i386/cpu: Use CPUCacheInfo.share_level to encode CPUID[4]

CPUID[4].EAX[bits 25:14] is used to represent the cache topology for
Intel CPUs.

After cache models have topology information, we can use
CPUCacheInfo.share_level to decide which topology level to be encoded
into CPUID[4].EAX[bits 25:14].

And since with the helper max_processor_ids_for_cache(), the filed
CPUID[4].EAX[bits 25:14] (original virable "num_apic_ids") is parsed
based on cpu topology levels, which are verified when parsing -smp, it's
no need to check this value by "assert(num_apic_ids > 0)" again, so
remove this assert().

Additionally, wrap the encoding of CPUID[4].EAX[bits 31:26] into a
helper to make the code cleaner.

Tested-by: Yongwei Ma <yongwei.ma@intel.com>
Signed-off-by: Zhao Liu <zhao1.liu@intel.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Message-ID: <20240424154929.1487382-21-zhao1.liu@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This commit is contained in:
Zhao Liu 2024-04-24 23:49:28 +08:00 committed by Paolo Bonzini
parent 9fcba76ab9
commit f602eb925a
2 changed files with 56 additions and 43 deletions

View File

@ -235,22 +235,53 @@ static uint8_t cpuid2_cache_descriptor(CPUCacheInfo *cache)
((t) == UNIFIED_CACHE) ? CACHE_TYPE_UNIFIED : \ ((t) == UNIFIED_CACHE) ? CACHE_TYPE_UNIFIED : \
0 /* Invalid value */) 0 /* Invalid value */)
static uint32_t max_thread_ids_for_cache(X86CPUTopoInfo *topo_info,
enum CPUTopoLevel share_level)
{
uint32_t num_ids = 0;
switch (share_level) {
case CPU_TOPO_LEVEL_CORE:
num_ids = 1 << apicid_core_offset(topo_info);
break;
case CPU_TOPO_LEVEL_DIE:
num_ids = 1 << apicid_die_offset(topo_info);
break;
case CPU_TOPO_LEVEL_PACKAGE:
num_ids = 1 << apicid_pkg_offset(topo_info);
break;
default:
/*
* Currently there is no use case for SMT and MODULE, so use
* assert directly to facilitate debugging.
*/
g_assert_not_reached();
}
return num_ids - 1;
}
static uint32_t max_core_ids_in_package(X86CPUTopoInfo *topo_info)
{
uint32_t num_cores = 1 << (apicid_pkg_offset(topo_info) -
apicid_core_offset(topo_info));
return num_cores - 1;
}
/* Encode cache info for CPUID[4] */ /* Encode cache info for CPUID[4] */
static void encode_cache_cpuid4(CPUCacheInfo *cache, static void encode_cache_cpuid4(CPUCacheInfo *cache,
int num_apic_ids, int num_cores, X86CPUTopoInfo *topo_info,
uint32_t *eax, uint32_t *ebx, uint32_t *eax, uint32_t *ebx,
uint32_t *ecx, uint32_t *edx) uint32_t *ecx, uint32_t *edx)
{ {
assert(cache->size == cache->line_size * cache->associativity * assert(cache->size == cache->line_size * cache->associativity *
cache->partitions * cache->sets); cache->partitions * cache->sets);
assert(num_apic_ids > 0);
*eax = CACHE_TYPE(cache->type) | *eax = CACHE_TYPE(cache->type) |
CACHE_LEVEL(cache->level) | CACHE_LEVEL(cache->level) |
(cache->self_init ? CACHE_SELF_INIT_LEVEL : 0) | (cache->self_init ? CACHE_SELF_INIT_LEVEL : 0) |
((num_cores - 1) << 26) | (max_core_ids_in_package(topo_info) << 26) |
((num_apic_ids - 1) << 14); (max_thread_ids_for_cache(topo_info, cache->share_level) << 14);
assert(cache->line_size > 0); assert(cache->line_size > 0);
assert(cache->partitions > 0); assert(cache->partitions > 0);
@ -6392,18 +6423,7 @@ void cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count,
(cpuid2_cache_descriptor(env->cache_info_cpuid2.l1i_cache) << 8) | (cpuid2_cache_descriptor(env->cache_info_cpuid2.l1i_cache) << 8) |
(cpuid2_cache_descriptor(env->cache_info_cpuid2.l2_cache)); (cpuid2_cache_descriptor(env->cache_info_cpuid2.l2_cache));
break; break;
case 4: { case 4:
/*
* CPUID.04H:EAX[bits 25:14]: Maximum number of addressable IDs for
* logical processors sharing this cache.
*/
int addressable_threads_width;
/*
* CPUID.04H:EAX[bits 31:26]: Maximum number of addressable IDs for
* processor cores in the physical package.
*/
int addressable_cores_width;
/* cache info: needed for Core compatibility */ /* cache info: needed for Core compatibility */
if (cpu->cache_info_passthrough) { if (cpu->cache_info_passthrough) {
x86_cpu_get_cache_cpuid(index, count, eax, ebx, ecx, edx); x86_cpu_get_cache_cpuid(index, count, eax, ebx, ecx, edx);
@ -6415,59 +6435,48 @@ void cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count,
int host_vcpus_per_cache = 1 + ((*eax & 0x3FFC000) >> 14); int host_vcpus_per_cache = 1 + ((*eax & 0x3FFC000) >> 14);
if (cores_per_pkg > 1) { if (cores_per_pkg > 1) {
addressable_cores_width = apicid_pkg_offset(&topo_info) -
apicid_core_offset(&topo_info);
*eax &= ~0xFC000000; *eax &= ~0xFC000000;
*eax |= ((1 << addressable_cores_width) - 1) << 26; *eax |= max_core_ids_in_package(&topo_info) << 26;
} }
if (host_vcpus_per_cache > threads_per_pkg) { if (host_vcpus_per_cache > threads_per_pkg) {
/* Share the cache at package level. */
addressable_threads_width = apicid_pkg_offset(&topo_info);
*eax &= ~0x3FFC000; *eax &= ~0x3FFC000;
*eax |= ((1 << addressable_threads_width) - 1) << 14;
/* Share the cache at package level. */
*eax |= max_thread_ids_for_cache(&topo_info,
CPU_TOPO_LEVEL_PACKAGE) << 14;
} }
} }
} else if (cpu->vendor_cpuid_only && IS_AMD_CPU(env)) { } else if (cpu->vendor_cpuid_only && IS_AMD_CPU(env)) {
*eax = *ebx = *ecx = *edx = 0; *eax = *ebx = *ecx = *edx = 0;
} else { } else {
*eax = 0; *eax = 0;
addressable_cores_width = apicid_pkg_offset(&topo_info) -
apicid_core_offset(&topo_info);
switch (count) { switch (count) {
case 0: /* L1 dcache info */ case 0: /* L1 dcache info */
addressable_threads_width = cpu->l1_cache_per_core
? apicid_core_offset(&topo_info)
: 0;
encode_cache_cpuid4(env->cache_info_cpuid4.l1d_cache, encode_cache_cpuid4(env->cache_info_cpuid4.l1d_cache,
(1 << addressable_threads_width), &topo_info,
(1 << addressable_cores_width),
eax, ebx, ecx, edx); eax, ebx, ecx, edx);
if (!cpu->l1_cache_per_core) {
*eax &= ~MAKE_64BIT_MASK(14, 12);
}
break; break;
case 1: /* L1 icache info */ case 1: /* L1 icache info */
addressable_threads_width = cpu->l1_cache_per_core
? apicid_core_offset(&topo_info)
: 0;
encode_cache_cpuid4(env->cache_info_cpuid4.l1i_cache, encode_cache_cpuid4(env->cache_info_cpuid4.l1i_cache,
(1 << addressable_threads_width), &topo_info,
(1 << addressable_cores_width),
eax, ebx, ecx, edx); eax, ebx, ecx, edx);
if (!cpu->l1_cache_per_core) {
*eax &= ~MAKE_64BIT_MASK(14, 12);
}
break; break;
case 2: /* L2 cache info */ case 2: /* L2 cache info */
addressable_threads_width = apicid_core_offset(&topo_info);
encode_cache_cpuid4(env->cache_info_cpuid4.l2_cache, encode_cache_cpuid4(env->cache_info_cpuid4.l2_cache,
(1 << addressable_threads_width), &topo_info,
(1 << addressable_cores_width),
eax, ebx, ecx, edx); eax, ebx, ecx, edx);
break; break;
case 3: /* L3 cache info */ case 3: /* L3 cache info */
if (cpu->enable_l3_cache) { if (cpu->enable_l3_cache) {
addressable_threads_width = apicid_die_offset(&topo_info);
encode_cache_cpuid4(env->cache_info_cpuid4.l3_cache, encode_cache_cpuid4(env->cache_info_cpuid4.l3_cache,
(1 << addressable_threads_width), &topo_info,
(1 << addressable_cores_width),
eax, ebx, ecx, edx); eax, ebx, ecx, edx);
break; break;
} }
@ -6478,7 +6487,6 @@ void cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count,
} }
} }
break; break;
}
case 5: case 5:
/* MONITOR/MWAIT Leaf */ /* MONITOR/MWAIT Leaf */
*eax = cpu->mwait.eax; /* Smallest monitor-line size in bytes */ *eax = cpu->mwait.eax; /* Smallest monitor-line size in bytes */

View File

@ -2011,6 +2011,11 @@ struct ArchCPU {
*/ */
bool enable_l3_cache; bool enable_l3_cache;
/* Compatibility bits for old machine types.
* If true present L1 cache as per-thread, not per-core.
*/
bool l1_cache_per_core;
/* Compatibility bits for old machine types. /* Compatibility bits for old machine types.
* If true present the old cache topology information * If true present the old cache topology information
*/ */