The HCR_EL2.TSC trap for trapping EL1 execution of SMC instructions
has a behaviour change for FEAT_NV when EL3 is not implemented:
* in older architecture versions TSC was required to have no
effect (i.e. the SMC insn UNDEFs)
* with FEAT_NV, when HCR_EL2.NV == 1 the trap must apply
(i.e. SMC traps to EL2, as it already does in all cases when
EL3 is implemented)
* in newer architecture versions, the behaviour either without
FEAT_NV or with FEAT_NV and HCR_EL2.NV == 0 is relaxed to
an IMPDEF choice between UNDEF and trap-to-EL2 (i.e. it is
permitted to always honour HCR_EL2.TSC) for AArch64 only
Add the condition to honour the trap bit when HCR_EL2.NV == 1. We
leave the HCR_EL2.NV == 0 case with the existing (UNDEF) behaviour,
as our IMPDEF choice (both because it avoids a behaviour change
for older CPU models and because we'd have to distinguish AArch32
from AArch64 if we opted to trap to EL2).
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
When FEAT_NV is turned on via the HCR_EL2.NV bit, ERET instructions
are trapped, with the same syndrome information as for the existing
FEAT_FGT fine-grained trap (in the pseudocode this is handled in
AArch64.CheckForEretTrap()).
Rename the DisasContext and tbflag bits to reflect that they are
no longer exclusively for FGT traps, and set the tbflag bit when
FEAT_NV is enabled as well as when the FGT is enabled.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
The FEAT_NV HCR_EL2.AT bit enables trapping of some address
translation instructions from EL1 to EL2. Implement this behaviour.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
FEAT_NV defines three new bits in HCR_EL2: NV, NV1 and AT. When the
feature is enabled, allow these bits to be written, and flush the
TLBs for the bits which affect page table interpretation.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
The CTR_EL0 register has some bits which allow the implementation to
tell the guest that it does not need to do cache maintenance for
data-to-instruction coherence and instruction-to-data coherence.
QEMU doesn't emulate caches and so our cache maintenance insns are
all NOPs.
We already have some models of specific CPUs where we set these bits
(e.g. the Neoverse V1), but the 'max' CPU still uses the settings it
inherits from Cortex-A57. Set the bits for 'max' as well, so the
guest doesn't need to do unnecessary work.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
The term "iothread lock" is obsolete. The APIs use Big QEMU Lock (BQL)
in their names. Update the code comments to use "BQL" instead of
"iothread lock".
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Paul Durrant <paul@xen.org>
Reviewed-by: Akihiko Odaki <akihiko.odaki@daynix.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com>
Message-id: 20240102153529.486531-5-stefanha@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
The name "iothread" is overloaded. Use the term Big QEMU Lock (BQL)
instead, it is already widely used and unambiguous.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Paul Durrant <paul@xen.org>
Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com>
Reviewed-by: Akihiko Odaki <akihiko.odaki@daynix.com>
Message-id: 20240102153529.486531-4-stefanha@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
The name "iothread" is overloaded. Use the term Big QEMU Lock (BQL)
instead, it is already widely used and unambiguous.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Paul Durrant <paul@xen.org>
Acked-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Acked-by: Ilya Leoshkevich <iii@linux.ibm.com>
Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com>
Reviewed-by: Akihiko Odaki <akihiko.odaki@daynix.com>
Message-id: 20240102153529.486531-3-stefanha@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
The Big QEMU Lock (BQL) has many names and they are confusing. The
actual QemuMutex variable is called qemu_global_mutex but it's commonly
referred to as the BQL in discussions and some code comments. The
locking APIs, however, are called qemu_mutex_lock_iothread() and
qemu_mutex_unlock_iothread().
The "iothread" name is historic and comes from when the main thread was
split into into KVM vcpu threads and the "iothread" (now called the main
loop thread). I have contributed to the confusion myself by introducing
a separate --object iothread, a separate concept unrelated to the BQL.
The "iothread" name is no longer appropriate for the BQL. Rename the
locking APIs to:
- void bql_lock(void)
- void bql_unlock(void)
- bool bql_locked(void)
There are more APIs with "iothread" in their names. Subsequent patches
will rename them. There are also comments and documentation that will be
updated in later patches.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Paul Durrant <paul@xen.org>
Acked-by: Fabiano Rosas <farosas@suse.de>
Acked-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Acked-by: Peter Xu <peterx@redhat.com>
Acked-by: Eric Farman <farman@linux.ibm.com>
Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com>
Acked-by: Hyman Huang <yong.huang@smartx.com>
Reviewed-by: Akihiko Odaki <akihiko.odaki@daynix.com>
Message-id: 20240102153529.486531-2-stefanha@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Introduce the target/loongarch/tcg directory. Its purpose is to hold the TCG
code that is selected by CONFIG_TCG
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Song Gao <gaosong@loongson.cn>
Message-Id: <20240102020200.3462097-2-gaosong@loongson.cn>
gdbstub.c is not specific to TCG and can be used by
other accelerators, such as KVM accelerator
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Song Gao <gaosong@loongson.cn>
Message-Id: <20240102020200.3462097-1-gaosong@loongson.cn>
The mcycle/minstret counter's stop flag is mistakenly updated on a copy
on stack. Thus the counter increments even when the CY/IR bit in the
mcountinhibit register is set. This commit corrects its behavior.
Fixes: 3780e33732 (target/riscv: Support mcycle/minstret write operation)
Signed-off-by: Xu Lu <luxu.kernel@bytedance.com>
Reviewed-by: Daniel Henrique Barboza <dbarboza@ventanamicro.com>
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
This is a simple cleanup, since env is passed to qemu_irq_ack it can be
accessed from inside qemu_irq_ack. Just drop this parameter.
Co-developed-by: Frederic Konrad <konrad.frederic@yahoo.fr>
Signed-off-by: Clément Chigot <chigot@adacore.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-ID: <20240105102421.163554-7-chigot@adacore.com>
Use generic cpu_model_from_type() when the CPU model name needs to
be extracted from the CPU type name.
Signed-off-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-ID: <20231114235628.534334-23-gshan@redhat.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
No changes in the output from the following command.
[gshan@gshan q]$ ./build/qemu-system-tricore -cpu ?
Available CPUs:
tc1796
tc1797
tc27x
tc37x
Signed-off-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-ID: <20231114235628.534334-21-gshan@redhat.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Before it's applied:
[gshan@gshan q]$ ./build/qemu-or1k -cpu ?
Available CPUs:
or1200
any
After it's applied:
[gshan@gshan q]$ ./build/qemu-or1k -cpu ?
Available CPUs:
any
or1200
Signed-off-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-ID: <20231114235628.534334-17-gshan@redhat.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
No changes in the output from the following command.
[gshan@gshan q]$ ./build/qemu-system-hppa -cpu ?
Available CPUs:
hppa
hppa64
Signed-off-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-ID: <20231114235628.534334-13-gshan@redhat.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
No changes in the output from the following command.
[gshan@gshan q]$ ./build/qemu-hexagon -cpu ?
Available CPUs:
v67
v68
v69
v71
v73
Signed-off-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-ID: <20231114235628.534334-12-gshan@redhat.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
For all targets, the CPU class returned from CPUClass::class_by_name()
and object_class_dynamic_cast(oc, CPU_RESOLVING_TYPE) need to be
compatible. Lets apply the check in cpu_class_by_name() for once,
instead of having the check in CPUClass::class_by_name() for individual
target.
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Gavin Shan <gshan@redhat.com>
Message-ID: <20231114235628.534334-4-gshan@redhat.com>
Since commit 3a9d0d7b64 ("hw/cpu: Call object_class_is_abstract()
once in cpu_class_by_name()"), there is no need to check if @oc is
abstract because it has been covered by cpu_class_by_name().
Signed-off-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-ID: <20231114235628.534334-3-gshan@redhat.com>
[PMD: Mention commit 3a9d0d7b64]
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
'ev67' CPU class will be returned to match everything, which makes
no sense as mentioned in the comments. Remove the logic to fall
back to 'ev67' CPU class to match everything.
Signed-off-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-ID: <20231114235628.534334-2-gshan@redhat.com>
[PMD: Reword subject, replace 'any' -> 'ev67' on linux-user]
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
config_all now lists only accelerators, rename it to indicate its actual
content.
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The main difficulty here is that a page fault when writing to the destination
must not overwrite the flags. Therefore, the flags computation must be
inlined instead of using gen_jcc1*.
For simplicity, I am using an unconditional cmpxchg operation, that becomes
a NOP if the comparison fails.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
ALU instructions can write to both memory and flags. If the CC_SRC*
and CC_DST locations have been written already when a memory access
causes a fault, the value in CC_SRC* and CC_DST might be interpreted
with the wrong CC_OP (the one that is in effect before the instruction.
Besides just using the wrong result for the flags, something like
subtracting -1 can have disastrous effects if the current CC_OP is
CC_OP_EFLAGS: this is because QEMU does not expect bits outside the ALU
flags to be set in CC_SRC, and env->eflags can end up set to all-ones.
In the case of the attached testcase, this sets IOPL to 3 and would
cause an assertion failure if SUB is moved to the new decoder.
This mechanism is not really needed for BMI instructions, which can
only write to a register, but put it to use anyway for cleanliness.
In the case of BZHI, the code has to be modified slightly to ensure
that decode->cc_src is written, otherwise the new assertions trigger.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
gen_jcc() has been changed to accept a relative offset since the
new decoder was written. Adjust the J operand, which is meant
to be used with jump instructions such as gen_jcc(), to not
include the program counter and to not truncate the result, as
both operations are now performed by common code.
The result is that J is now the same as the I operand.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Similar to gen_setcc1, make gen_cmovcc1 receive TCGv. This is more friendly
to simultaneous implementation in the old and the new decoder.
A small wart is that s->T0 of CMOV is currently the *second* argument (which
would ordinarily be in T1). Therefore, the condition has to be inverted in
order to overwrite s->T0 with cpu_regs[reg] if the MOV is not performed.
This only applies to the old decoder, and this code will go away soon.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Do not use gen_op, and pull the load from the accumulator into
disas_insn.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Create a new temporary, to ease the register allocator's work.
Creation of the temporary is pushed into gen_ext_tl, which
also allows NULL as the first parameter now.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Just create a temporary for the occasion.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The new x86 decoder wants the gen_* functions to compute EFLAGS before
writeback, which can be an issue for instructions with a memory
destination such as ARPL or shifts.
Extract code to compute the EFLAGS without clobbering CC_SRC, in case
the memory write causes a fault. The flags writeback mechanism will
take care of copying the result to CC_SRC.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The new decoder would rather have the operand in T0 when expanding SCAS, rather
than use R_EAX directly as gen_scas currently does. This makes SCAS more similar
to CMP and SUB, in that CC_DST = T0 - T1.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The new decoder likes to compute the address in A0 very early, so the
gen_lea_v_seg in gen_pop_T0 would clobber the address of the memory
operand. Instead use T0 since it is already available and will be
overwritten immediately after.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
decode->mem is only used if one operand has has_ea == true. String
operations will not use decode->mem and will load A0 on their own, because
they are the only case of two memory operands in a single instruction.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Usually the registers are just moved into s->T0 without much care for
their operand size. However, in some cases we can get more efficient
code if the operand fetching logic syncs with the emission function
on what is nicer.
All the current uses are mostly demonstrative and only reduce the code
in the emission functions, because the instructions do not support
memory operands. However the logic is generic and applies to several
more instructions such as MOVSXD (aka movslq), one-byte shift
instructions, multiplications, XLAT, and indirect calls/jumps.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
X86_SPECIAL_ZExtOp0 and X86_SPECIAL_ZExtOp2 are poorly named; they are a hack
that is needed by scalar insertion and extraction instructions, and not really
related to zero extension: for PEXTR the zero extension is done by the generation
functions, for PINSR the high bits are not used at all and in fact are *not*
filled with zeroes when loaded into s->T1.
Rename the values to match the effect described in the manual, and explain
better in the comments.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use _tl operations for 32-bit operands on 32-bit targets, and only go
through trunc and extu ops for 64-bit targets. While the trunc/ext
ops should be pretty much free after optimization, the optimizer also
does not like having the same temporary used in multiple EBBs.
Therefore it is nicer to not use tmpN* unless necessary.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The previous check erroneously allowed CMP to be modified with LOCK.
Instead, tag explicitly the instructions that do support LOCK.
Acked-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>