode, int opn) { X86DecodedOp *op = &decode->op[opn]; if (op->v_ptr) { return op->v_ptr; } op->v_ptr = tcg_temp_new_ptr(); /* The temporary points to the MMXReg or ZMMReg. */ tcg_gen_addi_ptr(op->v_ptr, cpu_env, vector_reg_offset(op)); return op->v_ptr; } #define OP_PTR0 op_ptr(decode, 0) #define OP_PTR1 op_ptr(decode, 1) #define OP_PTR2 op_ptr(decode, 2) static void gen_writeback(DisasContext *s, X86DecodedInsn *decode, int opn, TCGv v) { X86DecodedOp *op = &decode->op[opn]; switch (op->unit) { case X86_OP_SKIP: break; case X86_OP_SEG: /* Note that gen_movl_seg_T0 takes care of interrupt shadow and TF. */ gen_movl_seg_T0(s, op->n); break; case X86_OP_INT: if (op->has_ea) { gen_op_st_v(s, op->ot, v, s->A0); } else { gen_op_mov_reg_v(s, op->ot, op->n, v); } break; case X86_OP_MMX: break; case X86_OP_SSE: if ((s->prefix & PREFIX_VEX) && op->ot == MO_128) { tcg_gen_gvec_dup_imm(MO_64, offsetof(CPUX86State, xmm_regs[op->n].ZMM_X(1)), 16, 16, 0); } break; case X86_OP_CR: case X86_OP_DR: default: g_assert_not_reached(); } } static inline int vector_len(DisasContext *s, X86DecodedInsn *decode) { if (decode->e.special == X86_SPECIAL_MMX && !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) { return 8; } return s->vex_l ? 32 : 16; } static void gen_store_sse(DisasContext *s, X86DecodedInsn *decode, int src_ofs) { MemOp ot = decode->op[0].ot; int vec_len = vector_len(s, decode); bool aligned = sse_needs_alignment(s, decode, ot); if (!decode->op[0].has_ea) { tcg_gen_gvec_mov(MO_64, decode->op[0].offset, src_ofs, vec_len, vec_len); return; } switch (ot) { case MO_64: gen_stq_env_A0(s, src_ofs); break; case MO_128: gen_sto_env_A0(s, src_ofs, aligned); break; case MO_256: gen_sty_env_A0(s, src_ofs, aligned); break; default: g_assert_not_reached(); } } #define BINARY_INT_GVEC(uname, func, ...) \ static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \ { \ int vec_len = vector_len(s, decode); \ \ func(__VA_ARGS__, \ decode->op[0].offset, decode->op[1].offset, \ decode->op[2].offset, vec_len, vec_len); \ } BINARY_INT_GVEC(PCMPGTB, tcg_gen_gvec_cmp, TCG_COND_GT, MO_8) BINARY_INT_GVEC(PCMPGTW, tcg_gen_gvec_cmp, TCG_COND_GT, MO_16) BINARY_INT_GVEC(PCMPGTD, tcg_gen_gvec_cmp, TCG_COND_GT, MO_32) /* * 00 = p* Pq, Qq (if mmx not NULL; no VEX) * 66 = vp* Vx, Hx, Wx * * These are really the same encoding, because 1) V is the same as P when VEX.V * is not present 2) P and Q are the same as H and W apart from MM/XMM */ static inline void gen_binary_int_sse(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode, SSEFunc_0_eppp mmx, SSEFunc_0_eppp xmm, SSEFunc_0_eppp ymm) { assert(!!mmx == !!(decode->e.special == X86_SPECIAL_MMX)); if (mmx && (s->prefix & PREFIX_VEX) && !(s->prefix & PREFIX_DATA)) { /* VEX encoding is not applicable to MMX instructions. */ gen_illegal_opcode(s); return; } if (!(s->prefix & PREFIX_DATA)) { mmx(cpu_env, OP_PTR0, OP_PTR1, OP_PTR2); } else if (!s->vex_l) { xmm(cpu_env, OP_PTR0, OP_PTR1, OP_PTR2); } else { ymm(cpu_env, OP_PTR0, OP_PTR1, OP_PTR2); } } #define BINARY_INT_MMX(uname, lname) \ static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \ { \ gen_binary_int_sse(s, env, decode, \ gen_helper_##lname##_mmx, \ gen_helper_##lname##_xmm, \ gen_helper_##lname##_ymm); \ } BINARY_INT_MMX(PUNPCKLBW, punpcklbw) BINARY_INT_MMX(PUNPCKLWD, punpcklwd) BINARY_INT_MMX(PUNPCKLDQ, punpckldq) BINARY_INT_MMX(PACKSSWB, packsswb) BINARY_INT_MMX(PACKUSWB, packuswb) BINARY_INT_MMX(PUNPCKHBW, punpckhbw) BINARY_INT_MMX(PUNPCKHWD, punpckhwd) BINARY_INT_MMX(PUNPCKHDQ, punpckhdq) BINARY_INT_MMX(PACKSSDW, packssdw) /* Instructions with no MMX equivalent. */ #define BINARY_INT_SSE(uname, lname) \ static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \ { \ gen_binary_int_sse(s, env, decode, \ NULL, \ gen_helper_##lname##_xmm, \ gen_helper_##lname##_ymm); \ } BINARY_INT_SSE(PUNPCKLQDQ, punpcklqdq) BINARY_INT_SSE(PUNPCKHQDQ, punpckhqdq) static void gen_ADCOX(DisasContext *s, CPUX86State *env, MemOp ot, int cc_op) { TCGv carry_in = NULL; TCGv carry_out = (cc_op == CC_OP_ADCX ? cpu_cc_dst : cpu_cc_src2); TCGv zero; if (cc_op == s->cc_op || s->cc_op == CC_OP_ADCOX) { /* Re-use the carry-out from a previous round. */ carry_in = carry_out; cc_op = s->cc_op; } else if (s->cc_op == CC_OP_ADCX || s->cc_op == CC_OP_ADOX) { /* Merge with the carry-out from the opposite instruction. */ cc_op = CC_OP_ADCOX; } /* If we don't have a carry-in, get it out of EFLAGS. */ if (!carry_in) { if (s->cc_op != CC_OP_ADCX && s->cc_op != CC_OP_ADOX) { gen_compute_eflags(s); } carry_in = s->tmp0; tcg_gen_extract_tl(carry_in, cpu_cc_src, ctz32(cc_op == CC_OP_ADCX ? CC_C : CC_O), 1); } switch (ot) { #ifdef TARGET_X86_64 case MO_32: /* If TL is 64-bit just do everything in 64-bit arithmetic. */ tcg_gen_add_i64(s->T0, s->T0, s->T1); tcg_gen_add_i64(s->T0, s->T0, carry_in); tcg_gen_shri_i64(carry_out, s->T0, 32); break; #endif default: zero = tcg_constant_tl(0); tcg_gen_add2_tl(s->T0, carry_out, s->T0, zero, carry_in, zero); tcg_gen_add2_tl(s->T0, carry_out, s->T0, carry_out, s->T1, zero); break; } set_cc_op(s, cc_op); } static void gen_ADCX(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { gen_ADCOX(s, env, decode->op[0].ot, CC_OP_ADCX); } static void gen_ADOX(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { gen_ADCOX(s, env, decode->op[0].ot, CC_OP_ADOX); } static void gen_ANDN(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; tcg_gen_andc_tl(s->T0, s->T1, s->T0); gen_op_update1_cc(s); set_cc_op(s, CC_OP_LOGICB + ot); } static void gen_BEXTR(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; TCGv bound, zero; /* * Extract START, and shift the operand. * Shifts larger than operand size get zeros. */ tcg_gen_ext8u_tl(s->A0, s->T1); tcg_gen_shr_tl(s->T0, s->T0, s->A0); bound = tcg_constant_tl(ot == MO_64 ? 63 : 31); zero = tcg_constant_tl(0); tcg_gen_movcond_tl(TCG_COND_LEU, s->T0, s->A0, bound, s->T0, zero); /* * Extract the LEN into a mask. Lengths larger than * operand size get all ones. */ tcg_gen_extract_tl(s->A0, s->T1, 8, 8); tcg_gen_movcond_tl(TCG_COND_LEU, s->A0, s->A0, bound, s->A0, bound); tcg_gen_movi_tl(s->T1, 1); tcg_gen_shl_tl(s->T1, s->T1, s->A0); tcg_gen_subi_tl(s->T1, s->T1, 1); tcg_gen_and_tl(s->T0, s->T0, s->T1); gen_op_update1_cc(s); set_cc_op(s, CC_OP_LOGICB + ot); } static void gen_BLSI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; tcg_gen_neg_tl(s->T1, s->T0); tcg_gen_and_tl(s->T0, s->T0, s->T1); tcg_gen_mov_tl(cpu_cc_dst, s->T0); set_cc_op(s, CC_OP_BMILGB + ot); } static void gen_BLSMSK(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; tcg_gen_subi_tl(s->T1, s->T0, 1); tcg_gen_xor_tl(s->T0, s->T0, s->T1); tcg_gen_mov_tl(cpu_cc_dst, s->T0); set_cc_op(s, CC_OP_BMILGB + ot); } static void gen_BLSR(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; tcg_gen_subi_tl(s->T1, s->T0, 1); tcg_gen_and_tl(s->T0, s->T0, s->T1); tcg_gen_mov_tl(cpu_cc_dst, s->T0); set_cc_op(s, CC_OP_BMILGB + ot); } static void gen_BZHI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; TCGv bound; tcg_gen_ext8u_tl(s->T1, cpu_regs[s->vex_v]); bound = tcg_constant_tl(ot == MO_64 ? 63 : 31); /* * Note that since we're using BMILG (in order to get O * cleared) we need to store the inverse into C. */ tcg_gen_setcond_tl(TCG_COND_LT, cpu_cc_src, s->T1, bound); tcg_gen_movcond_tl(TCG_COND_GT, s->T1, s->T1, bound, bound, s->T1); tcg_gen_movi_tl(s->A0, -1); tcg_gen_shl_tl(s->A0, s->A0, s->T1); tcg_gen_andc_tl(s->T0, s->T0, s->A0); gen_op_update1_cc(s); set_cc_op(s, CC_OP_BMILGB + ot); } static void gen_CRC32(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { MemOp ot = decode->op[2].ot; tcg_gen_trunc_tl_i32(s->tmp2_i32, s->T0); gen_helper_crc32(s->T0, s->tmp2_i32, s->T1, tcg_constant_i32(8 << ot)); } static void gen_MOVBE(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; /* M operand type does not load/store */ if (decode->e.op0 == X86_TYPE_M) { tcg_gen_qemu_st_tl(s->T0, s->A0, s->mem_index, ot | MO_BE); } else { tcg_gen_qemu_ld_tl(s->T0, s->A0, s->mem_index, ot | MO_BE); } } static void gen_MOVD_to(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { MemOp ot = decode->op[2].ot; int vec_len = vector_len(s, decode); int lo_ofs = vector_elem_offset(&decode->op[0], ot, 0); tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0); switch (ot) { case MO_32: #ifdef TARGET_X86_64 tcg_gen_st32_tl(s->T1, cpu_env, lo_ofs); break; case MO_64: #endif tcg_gen_st_tl(s->T1, cpu_env, lo_ofs); break; default: g_assert_not_reached(); } } static void gen_MOVDQ(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { gen_store_sse(s, decode, decode->op[2].offset); } static void gen_MULX(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; /* low part of result in VEX.vvvv, high in MODRM */ switch (ot) { default: tcg_gen_trunc_tl_i32(s->tmp2_i32, s->T0); tcg_gen_trunc_tl_i32(s->tmp3_i32, s->T1); tcg_gen_mulu2_i32(s->tmp2_i32, s->tmp3_i32, s->tmp2_i32, s->tmp3_i32); tcg_gen_extu_i32_tl(cpu_regs[s->vex_v], s->tmp2_i32); tcg_gen_extu_i32_tl(s->T0, s->tmp3_i32); break; #ifdef TARGET_X86_64 case MO_64: tcg_gen_mulu2_i64(cpu_regs[s->vex_v], s->T0, s->T0, s->T1); break; #endif } } static void gen_PDEP(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { MemOp ot = decode->op[1].ot; if (ot < MO_64) { tcg_gen_ext32u_tl(s->T0, s->T0); } gen_helper_pdep(s->T0, s->T0, s->T1); } static void gen_PEXT(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { MemOp ot = decode->op[1].ot; if (ot < MO_64) { tcg_gen_ext32u_tl(s->T0, s->T0); } gen_helper_pext(s->T0, s->T0, s->T1); } static void gen_RORX(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; int b = decode->immediate; if (ot == MO_64) { tcg_gen_rotri_tl(s->T0, s->T0, b & 63); } else { tcg_gen_trunc_tl_i32(s->tmp2_i32, s->T0); tcg_gen_rotri_i32(s->tmp2_i32, s->tmp2_i32, b & 31); tcg_gen_extu_i32_tl(s->T0, s->tmp2_i32); } } static void gen_SARX(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; int mask; mask = ot == MO_64 ? 63 : 31; tcg_gen_andi_tl(s->T1, s->T1, mask); if (ot != MO_64) { tcg_gen_ext32s_tl(s->T0, s->T0); } tcg_gen_sar_tl(s->T0, s->T0, s->T1); } static void gen_SHLX(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; int mask; mask = ot == MO_64 ? 63 : 31; tcg_gen_andi_tl(s->T1, s->T1, mask); tcg_gen_shl_tl(s->T0, s->T0, s->T1); } static void gen_SHRX(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; int mask; mask = ot == MO_64 ? 63 : 31; tcg_gen_andi_tl(s->T1, s->T1, mask); if (ot != MO_64) { tcg_gen_ext32u_tl(s->T0, s->T0); } tcg_gen_shr_tl(s->T0, s->T0, s->T1); }