precise self modifying code support

git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@745 c046a42c-6fe2-441c-8c8c-71466251a162
This commit is contained in:
bellard 2004-04-25 17:57:43 +00:00
parent eeab3a558f
commit d720b93d0b
9 changed files with 259 additions and 129 deletions

View File

@ -681,8 +681,7 @@ extern uint8_t *phys_ram_dirty;
#define IO_MEM_CODE (3 << IO_MEM_SHIFT) /* used internally, never use directly */ #define IO_MEM_CODE (3 << IO_MEM_SHIFT) /* used internally, never use directly */
#define IO_MEM_NOTDIRTY (4 << IO_MEM_SHIFT) /* used internally, never use directly */ #define IO_MEM_NOTDIRTY (4 << IO_MEM_SHIFT) /* used internally, never use directly */
/* NOTE: vaddr is only used internally. Never use it except if you know what you do */ typedef void CPUWriteMemoryFunc(uint32_t addr, uint32_t value);
typedef void CPUWriteMemoryFunc(uint32_t addr, uint32_t value, uint32_t vaddr);
typedef uint32_t CPUReadMemoryFunc(uint32_t addr); typedef uint32_t CPUReadMemoryFunc(uint32_t addr);
void cpu_register_physical_memory(unsigned long start_addr, unsigned long size, void cpu_register_physical_memory(unsigned long start_addr, unsigned long size,

315
exec.c
View File

@ -168,7 +168,6 @@ static inline PageDesc *page_find(unsigned int index)
#if !defined(CONFIG_USER_ONLY) #if !defined(CONFIG_USER_ONLY)
static void tlb_protect_code(CPUState *env, uint32_t addr); static void tlb_protect_code(CPUState *env, uint32_t addr);
static void tlb_unprotect_code(CPUState *env, uint32_t addr);
static void tlb_unprotect_code_phys(CPUState *env, uint32_t phys_addr, target_ulong vaddr); static void tlb_unprotect_code_phys(CPUState *env, uint32_t phys_addr, target_ulong vaddr);
static inline VirtPageDesc *virt_page_find_alloc(unsigned int index) static inline VirtPageDesc *virt_page_find_alloc(unsigned int index)
@ -533,30 +532,78 @@ static void build_page_bitmap(PageDesc *p)
} }
} }
#ifdef TARGET_HAS_PRECISE_SMC
static void tb_gen_code(CPUState *env,
target_ulong pc, target_ulong cs_base, int flags,
int cflags)
{
TranslationBlock *tb;
uint8_t *tc_ptr;
target_ulong phys_pc, phys_page2, virt_page2;
int code_gen_size;
phys_pc = get_phys_addr_code(env, (unsigned long)pc);
tb = tb_alloc((unsigned long)pc);
if (!tb) {
/* flush must be done */
tb_flush(env);
/* cannot fail at this point */
tb = tb_alloc((unsigned long)pc);
}
tc_ptr = code_gen_ptr;
tb->tc_ptr = tc_ptr;
tb->cs_base = cs_base;
tb->flags = flags;
tb->cflags = cflags;
cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
/* check next page if needed */
virt_page2 = ((unsigned long)pc + tb->size - 1) & TARGET_PAGE_MASK;
phys_page2 = -1;
if (((unsigned long)pc & TARGET_PAGE_MASK) != virt_page2) {
phys_page2 = get_phys_addr_code(env, virt_page2);
}
tb_link_phys(tb, phys_pc, phys_page2);
}
#endif
/* invalidate all TBs which intersect with the target physical page /* invalidate all TBs which intersect with the target physical page
starting in range [start;end[. NOTE: start and end must refer to starting in range [start;end[. NOTE: start and end must refer to
the same physical page. 'vaddr' is a virtual address referencing the same physical page. 'is_cpu_write_access' should be true if called
the physical page of code. It is only used an a hint if there is no from a real cpu write access: the virtual CPU will exit the current
code left. */ TB if code is modified inside this TB. */
static void tb_invalidate_phys_page_range(target_ulong start, target_ulong end, void tb_invalidate_phys_page_range(target_ulong start, target_ulong end,
target_ulong vaddr) int is_cpu_write_access)
{ {
int n; int n, current_tb_modified, current_tb_not_found, current_flags;
#if defined(TARGET_HAS_PRECISE_SMC) || !defined(CONFIG_USER_ONLY)
CPUState *env = cpu_single_env;
#endif
PageDesc *p; PageDesc *p;
TranslationBlock *tb, *tb_next; TranslationBlock *tb, *tb_next, *current_tb;
target_ulong tb_start, tb_end; target_ulong tb_start, tb_end;
target_ulong current_pc, current_cs_base;
p = page_find(start >> TARGET_PAGE_BITS); p = page_find(start >> TARGET_PAGE_BITS);
if (!p) if (!p)
return; return;
if (!p->code_bitmap && if (!p->code_bitmap &&
++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) { ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
is_cpu_write_access) {
/* build code bitmap */ /* build code bitmap */
build_page_bitmap(p); build_page_bitmap(p);
} }
/* we remove all the TBs in the range [start, end[ */ /* we remove all the TBs in the range [start, end[ */
/* XXX: see if in some cases it could be faster to invalidate all the code */ /* XXX: see if in some cases it could be faster to invalidate all the code */
current_tb_not_found = is_cpu_write_access;
current_tb_modified = 0;
current_tb = NULL; /* avoid warning */
current_pc = 0; /* avoid warning */
current_cs_base = 0; /* avoid warning */
current_flags = 0; /* avoid warning */
tb = p->first_tb; tb = p->first_tb;
while (tb != NULL) { while (tb != NULL) {
n = (long)tb & 3; n = (long)tb & 3;
@ -573,6 +620,36 @@ static void tb_invalidate_phys_page_range(target_ulong start, target_ulong end,
tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
} }
if (!(tb_end <= start || tb_start >= end)) { if (!(tb_end <= start || tb_start >= end)) {
#ifdef TARGET_HAS_PRECISE_SMC
if (current_tb_not_found) {
current_tb_not_found = 0;
current_tb = NULL;
if (env->mem_write_pc) {
/* now we have a real cpu fault */
current_tb = tb_find_pc(env->mem_write_pc);
}
}
if (current_tb == tb &&
!(current_tb->cflags & CF_SINGLE_INSN)) {
/* If we are modifying the current TB, we must stop
its execution. We could be more precise by checking
that the modification is after the current PC, but it
would require a specialized function to partially
restore the CPU state */
current_tb_modified = 1;
cpu_restore_state(current_tb, env,
env->mem_write_pc, NULL);
#if defined(TARGET_I386)
current_flags = env->hflags;
current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
current_cs_base = (target_ulong)env->segs[R_CS].base;
current_pc = current_cs_base + env->eip;
#else
#error unsupported CPU
#endif
}
#endif /* TARGET_HAS_PRECISE_SMC */
tb_phys_invalidate(tb, -1); tb_phys_invalidate(tb, -1);
} }
tb = tb_next; tb = tb_next;
@ -581,13 +658,25 @@ static void tb_invalidate_phys_page_range(target_ulong start, target_ulong end,
/* if no code remaining, no need to continue to use slow writes */ /* if no code remaining, no need to continue to use slow writes */
if (!p->first_tb) { if (!p->first_tb) {
invalidate_page_bitmap(p); invalidate_page_bitmap(p);
tlb_unprotect_code_phys(cpu_single_env, start, vaddr); if (is_cpu_write_access) {
tlb_unprotect_code_phys(env, start, env->mem_write_vaddr);
}
}
#endif
#ifdef TARGET_HAS_PRECISE_SMC
if (current_tb_modified) {
/* we generate a block containing just the instruction
modifying the memory. It will ensure that it cannot modify
itself */
tb_gen_code(env, current_pc, current_cs_base, current_flags,
CF_SINGLE_INSN);
cpu_resume_from_signal(env, NULL);
} }
#endif #endif
} }
/* len must be <= 8 and start must be a multiple of len */ /* len must be <= 8 and start must be a multiple of len */
static inline void tb_invalidate_phys_page_fast(target_ulong start, int len, target_ulong vaddr) static inline void tb_invalidate_phys_page_fast(target_ulong start, int len)
{ {
PageDesc *p; PageDesc *p;
int offset, b; int offset, b;
@ -608,77 +697,75 @@ static inline void tb_invalidate_phys_page_fast(target_ulong start, int len, tar
goto do_invalidate; goto do_invalidate;
} else { } else {
do_invalidate: do_invalidate:
tb_invalidate_phys_page_range(start, start + len, vaddr); tb_invalidate_phys_page_range(start, start + len, 1);
} }
} }
/* invalidate all TBs which intersect with the target virtual page
starting in range [start;end[. This function is usually used when
the target processor flushes its I-cache. NOTE: start and end must
refer to the same physical page */
void tb_invalidate_page_range(target_ulong start, target_ulong end)
{
int n;
PageDesc *p;
TranslationBlock *tb, *tb_next;
target_ulong pc;
target_ulong phys_start;
#if !defined(CONFIG_USER_ONLY)
{
VirtPageDesc *vp;
vp = virt_page_find(start >> TARGET_PAGE_BITS);
if (!vp)
return;
if (vp->valid_tag != virt_valid_tag)
return;
phys_start = vp->phys_addr + (start & ~TARGET_PAGE_MASK);
}
#else
phys_start = start;
#endif
p = page_find(phys_start >> TARGET_PAGE_BITS);
if (!p)
return;
/* we remove all the TBs in the range [start, end[ */
/* XXX: see if in some cases it could be faster to invalidate all the code */
tb = p->first_tb;
while (tb != NULL) {
n = (long)tb & 3;
tb = (TranslationBlock *)((long)tb & ~3);
tb_next = tb->page_next[n];
pc = tb->pc;
if (!((pc + tb->size) <= start || pc >= end)) {
tb_phys_invalidate(tb, -1);
}
tb = tb_next;
}
#if !defined(CONFIG_USER_ONLY)
/* if no code remaining, no need to continue to use slow writes */
if (!p->first_tb)
tlb_unprotect_code(cpu_single_env, start);
#endif
}
#if !defined(CONFIG_SOFTMMU) #if !defined(CONFIG_SOFTMMU)
static void tb_invalidate_phys_page(target_ulong addr) static void tb_invalidate_phys_page(target_ulong addr,
unsigned long pc, void *puc)
{ {
int n; int n, current_flags, current_tb_modified;
target_ulong current_pc, current_cs_base;
PageDesc *p; PageDesc *p;
TranslationBlock *tb; TranslationBlock *tb, *current_tb;
#ifdef TARGET_HAS_PRECISE_SMC
CPUState *env = cpu_single_env;
#endif
addr &= TARGET_PAGE_MASK; addr &= TARGET_PAGE_MASK;
p = page_find(addr >> TARGET_PAGE_BITS); p = page_find(addr >> TARGET_PAGE_BITS);
if (!p) if (!p)
return; return;
tb = p->first_tb; tb = p->first_tb;
current_tb_modified = 0;
current_tb = NULL;
current_pc = 0; /* avoid warning */
current_cs_base = 0; /* avoid warning */
current_flags = 0; /* avoid warning */
#ifdef TARGET_HAS_PRECISE_SMC
if (tb && pc != 0) {
current_tb = tb_find_pc(pc);
}
#endif
while (tb != NULL) { while (tb != NULL) {
n = (long)tb & 3; n = (long)tb & 3;
tb = (TranslationBlock *)((long)tb & ~3); tb = (TranslationBlock *)((long)tb & ~3);
#ifdef TARGET_HAS_PRECISE_SMC
if (current_tb == tb &&
!(current_tb->cflags & CF_SINGLE_INSN)) {
/* If we are modifying the current TB, we must stop
its execution. We could be more precise by checking
that the modification is after the current PC, but it
would require a specialized function to partially
restore the CPU state */
current_tb_modified = 1;
cpu_restore_state(current_tb, env, pc, puc);
#if defined(TARGET_I386)
current_flags = env->hflags;
current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
current_cs_base = (target_ulong)env->segs[R_CS].base;
current_pc = current_cs_base + env->eip;
#else
#error unsupported CPU
#endif
}
#endif /* TARGET_HAS_PRECISE_SMC */
tb_phys_invalidate(tb, addr); tb_phys_invalidate(tb, addr);
tb = tb->page_next[n]; tb = tb->page_next[n];
} }
p->first_tb = NULL; p->first_tb = NULL;
#ifdef TARGET_HAS_PRECISE_SMC
if (current_tb_modified) {
/* we generate a block containing just the instruction
modifying the memory. It will ensure that it cannot modify
itself */
tb_gen_code(env, current_pc, current_cs_base, current_flags,
CF_SINGLE_INSN);
cpu_resume_from_signal(env, puc);
}
#endif
} }
#endif #endif
@ -696,6 +783,8 @@ static inline void tb_alloc_page(TranslationBlock *tb,
p->first_tb = (TranslationBlock *)((long)tb | n); p->first_tb = (TranslationBlock *)((long)tb | n);
invalidate_page_bitmap(p); invalidate_page_bitmap(p);
#ifdef TARGET_HAS_SMC
#if defined(CONFIG_USER_ONLY) #if defined(CONFIG_USER_ONLY)
if (p->flags & PAGE_WRITE) { if (p->flags & PAGE_WRITE) {
unsigned long host_start, host_end, addr; unsigned long host_start, host_end, addr;
@ -727,6 +816,8 @@ static inline void tb_alloc_page(TranslationBlock *tb,
tlb_protect_code(cpu_single_env, virt_addr); tlb_protect_code(cpu_single_env, virt_addr);
} }
#endif #endif
#endif /* TARGET_HAS_SMC */
} }
/* Allocate a new translation block. Flush the translation buffer if /* Allocate a new translation block. Flush the translation buffer if
@ -910,6 +1001,14 @@ static void tb_reset_jump_recursive(TranslationBlock *tb)
tb_reset_jump_recursive2(tb, 1); tb_reset_jump_recursive2(tb, 1);
} }
static void breakpoint_invalidate(CPUState *env, target_ulong pc)
{
target_ulong phys_addr;
phys_addr = cpu_get_phys_page_debug(env, pc);
tb_invalidate_phys_page_range(phys_addr, phys_addr + 1, 0);
}
/* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a /* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
breakpoint is reached */ breakpoint is reached */
int cpu_breakpoint_insert(CPUState *env, uint32_t pc) int cpu_breakpoint_insert(CPUState *env, uint32_t pc)
@ -925,7 +1024,8 @@ int cpu_breakpoint_insert(CPUState *env, uint32_t pc)
if (env->nb_breakpoints >= MAX_BREAKPOINTS) if (env->nb_breakpoints >= MAX_BREAKPOINTS)
return -1; return -1;
env->breakpoints[env->nb_breakpoints++] = pc; env->breakpoints[env->nb_breakpoints++] = pc;
tb_invalidate_page_range(pc, pc + 1);
breakpoint_invalidate(env, pc);
return 0; return 0;
#else #else
return -1; return -1;
@ -946,7 +1046,8 @@ int cpu_breakpoint_remove(CPUState *env, uint32_t pc)
memmove(&env->breakpoints[i], &env->breakpoints[i + 1], memmove(&env->breakpoints[i], &env->breakpoints[i + 1],
(env->nb_breakpoints - (i + 1)) * sizeof(env->breakpoints[0])); (env->nb_breakpoints - (i + 1)) * sizeof(env->breakpoints[0]));
env->nb_breakpoints--; env->nb_breakpoints--;
tb_invalidate_page_range(pc, pc + 1);
breakpoint_invalidate(env, pc);
return 0; return 0;
#else #else
return -1; return -1;
@ -1197,27 +1298,6 @@ static void tlb_protect_code(CPUState *env, uint32_t addr)
#endif #endif
} }
static inline void tlb_unprotect_code1(CPUTLBEntry *tlb_entry, uint32_t addr)
{
if (addr == (tlb_entry->address &
(TARGET_PAGE_MASK | TLB_INVALID_MASK)) &&
(tlb_entry->address & ~TARGET_PAGE_MASK) == IO_MEM_CODE) {
tlb_entry->address = (tlb_entry->address & TARGET_PAGE_MASK) | IO_MEM_NOTDIRTY;
}
}
/* update the TLB so that writes in virtual page 'addr' are no longer
tested self modifying code */
static void tlb_unprotect_code(CPUState *env, uint32_t addr)
{
int i;
addr &= TARGET_PAGE_MASK;
i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
tlb_unprotect_code1(&env->tlb_write[0][i], addr);
tlb_unprotect_code1(&env->tlb_write[1][i], addr);
}
static inline void tlb_unprotect_code2(CPUTLBEntry *tlb_entry, static inline void tlb_unprotect_code2(CPUTLBEntry *tlb_entry,
uint32_t phys_addr) uint32_t phys_addr)
{ {
@ -1387,12 +1467,18 @@ int tlb_set_page(CPUState *env, uint32_t vaddr, uint32_t paddr, int prot,
/* ROM: access is ignored (same as unassigned) */ /* ROM: access is ignored (same as unassigned) */
env->tlb_write[is_user][index].address = vaddr | IO_MEM_ROM; env->tlb_write[is_user][index].address = vaddr | IO_MEM_ROM;
env->tlb_write[is_user][index].addend = addend; env->tlb_write[is_user][index].addend = addend;
} else if (first_tb) { } else
/* XXX: the PowerPC code seems not ready to handle
self modifying code with DCBI */
#if defined(TARGET_HAS_SMC) || 1
if (first_tb) {
/* if code is present, we use a specific memory /* if code is present, we use a specific memory
handler. It works only for physical memory access */ handler. It works only for physical memory access */
env->tlb_write[is_user][index].address = vaddr | IO_MEM_CODE; env->tlb_write[is_user][index].address = vaddr | IO_MEM_CODE;
env->tlb_write[is_user][index].addend = addend; env->tlb_write[is_user][index].addend = addend;
} else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM && } else
#endif
if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
!cpu_physical_memory_is_dirty(pd)) { !cpu_physical_memory_is_dirty(pd)) {
env->tlb_write[is_user][index].address = vaddr | IO_MEM_NOTDIRTY; env->tlb_write[is_user][index].address = vaddr | IO_MEM_NOTDIRTY;
env->tlb_write[is_user][index].addend = addend; env->tlb_write[is_user][index].addend = addend;
@ -1420,7 +1506,9 @@ int tlb_set_page(CPUState *env, uint32_t vaddr, uint32_t paddr, int prot,
} else { } else {
if (prot & PROT_WRITE) { if (prot & PROT_WRITE) {
if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM || if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
#if defined(TARGET_HAS_SMC) || 1
first_tb || first_tb ||
#endif
((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM && ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
!cpu_physical_memory_is_dirty(pd))) { !cpu_physical_memory_is_dirty(pd))) {
/* ROM: we do as if code was inside */ /* ROM: we do as if code was inside */
@ -1450,7 +1538,7 @@ int tlb_set_page(CPUState *env, uint32_t vaddr, uint32_t paddr, int prot,
/* called from signal handler: invalidate the code and unprotect the /* called from signal handler: invalidate the code and unprotect the
page. Return TRUE if the fault was succesfully handled. */ page. Return TRUE if the fault was succesfully handled. */
int page_unprotect(unsigned long addr) int page_unprotect(unsigned long addr, unsigned long pc, void *puc)
{ {
#if !defined(CONFIG_SOFTMMU) #if !defined(CONFIG_SOFTMMU)
VirtPageDesc *vp; VirtPageDesc *vp;
@ -1476,13 +1564,13 @@ int page_unprotect(unsigned long addr)
printf("page_unprotect: addr=0x%08x phys_addr=0x%08x prot=%x\n", printf("page_unprotect: addr=0x%08x phys_addr=0x%08x prot=%x\n",
addr, vp->phys_addr, vp->prot); addr, vp->phys_addr, vp->prot);
#endif #endif
/* set the dirty bit */
phys_ram_dirty[vp->phys_addr >> TARGET_PAGE_BITS] = 1;
/* flush the code inside */
tb_invalidate_phys_page(vp->phys_addr);
if (mprotect((void *)addr, TARGET_PAGE_SIZE, vp->prot) < 0) if (mprotect((void *)addr, TARGET_PAGE_SIZE, vp->prot) < 0)
cpu_abort(cpu_single_env, "error mprotect addr=0x%lx prot=%d\n", cpu_abort(cpu_single_env, "error mprotect addr=0x%lx prot=%d\n",
(unsigned long)addr, vp->prot); (unsigned long)addr, vp->prot);
/* set the dirty bit */
phys_ram_dirty[vp->phys_addr >> TARGET_PAGE_BITS] = 1;
/* flush the code inside */
tb_invalidate_phys_page(vp->phys_addr, pc, puc);
return 1; return 1;
#else #else
return 0; return 0;
@ -1582,7 +1670,7 @@ void page_set_flags(unsigned long start, unsigned long end, int flags)
if (!(p->flags & PAGE_WRITE) && if (!(p->flags & PAGE_WRITE) &&
(flags & PAGE_WRITE) && (flags & PAGE_WRITE) &&
p->first_tb) { p->first_tb) {
tb_invalidate_phys_page(addr); tb_invalidate_phys_page(addr, 0, NULL);
} }
p->flags = flags; p->flags = flags;
} }
@ -1591,7 +1679,7 @@ void page_set_flags(unsigned long start, unsigned long end, int flags)
/* called from signal handler: invalidate the code and unprotect the /* called from signal handler: invalidate the code and unprotect the
page. Return TRUE if the fault was succesfully handled. */ page. Return TRUE if the fault was succesfully handled. */
int page_unprotect(unsigned long address) int page_unprotect(unsigned long address, unsigned long pc, void *puc)
{ {
unsigned int page_index, prot, pindex; unsigned int page_index, prot, pindex;
PageDesc *p, *p1; PageDesc *p, *p1;
@ -1619,7 +1707,7 @@ int page_unprotect(unsigned long address)
p1[pindex].flags |= PAGE_WRITE; p1[pindex].flags |= PAGE_WRITE;
/* and since the content will be modified, we must invalidate /* and since the content will be modified, we must invalidate
the corresponding translated code. */ the corresponding translated code. */
tb_invalidate_phys_page(address); tb_invalidate_phys_page(address, pc, puc);
#ifdef DEBUG_TB_CHECK #ifdef DEBUG_TB_CHECK
tb_invalidate_check(address); tb_invalidate_check(address);
#endif #endif
@ -1639,14 +1727,13 @@ void page_unprotect_range(uint8_t *data, unsigned long data_size)
start &= TARGET_PAGE_MASK; start &= TARGET_PAGE_MASK;
end = TARGET_PAGE_ALIGN(end); end = TARGET_PAGE_ALIGN(end);
for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) { for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
page_unprotect(addr); page_unprotect(addr, 0, NULL);
} }
} }
static inline void tlb_set_dirty(unsigned long addr, target_ulong vaddr) static inline void tlb_set_dirty(unsigned long addr, target_ulong vaddr)
{ {
} }
#endif /* defined(CONFIG_USER_ONLY) */ #endif /* defined(CONFIG_USER_ONLY) */
/* register physical memory. 'size' must be a multiple of the target /* register physical memory. 'size' must be a multiple of the target
@ -1672,7 +1759,7 @@ static uint32_t unassigned_mem_readb(uint32_t addr)
return 0; return 0;
} }
static void unassigned_mem_writeb(uint32_t addr, uint32_t val, uint32_t vaddr) static void unassigned_mem_writeb(uint32_t addr, uint32_t val)
{ {
} }
@ -1691,37 +1778,37 @@ static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
/* self modifying code support in soft mmu mode : writing to a page /* self modifying code support in soft mmu mode : writing to a page
containing code comes to these functions */ containing code comes to these functions */
static void code_mem_writeb(uint32_t addr, uint32_t val, uint32_t vaddr) static void code_mem_writeb(uint32_t addr, uint32_t val)
{ {
unsigned long phys_addr; unsigned long phys_addr;
phys_addr = addr - (long)phys_ram_base; phys_addr = addr - (long)phys_ram_base;
#if !defined(CONFIG_USER_ONLY) #if !defined(CONFIG_USER_ONLY)
tb_invalidate_phys_page_fast(phys_addr, 1, vaddr); tb_invalidate_phys_page_fast(phys_addr, 1);
#endif #endif
stb_raw((uint8_t *)addr, val); stb_raw((uint8_t *)addr, val);
phys_ram_dirty[phys_addr >> TARGET_PAGE_BITS] = 1; phys_ram_dirty[phys_addr >> TARGET_PAGE_BITS] = 1;
} }
static void code_mem_writew(uint32_t addr, uint32_t val, uint32_t vaddr) static void code_mem_writew(uint32_t addr, uint32_t val)
{ {
unsigned long phys_addr; unsigned long phys_addr;
phys_addr = addr - (long)phys_ram_base; phys_addr = addr - (long)phys_ram_base;
#if !defined(CONFIG_USER_ONLY) #if !defined(CONFIG_USER_ONLY)
tb_invalidate_phys_page_fast(phys_addr, 2, vaddr); tb_invalidate_phys_page_fast(phys_addr, 2);
#endif #endif
stw_raw((uint8_t *)addr, val); stw_raw((uint8_t *)addr, val);
phys_ram_dirty[phys_addr >> TARGET_PAGE_BITS] = 1; phys_ram_dirty[phys_addr >> TARGET_PAGE_BITS] = 1;
} }
static void code_mem_writel(uint32_t addr, uint32_t val, uint32_t vaddr) static void code_mem_writel(uint32_t addr, uint32_t val)
{ {
unsigned long phys_addr; unsigned long phys_addr;
phys_addr = addr - (long)phys_ram_base; phys_addr = addr - (long)phys_ram_base;
#if !defined(CONFIG_USER_ONLY) #if !defined(CONFIG_USER_ONLY)
tb_invalidate_phys_page_fast(phys_addr, 4, vaddr); tb_invalidate_phys_page_fast(phys_addr, 4);
#endif #endif
stl_raw((uint8_t *)addr, val); stl_raw((uint8_t *)addr, val);
phys_ram_dirty[phys_addr >> TARGET_PAGE_BITS] = 1; phys_ram_dirty[phys_addr >> TARGET_PAGE_BITS] = 1;
@ -1739,22 +1826,22 @@ static CPUWriteMemoryFunc *code_mem_write[3] = {
code_mem_writel, code_mem_writel,
}; };
static void notdirty_mem_writeb(uint32_t addr, uint32_t val, uint32_t vaddr) static void notdirty_mem_writeb(uint32_t addr, uint32_t val)
{ {
stb_raw((uint8_t *)addr, val); stb_raw((uint8_t *)addr, val);
tlb_set_dirty(addr, vaddr); tlb_set_dirty(addr, cpu_single_env->mem_write_vaddr);
} }
static void notdirty_mem_writew(uint32_t addr, uint32_t val, uint32_t vaddr) static void notdirty_mem_writew(uint32_t addr, uint32_t val)
{ {
stw_raw((uint8_t *)addr, val); stw_raw((uint8_t *)addr, val);
tlb_set_dirty(addr, vaddr); tlb_set_dirty(addr, cpu_single_env->mem_write_vaddr);
} }
static void notdirty_mem_writel(uint32_t addr, uint32_t val, uint32_t vaddr) static void notdirty_mem_writel(uint32_t addr, uint32_t val)
{ {
stl_raw((uint8_t *)addr, val); stl_raw((uint8_t *)addr, val);
tlb_set_dirty(addr, vaddr); tlb_set_dirty(addr, cpu_single_env->mem_write_vaddr);
} }
static CPUWriteMemoryFunc *notdirty_mem_write[3] = { static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
@ -1861,17 +1948,17 @@ void cpu_physical_memory_rw(target_ulong addr, uint8_t *buf,
if (l >= 4 && ((addr & 3) == 0)) { if (l >= 4 && ((addr & 3) == 0)) {
/* 32 bit read access */ /* 32 bit read access */
val = ldl_raw(buf); val = ldl_raw(buf);
io_mem_write[io_index][2](addr, val, 0); io_mem_write[io_index][2](addr, val);
l = 4; l = 4;
} else if (l >= 2 && ((addr & 1) == 0)) { } else if (l >= 2 && ((addr & 1) == 0)) {
/* 16 bit read access */ /* 16 bit read access */
val = lduw_raw(buf); val = lduw_raw(buf);
io_mem_write[io_index][1](addr, val, 0); io_mem_write[io_index][1](addr, val);
l = 2; l = 2;
} else { } else {
/* 8 bit access */ /* 8 bit access */
val = ldub_raw(buf); val = ldub_raw(buf);
io_mem_write[io_index][0](addr, val, 0); io_mem_write[io_index][0](addr, val);
l = 1; l = 1;
} }
} else { } else {

View File

@ -70,20 +70,23 @@ static inline DATA_TYPE glue(io_read, SUFFIX)(unsigned long physaddr,
static inline void glue(io_write, SUFFIX)(unsigned long physaddr, static inline void glue(io_write, SUFFIX)(unsigned long physaddr,
DATA_TYPE val, DATA_TYPE val,
unsigned long tlb_addr) unsigned long tlb_addr,
void *retaddr)
{ {
int index; int index;
index = (tlb_addr >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); index = (tlb_addr >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
env->mem_write_vaddr = tlb_addr;
env->mem_write_pc = (unsigned long)retaddr;
#if SHIFT <= 2 #if SHIFT <= 2
io_mem_write[index][SHIFT](physaddr, val, tlb_addr); io_mem_write[index][SHIFT](physaddr, val);
#else #else
#ifdef TARGET_WORDS_BIGENDIAN #ifdef TARGET_WORDS_BIGENDIAN
io_mem_write[index][2](physaddr, val >> 32, tlb_addr); io_mem_write[index][2](physaddr, val >> 32);
io_mem_write[index][2](physaddr + 4, val, tlb_addr); io_mem_write[index][2](physaddr + 4, val);
#else #else
io_mem_write[index][2](physaddr, val, tlb_addr); io_mem_write[index][2](physaddr, val);
io_mem_write[index][2](physaddr + 4, val >> 32, tlb_addr); io_mem_write[index][2](physaddr + 4, val >> 32);
#endif #endif
#endif /* SHIFT > 2 */ #endif /* SHIFT > 2 */
} }
@ -193,7 +196,8 @@ void REGPARM(2) glue(glue(__st, SUFFIX), MMUSUFFIX)(unsigned long addr,
/* IO access */ /* IO access */
if ((addr & (DATA_SIZE - 1)) != 0) if ((addr & (DATA_SIZE - 1)) != 0)
goto do_unaligned_access; goto do_unaligned_access;
glue(io_write, SUFFIX)(physaddr, val, tlb_addr); retaddr = GETPC();
glue(io_write, SUFFIX)(physaddr, val, tlb_addr, retaddr);
} else if (((addr & 0xfff) + DATA_SIZE - 1) >= TARGET_PAGE_SIZE) { } else if (((addr & 0xfff) + DATA_SIZE - 1) >= TARGET_PAGE_SIZE) {
do_unaligned_access: do_unaligned_access:
retaddr = GETPC(); retaddr = GETPC();
@ -229,7 +233,7 @@ static void glue(glue(slow_st, SUFFIX), MMUSUFFIX)(unsigned long addr,
/* IO access */ /* IO access */
if ((addr & (DATA_SIZE - 1)) != 0) if ((addr & (DATA_SIZE - 1)) != 0)
goto do_unaligned_access; goto do_unaligned_access;
glue(io_write, SUFFIX)(physaddr, val, tlb_addr); glue(io_write, SUFFIX)(physaddr, val, tlb_addr, retaddr);
} else if (((addr & 0xfff) + DATA_SIZE - 1) >= TARGET_PAGE_SIZE) { } else if (((addr & 0xfff) + DATA_SIZE - 1) >= TARGET_PAGE_SIZE) {
do_unaligned_access: do_unaligned_access:
/* XXX: not efficient, but simple */ /* XXX: not efficient, but simple */

View File

@ -43,6 +43,13 @@ typedef struct CPUARMState {
struct TranslationBlock *current_tb; struct TranslationBlock *current_tb;
int user_mode_only; int user_mode_only;
/* in order to avoid passing too many arguments to the memory
write helpers, we store some rarely used information in the CPU
context) */
unsigned long mem_write_pc; /* host pc at which the memory was
written */
unsigned long mem_write_vaddr; /* target virtual addr at which the
memory was written */
/* user data */ /* user data */
void *opaque; void *opaque;
} CPUARMState; } CPUARMState;

View File

@ -22,6 +22,12 @@
#define TARGET_LONG_BITS 32 #define TARGET_LONG_BITS 32
/* target supports implicit self modifying code */
#define TARGET_HAS_SMC
/* support for self modifying code even if the modified instruction is
close to the modifying instruction */
#define TARGET_HAS_PRECISE_SMC
#include "cpu-defs.h" #include "cpu-defs.h"
#if defined(__i386__) && !defined(CONFIG_SOFTMMU) #if defined(__i386__) && !defined(CONFIG_SOFTMMU)
@ -331,8 +337,16 @@ typedef struct CPUX86State {
int interrupt_request; int interrupt_request;
int user_mode_only; /* user mode only simulation */ int user_mode_only; /* user mode only simulation */
/* soft mmu support */
uint32_t a20_mask; uint32_t a20_mask;
/* soft mmu support */
/* in order to avoid passing too many arguments to the memory
write helpers, we store some rarely used information in the CPU
context) */
unsigned long mem_write_pc; /* host pc at which the memory was
written */
unsigned long mem_write_vaddr; /* target virtual addr at which the
memory was written */
/* 0 = kernel, 1 = user */ /* 0 = kernel, 1 = user */
CPUTLBEntry tlb_read[2][CPU_TLB_SIZE]; CPUTLBEntry tlb_read[2][CPU_TLB_SIZE];
CPUTLBEntry tlb_write[2][CPU_TLB_SIZE]; CPUTLBEntry tlb_write[2][CPU_TLB_SIZE];
@ -358,7 +372,7 @@ int cpu_x86_inl(CPUX86State *env, int addr);
CPUX86State *cpu_x86_init(void); CPUX86State *cpu_x86_init(void);
int cpu_x86_exec(CPUX86State *s); int cpu_x86_exec(CPUX86State *s);
void cpu_x86_close(CPUX86State *s); void cpu_x86_close(CPUX86State *s);
int cpu_x86_get_pic_interrupt(CPUX86State *s); int cpu_get_pic_interrupt(CPUX86State *s);
/* this function must always be used to load data in the segment /* this function must always be used to load data in the segment
cache: it synchronizes the hflags with the segment cache values */ cache: it synchronizes the hflags with the segment cache values */

View File

@ -1189,6 +1189,8 @@ static inline int gen_intermediate_code_internal(CPUState *env,
return -1; return -1;
if (!(flags & HF_SS32_MASK)) if (!(flags & HF_SS32_MASK))
return -1; return -1;
if (tb->cflags & CF_SINGLE_INSN)
return -1;
gen_code_end = gen_code_ptr + gen_code_end = gen_code_ptr +
GEN_CODE_MAX_SIZE - GEN_CODE_MAX_INSN_SIZE; GEN_CODE_MAX_SIZE - GEN_CODE_MAX_INSN_SIZE;
dc->gen_code_ptr = gen_code_ptr; dc->gen_code_ptr = gen_code_ptr;

View File

@ -4491,7 +4491,7 @@ static inline int gen_intermediate_code_internal(CPUState *env,
DisasContext dc1, *dc = &dc1; DisasContext dc1, *dc = &dc1;
uint8_t *pc_ptr; uint8_t *pc_ptr;
uint16_t *gen_opc_end; uint16_t *gen_opc_end;
int flags, j, lj; int flags, j, lj, cflags;
uint8_t *pc_start; uint8_t *pc_start;
uint8_t *cs_base; uint8_t *cs_base;
@ -4499,6 +4499,7 @@ static inline int gen_intermediate_code_internal(CPUState *env,
pc_start = (uint8_t *)tb->pc; pc_start = (uint8_t *)tb->pc;
cs_base = (uint8_t *)tb->cs_base; cs_base = (uint8_t *)tb->cs_base;
flags = tb->flags; flags = tb->flags;
cflags = tb->cflags;
dc->pe = (flags >> HF_PE_SHIFT) & 1; dc->pe = (flags >> HF_PE_SHIFT) & 1;
dc->code32 = (flags >> HF_CS32_SHIFT) & 1; dc->code32 = (flags >> HF_CS32_SHIFT) & 1;
@ -4573,7 +4574,8 @@ static inline int gen_intermediate_code_internal(CPUState *env,
the flag and abort the translation to give the irqs a the flag and abort the translation to give the irqs a
change to be happen */ change to be happen */
if (dc->tf || dc->singlestep_enabled || if (dc->tf || dc->singlestep_enabled ||
(flags & HF_INHIBIT_IRQ_MASK)) { (flags & HF_INHIBIT_IRQ_MASK) ||
(cflags & CF_SINGLE_INSN)) {
gen_op_jmp_im(pc_ptr - dc->cs_base); gen_op_jmp_im(pc_ptr - dc->cs_base);
gen_eob(dc); gen_eob(dc);
break; break;

View File

@ -164,6 +164,13 @@ typedef struct CPUPPCState {
int user_mode_only; /* user mode only simulation */ int user_mode_only; /* user mode only simulation */
struct TranslationBlock *current_tb; /* currently executing TB */ struct TranslationBlock *current_tb; /* currently executing TB */
/* soft mmu support */ /* soft mmu support */
/* in order to avoid passing too many arguments to the memory
write helpers, we store some rarely used information in the CPU
context) */
unsigned long mem_write_pc; /* host pc at which the memory was
written */
unsigned long mem_write_vaddr; /* target virtual addr at which the
memory was written */
/* 0 = kernel, 1 = user (may have 2 = kernel code, 3 = user code ?) */ /* 0 = kernel, 1 = user (may have 2 = kernel code, 3 = user code ?) */
CPUTLBEntry tlb_read[2][CPU_TLB_SIZE]; CPUTLBEntry tlb_read[2][CPU_TLB_SIZE];
CPUTLBEntry tlb_write[2][CPU_TLB_SIZE]; CPUTLBEntry tlb_write[2][CPU_TLB_SIZE];

View File

@ -43,6 +43,14 @@ typedef struct CPUSPARCState {
void *opaque; void *opaque;
/* NOTE: we allow 8 more registers to handle wrapping */ /* NOTE: we allow 8 more registers to handle wrapping */
uint32_t regbase[NWINDOWS * 16 + 8]; uint32_t regbase[NWINDOWS * 16 + 8];
/* in order to avoid passing too many arguments to the memory
write helpers, we store some rarely used information in the CPU
context) */
unsigned long mem_write_pc; /* host pc at which the memory was
written */
unsigned long mem_write_vaddr; /* target virtual addr at which the
memory was written */
} CPUSPARCState; } CPUSPARCState;
CPUSPARCState *cpu_sparc_init(void); CPUSPARCState *cpu_sparc_init(void);