xhci: use DPRINTF() instead of fprintf(stderr, ...)

So we don't spam stderr with (guest-triggerable) messages by default.

Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
This commit is contained in:
Gerd Hoffmann 2014-02-06 13:13:21 +01:00
parent 4f9cc73422
commit d6bb65fcd2
1 changed files with 45 additions and 45 deletions

View File

@ -807,7 +807,7 @@ static inline int xhci_running(XHCIState *xhci)
static void xhci_die(XHCIState *xhci) static void xhci_die(XHCIState *xhci)
{ {
xhci->usbsts |= USBSTS_HCE; xhci->usbsts |= USBSTS_HCE;
fprintf(stderr, "xhci: asserted controller error\n"); DPRINTF("xhci: asserted controller error\n");
} }
static void xhci_write_event(XHCIState *xhci, XHCIEvent *event, int v) static void xhci_write_event(XHCIState *xhci, XHCIEvent *event, int v)
@ -854,8 +854,8 @@ static void xhci_events_update(XHCIState *xhci, int v)
erdp = xhci_addr64(intr->erdp_low, intr->erdp_high); erdp = xhci_addr64(intr->erdp_low, intr->erdp_high);
if (erdp < intr->er_start || if (erdp < intr->er_start ||
erdp >= (intr->er_start + TRB_SIZE*intr->er_size)) { erdp >= (intr->er_start + TRB_SIZE*intr->er_size)) {
fprintf(stderr, "xhci: ERDP out of bounds: "DMA_ADDR_FMT"\n", erdp); DPRINTF("xhci: ERDP out of bounds: "DMA_ADDR_FMT"\n", erdp);
fprintf(stderr, "xhci: ER[%d] at "DMA_ADDR_FMT" len %d\n", DPRINTF("xhci: ER[%d] at "DMA_ADDR_FMT" len %d\n",
v, intr->er_start, intr->er_size); v, intr->er_start, intr->er_size);
xhci_die(xhci); xhci_die(xhci);
return; return;
@ -923,7 +923,7 @@ static void xhci_event(XHCIState *xhci, XHCIEvent *event, int v)
if (intr->er_full) { if (intr->er_full) {
DPRINTF("xhci_event(): ER full, queueing\n"); DPRINTF("xhci_event(): ER full, queueing\n");
if (((intr->ev_buffer_put+1) % EV_QUEUE) == intr->ev_buffer_get) { if (((intr->ev_buffer_put+1) % EV_QUEUE) == intr->ev_buffer_get) {
fprintf(stderr, "xhci: event queue full, dropping event!\n"); DPRINTF("xhci: event queue full, dropping event!\n");
return; return;
} }
intr->ev_buffer[intr->ev_buffer_put++] = *event; intr->ev_buffer[intr->ev_buffer_put++] = *event;
@ -936,8 +936,8 @@ static void xhci_event(XHCIState *xhci, XHCIEvent *event, int v)
erdp = xhci_addr64(intr->erdp_low, intr->erdp_high); erdp = xhci_addr64(intr->erdp_low, intr->erdp_high);
if (erdp < intr->er_start || if (erdp < intr->er_start ||
erdp >= (intr->er_start + TRB_SIZE*intr->er_size)) { erdp >= (intr->er_start + TRB_SIZE*intr->er_size)) {
fprintf(stderr, "xhci: ERDP out of bounds: "DMA_ADDR_FMT"\n", erdp); DPRINTF("xhci: ERDP out of bounds: "DMA_ADDR_FMT"\n", erdp);
fprintf(stderr, "xhci: ER[%d] at "DMA_ADDR_FMT" len %d\n", DPRINTF("xhci: ER[%d] at "DMA_ADDR_FMT" len %d\n",
v, intr->er_start, intr->er_size); v, intr->er_start, intr->er_size);
xhci_die(xhci); xhci_die(xhci);
return; return;
@ -954,7 +954,7 @@ static void xhci_event(XHCIState *xhci, XHCIEvent *event, int v)
#endif #endif
intr->er_full = 1; intr->er_full = 1;
if (((intr->ev_buffer_put+1) % EV_QUEUE) == intr->ev_buffer_get) { if (((intr->ev_buffer_put+1) % EV_QUEUE) == intr->ev_buffer_get) {
fprintf(stderr, "xhci: event queue full, dropping event!\n"); DPRINTF("xhci: event queue full, dropping event!\n");
return; return;
} }
intr->ev_buffer[intr->ev_buffer_put++] = *event; intr->ev_buffer[intr->ev_buffer_put++] = *event;
@ -1072,7 +1072,7 @@ static void xhci_er_reset(XHCIState *xhci, int v)
} }
/* cache the (sole) event ring segment location */ /* cache the (sole) event ring segment location */
if (intr->erstsz != 1) { if (intr->erstsz != 1) {
fprintf(stderr, "xhci: invalid value for ERSTSZ: %d\n", intr->erstsz); DPRINTF("xhci: invalid value for ERSTSZ: %d\n", intr->erstsz);
xhci_die(xhci); xhci_die(xhci);
return; return;
} }
@ -1082,7 +1082,7 @@ static void xhci_er_reset(XHCIState *xhci, int v)
le32_to_cpus(&seg.addr_high); le32_to_cpus(&seg.addr_high);
le32_to_cpus(&seg.size); le32_to_cpus(&seg.size);
if (seg.size < 16 || seg.size > 4096) { if (seg.size < 16 || seg.size > 4096) {
fprintf(stderr, "xhci: invalid value for segment size: %d\n", seg.size); DPRINTF("xhci: invalid value for segment size: %d\n", seg.size);
xhci_die(xhci); xhci_die(xhci);
return; return;
} }
@ -1248,7 +1248,7 @@ static TRBCCode xhci_alloc_device_streams(XHCIState *xhci, unsigned int slotid,
r = usb_device_alloc_streams(eps[0]->dev, eps, nr_eps, req_nr_streams); r = usb_device_alloc_streams(eps[0]->dev, eps, nr_eps, req_nr_streams);
if (r != 0) { if (r != 0) {
fprintf(stderr, "xhci: alloc streams failed\n"); DPRINTF("xhci: alloc streams failed\n");
return CC_RESOURCE_ERROR; return CC_RESOURCE_ERROR;
} }
@ -1532,7 +1532,7 @@ static TRBCCode xhci_stop_ep(XHCIState *xhci, unsigned int slotid,
assert(slotid >= 1 && slotid <= xhci->numslots); assert(slotid >= 1 && slotid <= xhci->numslots);
if (epid < 1 || epid > 31) { if (epid < 1 || epid > 31) {
fprintf(stderr, "xhci: bad ep %d\n", epid); DPRINTF("xhci: bad ep %d\n", epid);
return CC_TRB_ERROR; return CC_TRB_ERROR;
} }
@ -1544,7 +1544,7 @@ static TRBCCode xhci_stop_ep(XHCIState *xhci, unsigned int slotid,
} }
if (xhci_ep_nuke_xfers(xhci, slotid, epid, CC_STOPPED) > 0) { if (xhci_ep_nuke_xfers(xhci, slotid, epid, CC_STOPPED) > 0) {
fprintf(stderr, "xhci: FIXME: endpoint stopped w/ xfers running, " DPRINTF("xhci: FIXME: endpoint stopped w/ xfers running, "
"data might be lost\n"); "data might be lost\n");
} }
@ -1569,7 +1569,7 @@ static TRBCCode xhci_reset_ep(XHCIState *xhci, unsigned int slotid,
assert(slotid >= 1 && slotid <= xhci->numslots); assert(slotid >= 1 && slotid <= xhci->numslots);
if (epid < 1 || epid > 31) { if (epid < 1 || epid > 31) {
fprintf(stderr, "xhci: bad ep %d\n", epid); DPRINTF("xhci: bad ep %d\n", epid);
return CC_TRB_ERROR; return CC_TRB_ERROR;
} }
@ -1583,13 +1583,13 @@ static TRBCCode xhci_reset_ep(XHCIState *xhci, unsigned int slotid,
epctx = slot->eps[epid-1]; epctx = slot->eps[epid-1];
if (epctx->state != EP_HALTED) { if (epctx->state != EP_HALTED) {
fprintf(stderr, "xhci: reset EP while EP %d not halted (%d)\n", DPRINTF("xhci: reset EP while EP %d not halted (%d)\n",
epid, epctx->state); epid, epctx->state);
return CC_CONTEXT_STATE_ERROR; return CC_CONTEXT_STATE_ERROR;
} }
if (xhci_ep_nuke_xfers(xhci, slotid, epid, 0) > 0) { if (xhci_ep_nuke_xfers(xhci, slotid, epid, 0) > 0) {
fprintf(stderr, "xhci: FIXME: endpoint reset w/ xfers running, " DPRINTF("xhci: FIXME: endpoint reset w/ xfers running, "
"data might be lost\n"); "data might be lost\n");
} }
@ -1626,7 +1626,7 @@ static TRBCCode xhci_set_ep_dequeue(XHCIState *xhci, unsigned int slotid,
assert(slotid >= 1 && slotid <= xhci->numslots); assert(slotid >= 1 && slotid <= xhci->numslots);
if (epid < 1 || epid > 31) { if (epid < 1 || epid > 31) {
fprintf(stderr, "xhci: bad ep %d\n", epid); DPRINTF("xhci: bad ep %d\n", epid);
return CC_TRB_ERROR; return CC_TRB_ERROR;
} }
@ -1643,7 +1643,7 @@ static TRBCCode xhci_set_ep_dequeue(XHCIState *xhci, unsigned int slotid,
epctx = slot->eps[epid-1]; epctx = slot->eps[epid-1];
if (epctx->state != EP_STOPPED) { if (epctx->state != EP_STOPPED) {
fprintf(stderr, "xhci: set EP dequeue pointer while EP %d not stopped\n", epid); DPRINTF("xhci: set EP dequeue pointer while EP %d not stopped\n", epid);
return CC_CONTEXT_STATE_ERROR; return CC_CONTEXT_STATE_ERROR;
} }
@ -1685,7 +1685,7 @@ static int xhci_xfer_create_sgl(XHCITransfer *xfer, int in_xfer)
switch (TRB_TYPE(*trb)) { switch (TRB_TYPE(*trb)) {
case TR_DATA: case TR_DATA:
if ((!(trb->control & TRB_TR_DIR)) != (!in_xfer)) { if ((!(trb->control & TRB_TR_DIR)) != (!in_xfer)) {
fprintf(stderr, "xhci: data direction mismatch for TR_DATA\n"); DPRINTF("xhci: data direction mismatch for TR_DATA\n");
goto err; goto err;
} }
/* fallthrough */ /* fallthrough */
@ -1695,7 +1695,7 @@ static int xhci_xfer_create_sgl(XHCITransfer *xfer, int in_xfer)
chunk = trb->status & 0x1ffff; chunk = trb->status & 0x1ffff;
if (trb->control & TRB_TR_IDT) { if (trb->control & TRB_TR_IDT) {
if (chunk > 8 || in_xfer) { if (chunk > 8 || in_xfer) {
fprintf(stderr, "xhci: invalid immediate data TRB\n"); DPRINTF("xhci: invalid immediate data TRB\n");
goto err; goto err;
} }
qemu_sglist_add(&xfer->sgl, trb->addr, chunk); qemu_sglist_add(&xfer->sgl, trb->addr, chunk);
@ -1824,7 +1824,7 @@ static int xhci_setup_packet(XHCITransfer *xfer)
} else { } else {
ep = xhci_epid_to_usbep(xhci, xfer->slotid, xfer->epid); ep = xhci_epid_to_usbep(xhci, xfer->slotid, xfer->epid);
if (!ep) { if (!ep) {
fprintf(stderr, "xhci: slot %d has no device\n", DPRINTF("xhci: slot %d has no device\n",
xfer->slotid); xfer->slotid);
return -1; return -1;
} }
@ -1887,7 +1887,7 @@ static int xhci_complete_packet(XHCITransfer *xfer)
xhci_stall_ep(xfer); xhci_stall_ep(xfer);
break; break;
default: default:
fprintf(stderr, "%s: FIXME: status = %d\n", __func__, DPRINTF("%s: FIXME: status = %d\n", __func__,
xfer->packet.status); xfer->packet.status);
FIXME("unhandled USB_RET_*"); FIXME("unhandled USB_RET_*");
} }
@ -1911,21 +1911,21 @@ static int xhci_fire_ctl_transfer(XHCIState *xhci, XHCITransfer *xfer)
/* do some sanity checks */ /* do some sanity checks */
if (TRB_TYPE(*trb_setup) != TR_SETUP) { if (TRB_TYPE(*trb_setup) != TR_SETUP) {
fprintf(stderr, "xhci: ep0 first TD not SETUP: %d\n", DPRINTF("xhci: ep0 first TD not SETUP: %d\n",
TRB_TYPE(*trb_setup)); TRB_TYPE(*trb_setup));
return -1; return -1;
} }
if (TRB_TYPE(*trb_status) != TR_STATUS) { if (TRB_TYPE(*trb_status) != TR_STATUS) {
fprintf(stderr, "xhci: ep0 last TD not STATUS: %d\n", DPRINTF("xhci: ep0 last TD not STATUS: %d\n",
TRB_TYPE(*trb_status)); TRB_TYPE(*trb_status));
return -1; return -1;
} }
if (!(trb_setup->control & TRB_TR_IDT)) { if (!(trb_setup->control & TRB_TR_IDT)) {
fprintf(stderr, "xhci: Setup TRB doesn't have IDT set\n"); DPRINTF("xhci: Setup TRB doesn't have IDT set\n");
return -1; return -1;
} }
if ((trb_setup->status & 0x1ffff) != 8) { if ((trb_setup->status & 0x1ffff) != 8) {
fprintf(stderr, "xhci: Setup TRB has bad length (%d)\n", DPRINTF("xhci: Setup TRB has bad length (%d)\n",
(trb_setup->status & 0x1ffff)); (trb_setup->status & 0x1ffff));
return -1; return -1;
} }
@ -2076,12 +2076,12 @@ static void xhci_kick_ep(XHCIState *xhci, unsigned int slotid,
assert(epid >= 1 && epid <= 31); assert(epid >= 1 && epid <= 31);
if (!xhci->slots[slotid-1].enabled) { if (!xhci->slots[slotid-1].enabled) {
fprintf(stderr, "xhci: xhci_kick_ep for disabled slot %d\n", slotid); DPRINTF("xhci: xhci_kick_ep for disabled slot %d\n", slotid);
return; return;
} }
epctx = xhci->slots[slotid-1].eps[epid-1]; epctx = xhci->slots[slotid-1].eps[epid-1];
if (!epctx) { if (!epctx) {
fprintf(stderr, "xhci: xhci_kick_ep for disabled endpoint %d,%d\n", DPRINTF("xhci: xhci_kick_ep for disabled endpoint %d,%d\n",
epid, slotid); epid, slotid);
return; return;
} }
@ -2186,14 +2186,14 @@ static void xhci_kick_ep(XHCIState *xhci, unsigned int slotid,
epctx->next_xfer = (epctx->next_xfer + 1) % TD_QUEUE; epctx->next_xfer = (epctx->next_xfer + 1) % TD_QUEUE;
ep = xfer->packet.ep; ep = xfer->packet.ep;
} else { } else {
fprintf(stderr, "xhci: error firing CTL transfer\n"); DPRINTF("xhci: error firing CTL transfer\n");
} }
} else { } else {
if (xhci_fire_transfer(xhci, xfer, epctx) >= 0) { if (xhci_fire_transfer(xhci, xfer, epctx) >= 0) {
epctx->next_xfer = (epctx->next_xfer + 1) % TD_QUEUE; epctx->next_xfer = (epctx->next_xfer + 1) % TD_QUEUE;
} else { } else {
if (!xfer->timed_xfer) { if (!xfer->timed_xfer) {
fprintf(stderr, "xhci: error firing data transfer\n"); DPRINTF("xhci: error firing data transfer\n");
} }
} }
} }
@ -2296,7 +2296,7 @@ static TRBCCode xhci_address_slot(XHCIState *xhci, unsigned int slotid,
xhci_dma_read_u32s(xhci, ictx, ictl_ctx, sizeof(ictl_ctx)); xhci_dma_read_u32s(xhci, ictx, ictl_ctx, sizeof(ictl_ctx));
if (ictl_ctx[0] != 0x0 || ictl_ctx[1] != 0x3) { if (ictl_ctx[0] != 0x0 || ictl_ctx[1] != 0x3) {
fprintf(stderr, "xhci: invalid input context control %08x %08x\n", DPRINTF("xhci: invalid input context control %08x %08x\n",
ictl_ctx[0], ictl_ctx[1]); ictl_ctx[0], ictl_ctx[1]);
return CC_TRB_ERROR; return CC_TRB_ERROR;
} }
@ -2312,14 +2312,14 @@ static TRBCCode xhci_address_slot(XHCIState *xhci, unsigned int slotid,
uport = xhci_lookup_uport(xhci, slot_ctx); uport = xhci_lookup_uport(xhci, slot_ctx);
if (uport == NULL) { if (uport == NULL) {
fprintf(stderr, "xhci: port not found\n"); DPRINTF("xhci: port not found\n");
return CC_TRB_ERROR; return CC_TRB_ERROR;
} }
trace_usb_xhci_slot_address(slotid, uport->path); trace_usb_xhci_slot_address(slotid, uport->path);
dev = uport->dev; dev = uport->dev;
if (!dev || !dev->attached) { if (!dev || !dev->attached) {
fprintf(stderr, "xhci: port %s not connected\n", uport->path); DPRINTF("xhci: port %s not connected\n", uport->path);
return CC_USB_TRANSACTION_ERROR; return CC_USB_TRANSACTION_ERROR;
} }
@ -2328,7 +2328,7 @@ static TRBCCode xhci_address_slot(XHCIState *xhci, unsigned int slotid,
continue; continue;
} }
if (xhci->slots[i].uport == uport) { if (xhci->slots[i].uport == uport) {
fprintf(stderr, "xhci: port %s already assigned to slot %d\n", DPRINTF("xhci: port %s already assigned to slot %d\n",
uport->path, i+1); uport->path, i+1);
return CC_TRB_ERROR; return CC_TRB_ERROR;
} }
@ -2412,7 +2412,7 @@ static TRBCCode xhci_configure_slot(XHCIState *xhci, unsigned int slotid,
xhci_dma_read_u32s(xhci, ictx, ictl_ctx, sizeof(ictl_ctx)); xhci_dma_read_u32s(xhci, ictx, ictl_ctx, sizeof(ictl_ctx));
if ((ictl_ctx[0] & 0x3) != 0x0 || (ictl_ctx[1] & 0x3) != 0x1) { if ((ictl_ctx[0] & 0x3) != 0x0 || (ictl_ctx[1] & 0x3) != 0x1) {
fprintf(stderr, "xhci: invalid input context control %08x %08x\n", DPRINTF("xhci: invalid input context control %08x %08x\n",
ictl_ctx[0], ictl_ctx[1]); ictl_ctx[0], ictl_ctx[1]);
return CC_TRB_ERROR; return CC_TRB_ERROR;
} }
@ -2421,7 +2421,7 @@ static TRBCCode xhci_configure_slot(XHCIState *xhci, unsigned int slotid,
xhci_dma_read_u32s(xhci, octx, slot_ctx, sizeof(slot_ctx)); xhci_dma_read_u32s(xhci, octx, slot_ctx, sizeof(slot_ctx));
if (SLOT_STATE(slot_ctx[3]) < SLOT_ADDRESSED) { if (SLOT_STATE(slot_ctx[3]) < SLOT_ADDRESSED) {
fprintf(stderr, "xhci: invalid slot state %08x\n", slot_ctx[3]); DPRINTF("xhci: invalid slot state %08x\n", slot_ctx[3]);
return CC_CONTEXT_STATE_ERROR; return CC_CONTEXT_STATE_ERROR;
} }
@ -2494,7 +2494,7 @@ static TRBCCode xhci_evaluate_slot(XHCIState *xhci, unsigned int slotid,
xhci_dma_read_u32s(xhci, ictx, ictl_ctx, sizeof(ictl_ctx)); xhci_dma_read_u32s(xhci, ictx, ictl_ctx, sizeof(ictl_ctx));
if (ictl_ctx[0] != 0x0 || ictl_ctx[1] & ~0x3) { if (ictl_ctx[0] != 0x0 || ictl_ctx[1] & ~0x3) {
fprintf(stderr, "xhci: invalid input context control %08x %08x\n", DPRINTF("xhci: invalid input context control %08x %08x\n",
ictl_ctx[0], ictl_ctx[1]); ictl_ctx[0], ictl_ctx[1]);
return CC_TRB_ERROR; return CC_TRB_ERROR;
} }
@ -2573,11 +2573,11 @@ static unsigned int xhci_get_slot(XHCIState *xhci, XHCIEvent *event, XHCITRB *tr
unsigned int slotid; unsigned int slotid;
slotid = (trb->control >> TRB_CR_SLOTID_SHIFT) & TRB_CR_SLOTID_MASK; slotid = (trb->control >> TRB_CR_SLOTID_SHIFT) & TRB_CR_SLOTID_MASK;
if (slotid < 1 || slotid > xhci->numslots) { if (slotid < 1 || slotid > xhci->numslots) {
fprintf(stderr, "xhci: bad slot id %d\n", slotid); DPRINTF("xhci: bad slot id %d\n", slotid);
event->ccode = CC_TRB_ERROR; event->ccode = CC_TRB_ERROR;
return 0; return 0;
} else if (!xhci->slots[slotid-1].enabled) { } else if (!xhci->slots[slotid-1].enabled) {
fprintf(stderr, "xhci: slot id %d not enabled\n", slotid); DPRINTF("xhci: slot id %d not enabled\n", slotid);
event->ccode = CC_SLOT_NOT_ENABLED_ERROR; event->ccode = CC_SLOT_NOT_ENABLED_ERROR;
return 0; return 0;
} }
@ -2693,7 +2693,7 @@ static void xhci_process_commands(XHCIState *xhci)
} }
} }
if (i >= xhci->numslots) { if (i >= xhci->numslots) {
fprintf(stderr, "xhci: no device slots available\n"); DPRINTF("xhci: no device slots available\n");
event.ccode = CC_NO_SLOTS_ERROR; event.ccode = CC_NO_SLOTS_ERROR;
} else { } else {
slotid = i+1; slotid = i+1;
@ -2885,7 +2885,7 @@ static void xhci_reset(DeviceState *dev)
trace_usb_xhci_reset(); trace_usb_xhci_reset();
if (!(xhci->usbsts & USBSTS_HCH)) { if (!(xhci->usbsts & USBSTS_HCH)) {
fprintf(stderr, "xhci: reset while running!\n"); DPRINTF("xhci: reset while running!\n");
} }
xhci->usbcmd = 0; xhci->usbcmd = 0;
@ -3063,7 +3063,7 @@ static void xhci_port_write(void *ptr, hwaddr reg,
/* windows does this for some reason, don't spam stderr */ /* windows does this for some reason, don't spam stderr */
break; break;
default: default:
fprintf(stderr, "%s: ignore pls write (old %d, new %d)\n", DPRINTF("%s: ignore pls write (old %d, new %d)\n",
__func__, old_pls, new_pls); __func__, old_pls, new_pls);
break; break;
} }
@ -3314,7 +3314,7 @@ static void xhci_doorbell_write(void *ptr, hwaddr reg,
trace_usb_xhci_doorbell_write(reg, val); trace_usb_xhci_doorbell_write(reg, val);
if (!xhci_running(xhci)) { if (!xhci_running(xhci)) {
fprintf(stderr, "xhci: wrote doorbell while xHC stopped or paused\n"); DPRINTF("xhci: wrote doorbell while xHC stopped or paused\n");
return; return;
} }
@ -3324,16 +3324,16 @@ static void xhci_doorbell_write(void *ptr, hwaddr reg,
if (val == 0) { if (val == 0) {
xhci_process_commands(xhci); xhci_process_commands(xhci);
} else { } else {
fprintf(stderr, "xhci: bad doorbell 0 write: 0x%x\n", DPRINTF("xhci: bad doorbell 0 write: 0x%x\n",
(uint32_t)val); (uint32_t)val);
} }
} else { } else {
epid = val & 0xff; epid = val & 0xff;
streamid = (val >> 16) & 0xffff; streamid = (val >> 16) & 0xffff;
if (reg > xhci->numslots) { if (reg > xhci->numslots) {
fprintf(stderr, "xhci: bad doorbell %d\n", (int)reg); DPRINTF("xhci: bad doorbell %d\n", (int)reg);
} else if (epid > 31) { } else if (epid > 31) {
fprintf(stderr, "xhci: bad doorbell %d write: 0x%x\n", DPRINTF("xhci: bad doorbell %d write: 0x%x\n",
(int)reg, (uint32_t)val); (int)reg, (uint32_t)val);
} else { } else {
xhci_kick_ep(xhci, reg, epid, streamid); xhci_kick_ep(xhci, reg, epid, streamid);