mirror of https://github.com/xemu-project/xemu.git
* target-cris/op.c: Make sure the bit-test insn only updates the XNZ flags.
* target-cris/helper.c: Update ERP for user-mode simulation aswell. * hw/etraxfs_timer.c: Support multiple timers. * hw/etraxfs_ser.c: Multiple ports, the data just goes to stdout. git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@4004 c046a42c-6fe2-441c-8c8c-71466251a162
This commit is contained in:
parent
bffd92fed9
commit
bbaf29c769
|
@ -26,23 +26,28 @@
|
|||
#include <ctype.h>
|
||||
#include "hw.h"
|
||||
|
||||
#define RW_TR_DMA_EN 0xb0026004
|
||||
#define RW_DOUT 0xb002601c
|
||||
#define RW_STAT_DIN 0xb0026020
|
||||
#define R_STAT_DIN 0xb0026024
|
||||
#define D(x)
|
||||
|
||||
#define RW_TR_DMA_EN 0x04
|
||||
#define RW_DOUT 0x1c
|
||||
#define RW_STAT_DIN 0x20
|
||||
#define R_STAT_DIN 0x24
|
||||
|
||||
static uint32_t ser_readb (void *opaque, target_phys_addr_t addr)
|
||||
{
|
||||
CPUState *env = opaque;
|
||||
CPUState *env;
|
||||
uint32_t r = 0;
|
||||
printf ("%s %x pc=%x\n", __func__, addr, env->pc);
|
||||
|
||||
env = opaque;
|
||||
D(printf ("%s %x pc=%x\n", __func__, addr, env->pc));
|
||||
return r;
|
||||
}
|
||||
static uint32_t ser_readw (void *opaque, target_phys_addr_t addr)
|
||||
{
|
||||
CPUState *env = opaque;
|
||||
CPUState *env;
|
||||
uint32_t r = 0;
|
||||
printf ("%s %x pc=%x\n", __func__, addr, env->pc);
|
||||
env = opaque;
|
||||
D(printf ("%s %x pc=%x\n", __func__, addr, env->pc));
|
||||
return r;
|
||||
}
|
||||
|
||||
|
@ -51,7 +56,7 @@ static uint32_t ser_readl (void *opaque, target_phys_addr_t addr)
|
|||
CPUState *env = opaque;
|
||||
uint32_t r = 0;
|
||||
|
||||
switch (addr)
|
||||
switch (addr & 0xfff)
|
||||
{
|
||||
case RW_TR_DMA_EN:
|
||||
break;
|
||||
|
@ -70,21 +75,23 @@ static uint32_t ser_readl (void *opaque, target_phys_addr_t addr)
|
|||
static void
|
||||
ser_writeb (void *opaque, target_phys_addr_t addr, uint32_t value)
|
||||
{
|
||||
CPUState *env = opaque;
|
||||
printf ("%s %x %x pc=%x\n", __func__, addr, value, env->pc);
|
||||
CPUState *env;
|
||||
env = opaque;
|
||||
D(printf ("%s %x %x pc=%x\n", __func__, addr, value, env->pc));
|
||||
}
|
||||
static void
|
||||
ser_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
|
||||
{
|
||||
CPUState *env = opaque;
|
||||
printf ("%s %x %x pc=%x\n", __func__, addr, value, env->pc);
|
||||
CPUState *env;
|
||||
env = opaque;
|
||||
D(printf ("%s %x %x pc=%x\n", __func__, addr, value, env->pc));
|
||||
}
|
||||
static void
|
||||
ser_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
|
||||
{
|
||||
CPUState *env = opaque;
|
||||
|
||||
switch (addr)
|
||||
switch (addr & 0xfff)
|
||||
{
|
||||
case RW_TR_DMA_EN:
|
||||
break;
|
||||
|
@ -119,4 +126,7 @@ void etraxfs_ser_init(CPUState *env, qemu_irq *irqs)
|
|||
|
||||
ser_regs = cpu_register_io_memory(0, ser_read, ser_write, env);
|
||||
cpu_register_physical_memory (0xb0026000, 0x3c, ser_regs);
|
||||
cpu_register_physical_memory (0xb0028000, 0x3c, ser_regs);
|
||||
cpu_register_physical_memory (0xb002a000, 0x3c, ser_regs);
|
||||
cpu_register_physical_memory (0xb002c000, 0x3c, ser_regs);
|
||||
}
|
||||
|
|
|
@ -26,6 +26,8 @@
|
|||
#include "hw.h"
|
||||
#include "qemu-timer.h"
|
||||
|
||||
#define D(x)
|
||||
|
||||
void etrax_ack_irq(CPUState *env, uint32_t mask);
|
||||
|
||||
#define R_TIME 0xb001e038
|
||||
|
@ -54,9 +56,18 @@ struct fs_timer_t {
|
|||
CPUState *env;
|
||||
qemu_irq *irq;
|
||||
uint32_t mask;
|
||||
struct timeval last;
|
||||
};
|
||||
|
||||
static struct fs_timer_t timer0;
|
||||
static struct fs_timer_t timer[2];
|
||||
|
||||
static inline int timer_index(target_phys_addr_t addr)
|
||||
{
|
||||
int t = 0;
|
||||
if (addr >= 0xb005e000)
|
||||
t = 1;
|
||||
return t;
|
||||
}
|
||||
|
||||
/* diff two timevals. Return a single int in us. */
|
||||
int diff_timeval_us(struct timeval *a, struct timeval *b)
|
||||
|
@ -71,16 +82,20 @@ int diff_timeval_us(struct timeval *a, struct timeval *b)
|
|||
|
||||
static uint32_t timer_readb (void *opaque, target_phys_addr_t addr)
|
||||
{
|
||||
CPUState *env = opaque;
|
||||
CPUState *env;
|
||||
uint32_t r = 0;
|
||||
printf ("%s %x pc=%x\n", __func__, addr, env->pc);
|
||||
|
||||
env = opaque;
|
||||
D(printf ("%s %x pc=%x\n", __func__, addr, env->pc));
|
||||
return r;
|
||||
}
|
||||
static uint32_t timer_readw (void *opaque, target_phys_addr_t addr)
|
||||
{
|
||||
CPUState *env = opaque;
|
||||
CPUState *env;
|
||||
uint32_t r = 0;
|
||||
printf ("%s %x pc=%x\n", __func__, addr, env->pc);
|
||||
|
||||
env = opaque;
|
||||
D(printf ("%s %x pc=%x\n", __func__, addr, env->pc));
|
||||
return r;
|
||||
}
|
||||
|
||||
|
@ -88,24 +103,25 @@ static uint32_t timer_readl (void *opaque, target_phys_addr_t addr)
|
|||
{
|
||||
CPUState *env = opaque;
|
||||
uint32_t r = 0;
|
||||
int t = timer_index(addr);
|
||||
|
||||
switch (addr) {
|
||||
case R_TMR0_DATA:
|
||||
break;
|
||||
case R_TMR1_DATA:
|
||||
printf ("R_TMR1_DATA\n");
|
||||
D(printf ("R_TMR1_DATA\n"));
|
||||
break;
|
||||
case R_TIME:
|
||||
{
|
||||
static struct timeval last;
|
||||
struct timeval now;
|
||||
gettimeofday(&now, NULL);
|
||||
if (!(last.tv_sec == 0 && last.tv_usec == 0)) {
|
||||
r = diff_timeval_us(&now, &last);
|
||||
if (!(timer[t].last.tv_sec == 0
|
||||
&& timer[t].last.tv_usec == 0)) {
|
||||
r = diff_timeval_us(&now, &timer[t].last);
|
||||
r *= 1000; /* convert to ns. */
|
||||
r++; /* make sure we increase for each call. */
|
||||
}
|
||||
last = now;
|
||||
timer[t].last = now;
|
||||
break;
|
||||
}
|
||||
|
||||
|
@ -125,14 +141,16 @@ static uint32_t timer_readl (void *opaque, target_phys_addr_t addr)
|
|||
static void
|
||||
timer_writeb (void *opaque, target_phys_addr_t addr, uint32_t value)
|
||||
{
|
||||
CPUState *env = opaque;
|
||||
printf ("%s %x %x pc=%x\n", __func__, addr, value, env->pc);
|
||||
CPUState *env;
|
||||
env = opaque;
|
||||
D(printf ("%s %x %x pc=%x\n", __func__, addr, value, env->pc));
|
||||
}
|
||||
static void
|
||||
timer_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
|
||||
{
|
||||
CPUState *env = opaque;
|
||||
printf ("%s %x %x pc=%x\n", __func__, addr, value, env->pc);
|
||||
CPUState *env;
|
||||
env = opaque;
|
||||
D(printf ("%s %x %x pc=%x\n", __func__, addr, value, env->pc));
|
||||
}
|
||||
|
||||
static void write_ctrl(struct fs_timer_t *t, uint32_t v)
|
||||
|
@ -165,7 +183,7 @@ static void write_ctrl(struct fs_timer_t *t, uint32_t v)
|
|||
if (t->limit > 2048)
|
||||
{
|
||||
t->scale = 2048;
|
||||
ptimer_set_period(timer0.ptimer, freq_hz / t->scale);
|
||||
ptimer_set_period(t->ptimer, freq_hz / t->scale);
|
||||
}
|
||||
|
||||
printf ("op=%d\n", op);
|
||||
|
@ -187,11 +205,11 @@ static void write_ctrl(struct fs_timer_t *t, uint32_t v)
|
|||
}
|
||||
}
|
||||
|
||||
static void timer_ack_irq(void)
|
||||
static void timer_ack_irq(struct fs_timer_t *t)
|
||||
{
|
||||
if (!(r_intr & timer0.mask & rw_intr_mask)) {
|
||||
qemu_irq_lower(timer0.irq[0]);
|
||||
etrax_ack_irq(timer0.env, 1 << 0x1b);
|
||||
if (!(r_intr & t->mask & rw_intr_mask)) {
|
||||
qemu_irq_lower(t->irq[0]);
|
||||
etrax_ack_irq(t->env, 1 << 0x1b);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -199,31 +217,33 @@ static void
|
|||
timer_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
|
||||
{
|
||||
CPUState *env = opaque;
|
||||
printf ("%s %x %x pc=%x\n",
|
||||
__func__, addr, value, env->pc);
|
||||
int t = timer_index(addr);
|
||||
|
||||
D(printf ("%s %x %x pc=%x\n",
|
||||
__func__, addr, value, env->pc));
|
||||
switch (addr)
|
||||
{
|
||||
case RW_TMR0_DIV:
|
||||
printf ("RW_TMR0_DIV=%x\n", value);
|
||||
timer0.limit = value;
|
||||
D(printf ("RW_TMR0_DIV=%x\n", value));
|
||||
timer[t].limit = value;
|
||||
break;
|
||||
case RW_TMR0_CTRL:
|
||||
printf ("RW_TMR0_CTRL=%x\n", value);
|
||||
write_ctrl(&timer0, value);
|
||||
D(printf ("RW_TMR0_CTRL=%x\n", value));
|
||||
write_ctrl(&timer[t], value);
|
||||
break;
|
||||
case RW_TMR1_DIV:
|
||||
printf ("RW_TMR1_DIV=%x\n", value);
|
||||
D(printf ("RW_TMR1_DIV=%x\n", value));
|
||||
break;
|
||||
case RW_TMR1_CTRL:
|
||||
printf ("RW_TMR1_CTRL=%x\n", value);
|
||||
D(printf ("RW_TMR1_CTRL=%x\n", value));
|
||||
break;
|
||||
case RW_INTR_MASK:
|
||||
printf ("RW_INTR_MASK=%x\n", value);
|
||||
D(printf ("RW_INTR_MASK=%x\n", value));
|
||||
rw_intr_mask = value;
|
||||
break;
|
||||
case RW_ACK_INTR:
|
||||
r_intr &= ~value;
|
||||
timer_ack_irq();
|
||||
timer_ack_irq(&timer[t]);
|
||||
break;
|
||||
default:
|
||||
printf ("%s %x %x pc=%x\n",
|
||||
|
@ -247,7 +267,6 @@ static CPUWriteMemoryFunc *timer_write[] = {
|
|||
static void timer_irq(void *opaque)
|
||||
{
|
||||
struct fs_timer_t *t = opaque;
|
||||
|
||||
r_intr |= t->mask;
|
||||
if (t->mask & rw_intr_mask) {
|
||||
qemu_irq_raise(t->irq[0]);
|
||||
|
@ -258,12 +277,19 @@ void etraxfs_timer_init(CPUState *env, qemu_irq *irqs)
|
|||
{
|
||||
int timer_regs;
|
||||
|
||||
timer0.bh = qemu_bh_new(timer_irq, &timer0);
|
||||
timer0.ptimer = ptimer_init(timer0.bh);
|
||||
timer0.irq = irqs + 0x1b;
|
||||
timer0.mask = 1;
|
||||
timer0.env = env;
|
||||
timer[0].bh = qemu_bh_new(timer_irq, &timer[0]);
|
||||
timer[0].ptimer = ptimer_init(timer[0].bh);
|
||||
timer[0].irq = irqs + 0x1b;
|
||||
timer[0].mask = 1;
|
||||
timer[0].env = env;
|
||||
|
||||
timer[1].bh = qemu_bh_new(timer_irq, &timer[1]);
|
||||
timer[1].ptimer = ptimer_init(timer[1].bh);
|
||||
timer[1].irq = irqs + 0x1b;
|
||||
timer[1].mask = 1;
|
||||
timer[1].env = env;
|
||||
|
||||
timer_regs = cpu_register_io_memory(0, timer_read, timer_write, env);
|
||||
cpu_register_physical_memory (0xb001e000, 0x5c, timer_regs);
|
||||
cpu_register_physical_memory (0xb005e000, 0x5c, timer_regs);
|
||||
}
|
||||
|
|
|
@ -32,22 +32,23 @@
|
|||
|
||||
void do_interrupt (CPUState *env)
|
||||
{
|
||||
env->exception_index = -1;
|
||||
env->exception_index = -1;
|
||||
env->pregs[PR_ERP] = env->pc;
|
||||
}
|
||||
|
||||
int cpu_cris_handle_mmu_fault(CPUState * env, target_ulong address, int rw,
|
||||
int mmu_idx, int is_softmmu)
|
||||
{
|
||||
env->exception_index = 0xaa;
|
||||
env->debug1 = address;
|
||||
cpu_dump_state(env, stderr, fprintf, 0);
|
||||
printf("%s addr=%x env->pc=%x\n", __func__, address, env->pc);
|
||||
return 1;
|
||||
env->exception_index = 0xaa;
|
||||
env->debug1 = address;
|
||||
cpu_dump_state(env, stderr, fprintf, 0);
|
||||
env->pregs[PR_ERP] = env->pc;
|
||||
return 1;
|
||||
}
|
||||
|
||||
target_phys_addr_t cpu_get_phys_page_debug(CPUState * env, target_ulong addr)
|
||||
{
|
||||
return addr;
|
||||
return addr;
|
||||
}
|
||||
|
||||
#else /* !CONFIG_USER_ONLY */
|
||||
|
@ -61,7 +62,6 @@ int cpu_cris_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
|
|||
|
||||
address &= TARGET_PAGE_MASK;
|
||||
prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
|
||||
// printf ("%s pc=%x %x w=%d smmu=%d\n", __func__, env->pc, address, rw, is_softmmu);
|
||||
miss = cris_mmu_translate(&res, env, address, rw, mmu_idx);
|
||||
if (miss)
|
||||
{
|
||||
|
@ -73,7 +73,6 @@ int cpu_cris_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
|
|||
{
|
||||
phy = res.phy;
|
||||
}
|
||||
// printf ("a=%x phy=%x\n", address, phy);
|
||||
return tlb_set_page(env, address, phy, prot, mmu_idx, is_softmmu);
|
||||
}
|
||||
|
||||
|
@ -113,7 +112,6 @@ void do_interrupt(CPUState *env)
|
|||
|
||||
break;
|
||||
case EXCP_MMU_MISS:
|
||||
// printf ("MMU miss\n");
|
||||
irqnum = 4;
|
||||
ebp = env->pregs[PR_EBP];
|
||||
isr = ldl_code(ebp + irqnum * 4);
|
||||
|
|
|
@ -967,6 +967,8 @@ void OPPROTO op_btst_T0_T1 (void)
|
|||
The N flag is set according to the selected bit in the dest reg.
|
||||
The Z flag is set if the selected bit and all bits to the right are
|
||||
zero.
|
||||
The X flag is cleared.
|
||||
Other flags are left untouched.
|
||||
The destination reg is not affected.*/
|
||||
unsigned int fz, sbit, bset, mask, masked_t0;
|
||||
|
||||
|
@ -975,8 +977,11 @@ void OPPROTO op_btst_T0_T1 (void)
|
|||
mask = sbit == 31 ? -1 : (1 << (sbit + 1)) - 1;
|
||||
masked_t0 = T0 & mask;
|
||||
fz = !(masked_t0 | bset);
|
||||
|
||||
/* Clear the X, N and Z flags. */
|
||||
T0 = env->pregs[PR_CCS] & ~(X_FLAG | N_FLAG | Z_FLAG);
|
||||
/* Set the N and Z flags accordingly. */
|
||||
T0 = (bset << 3) | (fz << 2);
|
||||
T0 |= (bset << 3) | (fz << 2);
|
||||
RETURN();
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue