Since commit ba3e792669 it has been unnecessary for target code
to call gen_io_end() after an IO instruction in icount mode; it is
sufficient to call gen_io_start() before it and to force the end of
the TB.
Many now-unnecessary calls to gen_io_end() were removed in commit
9e9b10c649, but some were missed or accidentally added later.
Remove unneeded calls from the arm target:
* the call in the handling of exception-return-via-LDM is
unnecessary, and the code is already forcing end-of-TB
* the call in the VFP access check code is more complicated:
we weren't ending the TB, so we need to add the code to
force that by setting DISAS_UPDATE
* the doc comment for ARM_CP_IO doesn't need to mention
gen_io_end() any more
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Pavel Dovgalyuk <Pavel.Dovgaluk@ispras.ru>
Message-id: 20200619170324.12093-1-peter.maydell@linaro.org
Using the MSR instruction to write to CPSR.E is deprecated, but it is
required to work from any mode including unprivileged code. We were
incorrectly forbidding usermode code from writing it because
CPSR_USER did not include the CPSR_E bit.
We use CPSR_USER in only three places:
* as the mask of what to allow userspace MSR to write to CPSR
* when deciding what bits a linux-user signal-return should be
able to write from the sigcontext structure
* in target_user_copy_regs() when we set up the initial
registers for the linux-user process
In the first two cases not being able to update CPSR.E is a bug, and
in the third case it doesn't matter because CPSR.E is always 0 there.
So we can fix both bugs by adding CPSR_E to CPSR_USER.
Because the cpsr_write() in restore_sigcontext() is now changing
a CPSR bit which is cached in hflags, we need to add an
arm_rebuild_hflags() call there; the callsite in
target_user_copy_regs() was already rebuilding hflags for other
reasons.
(The recommended way to change CPSR.E is to use the 'SETEND'
instruction, which we do correctly allow from usermode code.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200518142801.20503-1-peter.maydell@linaro.org
Add a SIGBUS signal handler. In this handler, it checks the SIGBUS type,
translates the host VA delivered by host to guest PA, then fills this PA
to guest APEI GHES memory, then notifies guest according to the SIGBUS
type.
When guest accesses the poisoned memory, it will generate a Synchronous
External Abort(SEA). Then host kernel gets an APEI notification and calls
memory_failure() to unmapped the affected page in stage 2, finally
returns to guest.
Guest continues to access the PG_hwpoison page, it will trap to KVM as
stage2 fault, then a SIGBUS_MCEERR_AR synchronous signal is delivered to
Qemu, Qemu records this error address into guest APEI GHES memory and
notifes guest using Synchronous-External-Abort(SEA).
In order to inject a vSEA, we introduce the kvm_inject_arm_sea() function
in which we can setup the type of exception and the syndrome information.
When switching to guest, the target vcpu will jump to the synchronous
external abort vector table entry.
The ESR_ELx.DFSC is set to synchronous external abort(0x10), and the
ESR_ELx.FnV is set to not valid(0x1), which will tell guest that FAR is
not valid and hold an UNKNOWN value. These values will be set to KVM
register structures through KVM_SET_ONE_REG IOCTL.
Signed-off-by: Dongjiu Geng <gengdongjiu@huawei.com>
Signed-off-by: Xiang Zheng <zhengxiang9@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Acked-by: Xiang Zheng <zhengxiang9@huawei.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Message-id: 20200512030609.19593-10-gengdongjiu@huawei.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Move the common set_feature() and unset_feature() functions
from cpu.c and cpu64.c to cpu.h.
Suggested-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-id: 20200504172448.9402-3-philmd@redhat.com
Message-ID: <20190921150420.30743-2-thuth@redhat.com>
[PMD: Split Thomas's patch in two: set_feature, cpu_register]
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
MIDR_EL1 is a 64-bit system register with the top 32-bit being RES0.
Represent it in QEMU's ARMCPU struct with a uint64_t, not a
uint32_t.
This fixes an error when compiling with -Werror=conversion
because we were manipulating the register value using a
local uint64_t variable:
target/arm/cpu64.c: In function ‘aarch64_max_initfn’:
target/arm/cpu64.c:628:21: error: conversion from ‘uint64_t’ {aka ‘long unsigned int’} to ‘uint32_t’ {aka ‘unsigned int’} may change value [-Werror=conversion]
628 | cpu->midr = t;
| ^
and future-proofs us against a possible future architecture
change using some of the top 32 bits.
Suggested-by: Laurent Desnogues <laurent.desnogues@gmail.com>
Suggested-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Laurent Desnogues <laurent.desnogues@gmail.com>
Message-id: 20200428172634.29707-1-f4bug@amsat.org
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The ARMv8.2-TTS2UXN feature extends the XN field in stage 2
translation table descriptors from just bit [54] to bits [54:53],
allowing stage 2 to control execution permissions separately for EL0
and EL1. Implement the new semantics of the XN field and enable
the feature for our 'max' CPU.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200330210400.11724-5-peter.maydell@linaro.org
We define ARMMMUIdx_Stage2 as being an MMU index which uses a QEMU
TLB. However we never actually use the TLB -- all stage 2 lookups
are done by direct calls to get_phys_addr_lpae() followed by a
physical address load via address_space_ld*().
Remove Stage2 from the list of ARM MMU indexes which correspond to
real core MMU indexes, and instead put it in the set of "NOTLB" ARM
MMU indexes.
This allows us to drop NB_MMU_MODES to 11. It also means we can
safely add support for the ARMv8.3-TTS2UXN extension, which adds
permission bits to the stage 2 descriptors which define execute
permission separatel for EL0 and EL1; supporting that while keeping
Stage2 in a QEMU TLB would require us to use separate TLBs for
"Stage2 for an EL0 access" and "Stage2 for an EL1 access", which is a
lot of extra complication given we aren't even using the QEMU TLB.
In the process of updating the comment on our MMU index use,
fix a couple of other minor errors:
* NS EL2 EL2&0 was missing from the list in the comment
* some text hadn't been updated from when we bumped NB_MMU_MODES
above 8
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200330210400.11724-2-peter.maydell@linaro.org
We also expose a the helpers to read/write the the registers.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Acked-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20200316172155.971-19-alex.bennee@linaro.org>
This is described as optional but I'm not convinced of the numbering
when multiple target fragments are sent.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20200316172155.971-17-alex.bennee@linaro.org>
We will want to generate similar dynamic XML for gdbstub support of
SVE registers (the upstream doesn't use XML). To that end lightly
rename a few things to make the distinction.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Acked-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20200316172155.971-16-alex.bennee@linaro.org>
Instead of passing a pointer to memory now just extend the GByteArray
to all the read register helpers. They can then safely append their
data through the normal way. We don't bother with this abstraction for
write registers as we have already ensured the buffer being copied
from is the correct size.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Damien Hedde <damien.hedde@greensocs.com>
Message-Id: <20200316172155.971-15-alex.bennee@linaro.org>
We now cache the core mmu_idx in env->hflags. Rather than recompute
from scratch, extract the field. All of the uses of cpu_mmu_index
within target/arm are within helpers, and env->hflags is always stable
within a translation block from whence helpers are called.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20200302175829.2183-3-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200229012811.24129-3-richard.henderson@linaro.org
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The ARMv8.3-CCIDX extension makes the CCSIDR_EL1 system ID registers
have a format that uses the full 64 bit width of the register, and
adds a new CCSIDR2 register so AArch32 can get at the high 32 bits.
QEMU doesn't implement caches, so we just treat these ID registers as
opaque values that are set to the correct constant values for each
CPU. The only thing we need to do is allow 64-bit values in our
cssidr[] array and provide the CCSIDR2 accessors.
We don't set the CCIDX field in our 'max' CPU because the CCSIDR
constant values we use are the same as the ones used by the
Cortex-A57 and they are in the old 32-bit format. This means
that the extra regdef added here is unused currently, but it
means that whenever in the future we add a CPU that does need
the new 64-bit format it will just work when we set the cssidr
values and the ID registers for it.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200224182626.29252-1-peter.maydell@linaro.org
The v8.4-RCPC extension implements some new instructions:
* LDAPUR, LDAPURB, LDAPURH, LDAPRSB, LDAPRSH, LDAPRSW
* STLUR, STLURB, STLURH
These are all in a new subgroup of encodings that sits below the
top-level "Loads and Stores" group in the Arm ARM.
The STLUR* instructions have standard store-release semantics; the
LDAPUR* have Load-AcquirePC semantics, but (as with LDAPR*) we choose
to implement them as the slightly stronger Load-Acquire.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200224172846.13053-4-peter.maydell@linaro.org
The v8.3-RCPC extension implements three new load instructions
which provide slightly weaker consistency guarantees than the
existing load-acquire operations. For QEMU we choose to simply
implement them with a full LDAQ barrier.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200224172846.13053-3-peter.maydell@linaro.org
We missed an instance of using FIELD_EX32 on a 64-bit ID
register, in isar_feature_aa64_pmu_8_4(). Fix it.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200224172846.13053-2-peter.maydell@linaro.org
We have converted all tests against these features
to ISAR tests.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200224222232.13807-15-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
All remaining tests for VFP4 are for fused multiply-add insns.
Since the MVFR1 field is used for both VFP and NEON, move its adjustment
from the !has_neon block to the (!has_vfp && !has_neon) block.
Test for vfp of the appropraite width alongside the test for simdfmac
within translate-vfp.inc.c. Within disas_neon_data_insn, we have
already tested for ARM_FEATURE_NEON.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20200224222232.13807-10-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
We cannot easily create "any" functions for these, because the
ID_AA64PFR0 fields for FP and SIMD signal "enabled" with zero.
Which means that an aarch32-only cpu will return incorrect results
when testing the aarch64 registers.
To use these, we must either have context or additionally test
vs ARM_FEATURE_AARCH64.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20200224222232.13807-5-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
We will shortly use these to test for VFPv2 and VFPv3
in different situations.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200224222232.13807-4-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The old name, isar_feature_aa32_fpdp, does not reflect
that the test includes VFPv2. We will introduce another
feature tests for VFPv3.
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200224222232.13807-3-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Use this in the places that were checking ARM_FEATURE_VFP, and
are obviously testing for the existance of the register set
as opposed to testing for some particular instruction extension.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20200224222232.13807-2-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The old name, isar_feature_aa32_fp_d32, does not reflect
the MVFR0 field name, SIMDReg.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-id: 20200214181547.21408-3-richard.henderson@linaro.org
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
[PMM: wrapped one long line]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The ACTLR2 and HACTLR2 AArch32 system registers didn't exist in ARMv7
or the original ARMv8. They were later added as optional registers,
whose presence is signaled by the ID_MMFR4.AC2 field. From ARMv8.2
they are mandatory (ie ID_MMFR4.AC2 must be non-zero).
We implemented HACTLR2 in commit 0e0456ab88, but we
incorrectly made it exist for all v8 CPUs, and we didn't implement
ACTLR2 at all.
Sort this out by implementing both registers only when they are
supposed to exist, and setting the ID_MMFR4 bit for -cpu max.
Note that this removes HACTLR2 from our Cortex-A53, -A47 and -A72
CPU models; this is correct, because those CPUs do not implement
this register.
Fixes: 0e0456ab88
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200214175116.9164-22-peter.maydell@linaro.org
Cut-and-paste errors mean we're using FIELD_EX64() to extract fields from
some 32-bit ID register fields. Use FIELD_EX32() instead. (This makes
no difference in behaviour, it's just more consistent.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200214175116.9164-21-peter.maydell@linaro.org
Now we have moved ID_MMFR4 into the ARMISARegisters struct, we
can define and use an isar_feature for the presence of the
ARMv8.2-AA32HPD feature, rather than open-coding the test.
While we're here, correct a comment typo which missed an 'A'
from the feature name.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200214175116.9164-20-peter.maydell@linaro.org
The isar_feature_aa32_pan and isar_feature_aa32_ats1e1 functions
are supposed to be testing fields in ID_MMFR3; but a cut-and-paste
error meant we were looking at MVFR0 instead.
Fix the functions to look at the right register; this requires
us to move at least id_mmfr3 to the ARMISARegisters struct; we
choose to move all the ID_MMFRn registers for consistency.
Fixes: 3d6ad6bb46
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200214175116.9164-19-peter.maydell@linaro.org
The ARMv8.4-PMU extension adds:
* one new required event, STALL
* one new system register PMMIR_EL1
(There are also some more L1-cache related events, but since
we don't implement any cache we don't provide these, in the
same way we don't provide the base-PMUv3 cache events.)
The STALL event "counts every attributable cycle on which no
attributable instruction or operation was sent for execution on this
PE". QEMU doesn't stall in this sense, so this is another
always-reads-zero event.
The PMMIR_EL1 register is a read-only register providing
implementation-specific information about the PMU; currently it has
only one field, SLOTS, which defines behaviour of the STALL_SLOT PMU
event. Since QEMU doesn't implement the STALL_SLOT event, we can
validly make the register read zero.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20200214175116.9164-15-peter.maydell@linaro.org
Now we have isar_feature test functions that look at fields in the
ID_AA64DFR0_EL1 and ID_DFR0 ID registers, add the code that reads
these register values from KVM so that the checks behave correctly
when we're using KVM.
No isar_feature function tests ID_AA64DFR1_EL1 or DBGDIDR yet, but we
add it to maintain the invariant that every field in the
ARMISARegisters struct is populated for a KVM CPU and can be relied
on. This requirement isn't actually written down yet, so add a note
to the relevant comment.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200214175116.9164-13-peter.maydell@linaro.org
We're going to want to read the DBGDIDR register from KVM in
a subsequent commit, which means it needs to be in the
ARMISARegisters sub-struct. Move it.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200214175116.9164-12-peter.maydell@linaro.org
The AArch32 DBGDIDR defines properties like the number of
breakpoints, watchpoints and context-matching comparators. On an
AArch64 CPU, the register may not even exist if AArch32 is not
supported at EL1.
Currently we hard-code use of DBGDIDR to identify the number of
breakpoints etc; this works for all our TCG CPUs, but will break if
we ever add an AArch64-only CPU. We also have an assert() that the
AArch32 and AArch64 registers match, which currently works only by
luck for KVM because we don't populate either of these ID registers
from the KVM vCPU and so they are both zero.
Clean this up so we have functions for finding the number
of breakpoints, watchpoints and context comparators which look
in the appropriate ID register.
This allows us to drop the "check that AArch64 and AArch32 agree
on the number of breakpoints etc" asserts:
* we no longer look at the AArch32 versions unless that's the
right place to be looking
* it's valid to have a CPU (eg AArch64-only) where they don't match
* we shouldn't have been asserting the validity of ID registers
in a codepath used with KVM anyway
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200214175116.9164-11-peter.maydell@linaro.org
Add the 64-bit version of the "is this a v8.1 PMUv3?"
ID register check function, and the _any_ version that
checks for either AArch32 or AArch64 support. We'll use
this in a later commit.
We don't (yet) do any isar_feature checks on ID_AA64DFR1_EL1,
but we move id_aa64dfr1 into the ARMISARegisters struct with
id_aa64dfr0, for consistency.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20200214175116.9164-10-peter.maydell@linaro.org
Instead of open-coding a check on the ID_DFR0 PerfMon ID register
field, create a standardly-named isar_feature for "does AArch32 have
a v8.1 PMUv3" and use it.
This entails moving the id_dfr0 field into the ARMISARegisters struct.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20200214175116.9164-9-peter.maydell@linaro.org
Add FIELD() definitions for the ID_AA64DFR0_EL1 and use them
where we currently have hard-coded bit values.
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20200214175116.9164-7-peter.maydell@linaro.org
Instead of open-coding "ARM_FEATURE_AARCH64 ? aa64_predinv: aa32_predinv",
define and use an any_predinv isar_feature test function.
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20200214175116.9164-5-peter.maydell@linaro.org
Our current usage of the isar_feature feature tests almost always
uses an _aa32_ test when the code path is known to be AArch32
specific and an _aa64_ test when the code path is known to be
AArch64 specific. There is just one exception: in the vfp_set_fpscr
helper we check aa64_fp16 to determine whether the FZ16 bit in
the FP(S)CR exists, but this code is also used for AArch32.
There are other places in future where we're likely to want
a general "does this feature exist for either AArch32 or
AArch64" check (typically where architecturally the feature exists
for both CPU states if it exists at all, but the CPU might be
AArch32-only or AArch64-only, and so only have one set of ID
registers).
Introduce a new category of isar_feature_* functions:
isar_feature_any_foo() should be tested when what we want to
know is "does this feature exist for either AArch32 or AArch64",
and always returns the logical OR of isar_feature_aa32_foo()
and isar_feature_aa64_foo().
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20200214175116.9164-4-peter.maydell@linaro.org
Enforce a convention that an isar_feature function that tests a
32-bit ID register always has _aa32_ in its name, and one that
tests a 64-bit ID register always has _aa64_ in its name.
We already follow this except for three cases: thumb_div,
arm_div and jazelle, which all need _aa32_ adding.
(As noted in the comment, isar_feature_aa32_fp16_arith()
is an exception in that it currently tests ID_AA64PFR0_EL1,
but will switch to MVFR1 once we've properly implemented
FP16 for AArch32.)
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20200214175116.9164-2-peter.maydell@linaro.org
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200208125816.14954-19-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Add definitions for all of the fields, up to ARMv8.5.
Convert the existing RESERVED register to a full register.
Query KVM for the value of the register for the host.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200208125816.14954-18-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
For aarch64, there's a dedicated msr (imm, reg) insn.
For aarch32, this is done via msr to cpsr. Writes from el0
are ignored, which is already handled by the CPSR_USER mask.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200208125816.14954-12-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The only remaining use was in op_helper.c. Use PSTATE_SS
directly, and move the commentary so that it is more obvious
what is going on.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20200208125816.14954-10-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
CPSR_ERET_MASK was a useless renaming of CPSR_RESERVED.
The function also takes into account bits that the cpu
does not support.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200208125816.14954-8-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Include definitions for all of the bits in ID_MMFR3.
We already have a definition for ID_AA64MMFR1.PAN.
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200208125816.14954-4-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
To implement PAN, we will want to swap, for short periods
of time, to a different privileged mmu_idx. In addition,
we cannot do this with flushing alone, because the AT*
instructions have both PAN and PAN-less versions.
Add the ARMMMUIdx*_PAN constants where necessary next to
the corresponding ARMMMUIdx* constant.
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200208125816.14954-3-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This inline function has one user in cpu.c, and need not be exposed
otherwise. Code movement only, with fixups for checkpatch.
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200206105448.4726-39-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The EL2&0 translation regime is affected by Load Register (unpriv).
The code structure used here will facilitate later changes in this
area for implementing UAO and NV.
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200206105448.4726-36-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Several of the EL1/0 registers are redirected to the EL2 version when in
EL2 and HCR_EL2.E2H is set. Many of these registers have side effects.
Link together the two ARMCPRegInfo structures after they have been
properly instantiated. Install common dispatch routines to all of the
relevant registers.
The same set of registers that are redirected also have additional
EL12/EL02 aliases created to access the original register that was
redirected.
Omit the generic timer registers from redirection here, because we'll
need multiple kinds of redirection from both EL0 and EL2.
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200206105448.4726-29-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200206105448.4726-26-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Use the correct sctlr for EL2&0 regime. Due to header ordering,
and where arm_mmu_idx_el is declared, we need to move the function
out of line. Use the function in many more places in order to
select the correct control.
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200206105448.4726-23-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Prepare for, but do not yet implement, the EL2&0 regime.
This involves adding the new MMUIdx enumerators and adjusting
some of the MMUIdx related predicates to match.
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200206105448.4726-20-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Replace the magic numbers with the relevant ARM_MMU_IDX_M_* constants.
Keep the definitions short by referencing previous symbols.
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200206105448.4726-19-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Define via macro expansion, so that renumbering of the base ARMMMUIdx
symbols is automatically reflected in the bit definitions.
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200206105448.4726-18-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
We are about to expand the number of mmuidx to 10, and so need 4 bits.
For the benefit of reading the number out of -d exec, align it to the
penultimate nibble.
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200206105448.4726-17-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
We had completely run out of TBFLAG bits.
Split A- and M-profile bits into two overlapping buckets.
This results in 4 free bits.
We used to initialize all of the a32 and m32 fields in DisasContext
by assignment, in arm_tr_init_disas_context. Now we only initialize
either the a32 or m32 by assignment, because the bits overlap in
tbflags. So zero the entire structure in gen_intermediate_code.
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200206105448.4726-16-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This is part of a reorganization to the set of mmu_idx.
The non-secure EL2 regime only has a single stage translation;
there is no point in pointing out that the idx is for stage1.
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200206105448.4726-15-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This is part of a reorganization to the set of mmu_idx.
The EL3 regime only has a single stage translation, and
is always secure.
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200206105448.4726-14-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This is part of a reorganization to the set of mmu_idx.
This emphasizes that they apply to the Secure EL1&0 regime.
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200206105448.4726-13-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This is part of a reorganization to the set of mmu_idx.
The EL1&0 regime is the only one that uses 2-stage translation.
Spelling out Stage avoids confusion with Secure.
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200206105448.4726-12-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The EL1&0 regime is the only one that uses 2-stage translation.
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200206105448.4726-11-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This is part of a reorganization to the set of mmu_idx.
This emphasizes that they apply to the EL1&0 regime.
The ultimate goal is
-- Non-secure regimes:
ARMMMUIdx_E10_0,
ARMMMUIdx_E20_0,
ARMMMUIdx_E10_1,
ARMMMUIdx_E2,
ARMMMUIdx_E20_2,
-- Secure regimes:
ARMMMUIdx_SE10_0,
ARMMMUIdx_SE10_1,
ARMMMUIdx_SE3,
-- Helper mmu_idx for non-secure EL1&0 stage1 and stage2
ARMMMUIdx_Stage2,
ARMMMUIdx_Stage1_E0,
ARMMMUIdx_Stage1_E1,
The 'S' prefix is reserved for "Secure". Unless otherwise specified,
each mmu_idx represents all stages of translation.
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200206105448.4726-10-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200206105448.4726-3-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200206105448.4726-2-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
When a VM is stopped (such as when it's paused) guest virtual time
should stop counting. Otherwise, when the VM is resumed it will
experience time jumps and its kernel may report soft lockups. Not
counting virtual time while the VM is stopped has the side effect
of making the guest's time appear to lag when compared with real
time, and even with time derived from the physical counter. For
this reason, this change, which is enabled by default, comes with
a KVM CPU feature allowing it to be disabled, restoring legacy
behavior.
This patch only provides the implementation of the virtual time
adjustment. A subsequent patch will provide the CPU property
allowing the change to be enabled and disabled.
Reported-by: Bijan Mottahedeh <bijan.mottahedeh@oracle.com>
Signed-off-by: Andrew Jones <drjones@redhat.com>
Message-id: 20200120101023.16030-6-drjones@redhat.com
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
When dumping a guest with dump-guest-memory also dump the SVE
registers if they are in use.
Signed-off-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200120101832.18781-1-drjones@redhat.com
[PMM: fixed checkpatch nits]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Prepare for SoCs such as the ASPEED AST2600 whose firmware configures
CNTFRQ to values significantly larger than the static 62.5MHz value
currently derived from GTIMER_SCALE. As the OS potentially derives its
timer periods from the CNTFRQ value the lack of support for running
QEMUTimers at the appropriate rate leads to sticky behaviour in the
guest.
Substitute the GTIMER_SCALE constant with use of a helper to derive the
period from gt_cntfrq_hz stored in struct ARMCPU. Initially set
gt_cntfrq_hz to the frequency associated with GTIMER_SCALE so current
behaviour is maintained.
Signed-off-by: Andrew Jeffery <andrew@aj.id.au>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-id: 40bd8df043f66e1ccfb3e9482999d099ac72bb2e.1576215453.git-series.andrew@aj.id.au
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
A write to the SCR can change the effective EL by droppping the system
from secure to non-secure mode. However if we use a cached current_el
from before the change we'll rebuild the flags incorrectly. To fix
this we introduce the ARM_CP_NEWEL CP flag to indicate the new EL
should be used when recomputing the flags.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20191212114734.6962-1-alex.bennee@linaro.org
Cc: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20191209143723.6368-1-alex.bennee@linaro.org>
Cc: qemu-stable@nongnu.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
ARMv8.2 introduced support for Data Cache Clean instructions
to PoP (point-of-persistence) - DC CVAP and PoDP (point-of-deep-persistence)
- DV CVADP. Both specify conceptual points in a memory system where all writes
that are to reach them are considered persistent.
The support provided considers both to be actually the same so there is no
distinction between the two. If none is available (there is no backing store
for given memory) both will result in Data Cache Clean up to the point of
coherency. Otherwise sync for the specified range shall be performed.
Signed-off-by: Beata Michalska <beata.michalska@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20191121000843.24844-5-beata.michalska@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
HSTR_EL2 offers a way to trap ranges of CP15 system register
accesses to EL2, and it looks like this register is completely
ignored by QEMU.
To avoid adding extra .accessfn filters all over the place (which
would have a direct performance impact), let's add a new TB flag
that gets set whenever HSTR_EL2 is non-zero and that QEMU translates
a context where this trap has a chance to apply, and only generate
the extra access check if the hypervisor is actively using this feature.
Tested with a hand-crafted KVM guest accessing CBAR.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20191201122018.25808-5-maz@kernel.org
[PMM: use is_a64(); fix comment syntax]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Simply moving the non-stub helper_v7m_mrs/msr outside of
!CONFIG_USER_ONLY is not an option, because of all of the
other system-mode helpers that are called.
But we can split out a few subroutines to handle the few
EL0 accessible registers without duplicating code.
Reported-by: Christophe Lyon <christophe.lyon@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20191118194916.3670-1-richard.henderson@linaro.org
[PMM: deleted now-redundant comment; added a default case
to switch in v7m_msr helper]
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Coverity reports, in sve_zcr_get_valid_len,
"Subtract operation overflows on operands
arm_cpu_vq_map_next_smaller(cpu, start_vq + 1U) and 1U"
First, the aarch32 stub version of arm_cpu_vq_map_next_smaller,
returning 0, does exactly what Coverity reports. Remove it.
Second, the aarch64 version of arm_cpu_vq_map_next_smaller has
a set of asserts, but they don't cover the case in question.
Further, there is a fair amount of extra arithmetic needed to
convert from the 0-based zcr register, to the 1-base vq form,
to the 0-based bitmap, and back again. This can be simplified
by leaving the value in the 0-based form.
Finally, use test_bit to simplify the common case, where the
length in the zcr registers is in fact a supported length.
Reported-by: Coverity (CID 1407217)
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Message-id: 20191118091414.19440-1-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Allow cpu 'host' to enable SVE when it's available, unless the
user chooses to disable it with the added 'sve=off' cpu property.
Also give the user the ability to select vector lengths with the
sve<N> properties. We don't adopt 'max' cpu's other sve property,
sve-max-vq, because that property is difficult to use with KVM.
That property assumes all vector lengths in the range from 1 up
to and including the specified maximum length are supported, but
there may be optional lengths not supported by the host in that
range. With KVM one must be more specific when enabling vector
lengths.
Signed-off-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Message-id: 20191031142734.8590-10-drjones@redhat.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Introduce cpu properties to give fine control over SVE vector lengths.
We introduce a property for each valid length up to the current
maximum supported, which is 2048-bits. The properties are named, e.g.
sve128, sve256, sve384, sve512, ..., where the number is the number of
bits. See the updates to docs/arm-cpu-features.rst for a description
of the semantics and for example uses.
Note, as sve-max-vq is still present and we'd like to be able to
support qmp_query_cpu_model_expansion with guests launched with e.g.
-cpu max,sve-max-vq=8 on their command lines, then we do allow
sve-max-vq and sve<N> properties to be provided at the same time, but
this is not recommended, and is why sve-max-vq is not mentioned in the
document. If sve-max-vq is provided then it enables all lengths smaller
than and including the max and disables all lengths larger. It also has
the side-effect that no larger lengths may be enabled and that the max
itself cannot be disabled. Smaller non-power-of-two lengths may,
however, be disabled, e.g. -cpu max,sve-max-vq=4,sve384=off provides a
guest the vector lengths 128, 256, and 512 bits.
This patch has been co-authored with Richard Henderson, who reworked
the target/arm/cpu64.c changes in order to push all the validation and
auto-enabling/disabling steps into the finalizer, resulting in a nice
LOC reduction.
Signed-off-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Tested-by: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Reviewed-by: Beata Michalska <beata.michalska@linaro.org>
Message-id: 20191031142734.8590-5-drjones@redhat.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This function assumes nothing about the current state of the cpu,
and writes the computed value to env->hflags.
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20191023150057.25731-13-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
There are 3 conditions that each enable this flag. M-profile always
enables; A-profile with EL1 as AA64 always enables. Both of these
conditions can easily be cached. The final condition relies on the
FPEXC register which we are not prepared to cache.
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20191023150057.25731-12-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Set TBFLAG_ANY.BE_DATA in rebuild_hflags_common_32 and
rebuild_hflags_a64 instead of rebuild_hflags_common, where we do
not need to re-test is_a64() nor re-compute the various inputs.
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20191023150057.25731-5-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Create a function to compute the values of the TBFLAG_ANY bits
that will be cached. For now, the env->hflags variable is not
used, and the results are fed back to cpu_get_tb_cpu_state.
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20191023150057.25731-2-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Currently the only part of an ARMCPRegInfo which is allowed to cause
a CPU exception is the access function, which returns a value indicating
that some flavour of UNDEF should be generated.
For the ATS system instructions, we would like to conditionally
generate exceptions as part of the writefn, because some faults
during the page table walk (like external aborts) should cause
an exception to be raised rather than returning a value.
There are several ways we could do this:
* plumb the GETPC() value from the top level set_cp_reg/get_cp_reg
helper functions through into the readfn and writefn hooks
* add extra readfn_with_ra/writefn_with_ra hooks that take the GETPC()
value
* require the ATS instructions to provide a dummy accessfn,
which serves no purpose except to cause the code generation
to emit TCG ops to sync the CPU state
* add an ARM_CP_ flag to mark the ARMCPRegInfo as possibly
throwing an exception in its read/write hooks, and make the
codegen sync the CPU state before calling the hooks if the
flag is set
This patch opts for the last of these, as it is fairly simple
to implement and doesn't require invasive changes like updating
the readfn/writefn hook function prototype signature.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Message-id: 20190816125802.25877-2-peter.maydell@linaro.org
* target/arm: generate a custom MIDR for -cpu max
* hw/misc/zynq_slcr: refactor to use standard register definition
* Set ENET_BD_BDU in I.MX FEC controller
* target/arm: Fix routing of singlestep exceptions
* refactor a32/t32 decoder handling of PC
* minor optimisations/cleanups of some a32/t32 codegen
* target/arm/cpu64: Ensure kvm really supports aarch64=off
* target/arm/cpu: Ensure we can use the pmu with kvm
* target/arm: Minor cleanups preparatory to KVM SVE support
-----BEGIN PGP SIGNATURE-----
iQJNBAABCAA3FiEE4aXFk81BneKOgxXPPCUl7RQ2DN4FAl1WrIsZHHBldGVyLm1h
eWRlbGxAbGluYXJvLm9yZwAKCRA8JSXtFDYM3tJ/D/9I0ccyciHwuekySUHs+Wq6
2grX8t6RFzlhA1ULoAaEO4x8uWWGnbiGTeSGM819T3nj1a7neQV12Xe5RRGG0j7n
aeVseYnZF96oshKPkDSVTcGQisVfmmHIJ0oqx2k1aUGrmyFJlTuLWQBZCCiZKhxA
zA6YzUbOA2apfi9nun6SbbjysiRD2lp2i9vI79nVlo+ca77v/1sdFUwzg0hRE//X
IondHeWtCZScmc/GwABv4EdNzQ4Aerfe10v/pOKXEC59rPwEiaiSGBPu6SRUaGWH
qHlwjVU2+BFGkz9Oy/7+tDTBk6saPi4taZF8SxxiC/QTyNV2ijyKV5iy9KOYAFw7
E41fhv4+Kch569/SX7fiyAxL0gAS2HGFtegByuQEgjjioOCRugFcX275NXvuW06j
jfOP/zSD9P39WA0jCJaNj5FdJTcLmIuFxKjBUEX3Cdb+3igIq1BW0ZFd/OOBoo1W
GHcEmO6tLyx35kigOb3TkayQpkqCoaGCcgzJ0g2Oy06rKwlcci+BfCfc3aG+uSSY
+TuGjRhpQxQJJt880d7tBqeH9R5FABvQ0TEwGuACylDEZM5bN7BpZxCxCVN/bFG+
pzvzs/QtOq0FN7LK4L4rbuJui4nBhAyalbiIXQ8ihWQgmMqaYQSK8mXFgSZgizFl
qATcYIr/q2gL4wHRos3XdA==
=8BAF
-----END PGP SIGNATURE-----
Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20190816' into staging
target-arm queue:
* target/arm: generate a custom MIDR for -cpu max
* hw/misc/zynq_slcr: refactor to use standard register definition
* Set ENET_BD_BDU in I.MX FEC controller
* target/arm: Fix routing of singlestep exceptions
* refactor a32/t32 decoder handling of PC
* minor optimisations/cleanups of some a32/t32 codegen
* target/arm/cpu64: Ensure kvm really supports aarch64=off
* target/arm/cpu: Ensure we can use the pmu with kvm
* target/arm: Minor cleanups preparatory to KVM SVE support
# gpg: Signature made Fri 16 Aug 2019 14:15:55 BST
# gpg: using RSA key E1A5C593CD419DE28E8315CF3C2525ED14360CDE
# gpg: issuer "peter.maydell@linaro.org"
# gpg: Good signature from "Peter Maydell <peter.maydell@linaro.org>" [ultimate]
# gpg: aka "Peter Maydell <pmaydell@gmail.com>" [ultimate]
# gpg: aka "Peter Maydell <pmaydell@chiark.greenend.org.uk>" [ultimate]
# Primary key fingerprint: E1A5 C593 CD41 9DE2 8E83 15CF 3C25 25ED 1436 0CDE
* remotes/pmaydell/tags/pull-target-arm-20190816: (29 commits)
target/arm: Use tcg_gen_extrh_i64_i32 to extract the high word
target/arm: Simplify SMMLA, SMMLAR, SMMLS, SMMLSR
target/arm: Use tcg_gen_rotri_i32 for gen_swap_half
target/arm: Use ror32 instead of open-coding the operation
target/arm: Remove redundant shift tests
target/arm: Use tcg_gen_deposit_i32 for PKHBT, PKHTB
target/arm: Use tcg_gen_extract_i32 for shifter_out_im
target/arm/kvm64: Move the get/put of fpsimd registers out
target/arm/kvm64: Fix error returns
target/arm/cpu: Use div-round-up to determine predicate register array size
target/arm/helper: zcr: Add build bug next to value range assumption
target/arm/cpu: Ensure we can use the pmu with kvm
target/arm/cpu64: Ensure kvm really supports aarch64=off
target/arm: Remove helper_double_saturate
target/arm: Use unallocated_encoding for aarch32
target/arm: Remove offset argument to gen_exception_bkpt_insn
target/arm: Replace offset with pc in gen_exception_internal_insn
target/arm: Replace offset with pc in gen_exception_insn
target/arm: Replace s->pc with s->base.pc_next
target/arm: Remove redundant s->pc & ~1
...
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Unless we're guaranteed to always increase ARM_MAX_VQ by a multiple of
four, then we should use DIV_ROUND_UP to ensure we get an appropriate
array size.
Signed-off-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
When generating an architectural single-step exception we were
routing it to the "default exception level", which is to say
the same exception level we execute at except that EL0 exceptions
go to EL1. This is incorrect because the debug exception level
can be configured by the guest for situations such as single
stepping of EL0 and EL1 code by EL2.
We have to track the target debug exception level in the TB
flags, because it is dependent on CPU state like HCR_EL2.TGE
and MDCR_EL2.TDE. (That we were previously calling the
arm_debug_target_el() function to determine dc->ss_same_el
is itself a bug, though one that would only have manifested
as incorrect syndrome information.) Since we are out of TB
flag bits unless we want to expand into the cs_base field,
we share some bits with the M-profile only HANDLER and
STACKCHECK bits, since only A-profile has this singlestep.
Fixes: https://bugs.launchpad.net/qemu/+bug/1838913
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Message-id: 20190805130952.4415-3-peter.maydell@linaro.org
While most features are now detected by probing the ID_* registers
kernels can (and do) use MIDR_EL1 for working out of they have to
apply errata. This can trip up warnings in the kernel as it tries to
work out if it should apply workarounds to features that don't
actually exist in the reported CPU type.
Avoid this problem by synthesising our own MIDR value.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20190726113950.7499-1-alex.bennee@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
We declare incomplete struct VMStateDescription in a couple of places
so we don't have to include migration/vmstate.h for the typedef.
That's fine with me. However, the next commit will drop
migration/vmstate.h from a massive number of compiles. Move the
typedef to qemu/typedefs.h now, so I don't have to insert struct in
front of VMStateDescription all over the place then.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-Id: <20190812052359.30071-15-armbru@redhat.com>
Per Peter Maydell:
Semihosting hooks either SVC or HLT instructions, and inside KVM
both of those go to EL1, ie to the guest, and can't be trapped to
KVM.
Let check_for_semihosting() return False when not running on TCG.
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-id: 20190701194942.10092-3-philmd@redhat.com
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Suggested-by: Samuel Ortiz <sameo@linux.intel.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-id: 20190701132516.26392-11-philmd@redhat.com
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The architecture permits FPUs which have only single-precision
support, not double-precision; Cortex-M4 and Cortex-M33 are
both like that. Add the necessary checks on the MVFR0 FPDP
field so that we UNDEF any double-precision instructions on
CPUs like this.
Note that even if FPDP==0 the insns like VMOV-to/from-gpreg,
VLDM/VSTM, VLDR/VSTR which take double precision registers
still exist.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20190614104457.24703-3-peter.maydell@linaro.org
Allow the DSP extension to be disabled via a CPU property for
M-profile CPUs. (A and R-profile CPUs don't have this extension
as a defined separate optional architecture extension, so
they don't need the property.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-id: 20190517174046.11146-3-peter.maydell@linaro.org
Allow VFP and neon to be disabled via a CPU property. As with
the "pmu" property, we only allow these features to be removed
from CPUs which have it by default, not added to CPUs which
don't have it.
The primary motivation here is to be able to optionally
create Cortex-M33 CPUs with no FPU, but we provide switches
for both VFP and Neon because the two interact:
* AArch64 can't have one without the other
* Some ID register fields only change if both are disabled
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-id: 20190517174046.11146-2-peter.maydell@linaro.org
Convert the VFP VMLA instruction to decodetree.
This is the first of the VFP 3-operand data processing instructions,
so we include in this patch the code which loops over the elements
for an old-style VFP vector operation. The existing code to do this
looping uses the deprecated cpu_F0s/F0d/F1s/F1d TCG globals; since
we are going to be converting instructions one at a time anyway
we can take the opportunity to make the new loop use TCG temporaries,
which means we can do that conversion one operation at a time
rather than needing to do it all in one go.
We include an UNDEF check which was missing in the old code:
short-vector operations (with stride or length non-zero) were
deprecated in v7A and must UNDEF in v8A, so if the MVFR0 FPShVec
field does not indicate that support for short vectors is present
we UNDEF the operations that would use them. (This is a change
of behaviour for Cortex-A7, Cortex-A15 and the v8 CPUs, which
previously were all incorrectly allowing short-vector operations.)
Note that the conversion fixes a bug in the old code for the
case of VFP short-vector "mixed scalar/vector operations". These
happen where the destination register is in a vector bank but
but the second operand is in a scalar bank. For example
vmla.f64 d10, d1, d16 with length 2 stride 2
is equivalent to the pair of scalar operations
vmla.f64 d10, d1, d16
vmla.f64 d8, d3, d16
where the destination and first input register cycle through
their vector but the second input is scalar (d16). In the
old decoder the gen_vfp_F1_mul() operation uses cpu_F1{s,d}
as a temporary output for the multiply, which trashes the
second input operand. For the fully-scalar case (where we
never do a second iteration) and the fully-vector case
(where the loop loads the new second input operand) this
doesn't matter, but for the mixed scalar/vector case we
will end up using the wrong value for later loop iterations.
In the new code we use TCG temporaries and so avoid the bug.
This bug is present for all the multiply-accumulate insns
that operate on short vectors: VMLA, VMLS, VNMLA, VNMLS.
Note 2: the expression used to calculate the next register
number in the vector bank is not in fact correct; we leave
this behaviour unchanged from the old decoder and will
fix this bug later in the series.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Convert the VSEL instructions to decodetree.
We leave trans_VSEL() in translate.c for now as this allows
the patch to show just the changes from the old handle_vsel().
In the old code the check for "do D16-D31 exist" was hidden in
the VFP_DREG macro, and assumed that VFPv3 always implied that
D16-D31 exist. In the new code we do the correct ID register test.
This gives identical behaviour for most of our CPUs, and fixes
previously incorrect handling for Cortex-R5F, Cortex-M4 and
Cortex-M33, which all implement VFPv3 or better with only 16
double-precision registers.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
No header includes qemu-common.h after this commit, as prescribed by
qemu-common.h's file comment.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20190523143508.25387-5-armbru@redhat.com>
[Rebased with conflicts resolved automatically, except for
include/hw/arm/xlnx-zynqmp.h hw/arm/nrf51_soc.c hw/arm/msf2-soc.c
block/qcow2-refcount.c block/qcow2-cluster.c block/qcow2-cache.c
target/arm/cpu.h target/lm32/cpu.h target/m68k/cpu.h target/mips/cpu.h
target/moxie/cpu.h target/nios2/cpu.h target/openrisc/cpu.h
target/riscv/cpu.h target/tilegx/cpu.h target/tricore/cpu.h
target/unicore32/cpu.h target/xtensa/cpu.h; bsd-user/main.c and
net/tap-bsd.c fixed up]
This macro is now always empty, so remove it. This leaves the
entire contents of CPUArchState under the control of the guest
architecture.
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Nothing in there so far, but all of the plumbing done
within the target ArchCPU state.
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Now that we have ArchCPU, we can define this generically,
in the one place that needs it.
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Cleanup in the boilerplate that each target must define.
Replace arm_env_get_cpu with env_archcpu. The combination
CPU(arm_env_get_cpu) should have used ENV_GET_CPU to begin;
use env_cpu now.
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Now that we have both ArchCPU and CPUArchState, we can define
this generically instead of via macro in each target's cpu.h.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Acked-by: Alistair Francis <alistair.francis@wdc.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
For all targets, do this just before including exec/cpu-all.h.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Acked-by: Alistair Francis <alistair.francis@wdc.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
For all targets, do this just before including exec/cpu-all.h.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Acked-by: Alistair Francis <alistair.francis@wdc.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
For all targets, into this new file move TARGET_LONG_BITS,
TARGET_PAGE_BITS, TARGET_PHYS_ADDR_SPACE_BITS,
TARGET_VIRT_ADDR_SPACE_BITS, and NB_MMU_MODES.
Include this new file from exec/cpu-defs.h.
This now removes the somewhat odd requirement that target/arch/cpu.h
defines TARGET_LONG_BITS before including exec/cpu-defs.h, so push the
bulk of the includes within target/arch/cpu.h to the top.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Acked-by: Alistair Francis <alistair.francis@wdc.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Use the newly introduced infrastructure for guest random numbers.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>