ARM VFP support (Paul Brook)

git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@1309 c046a42c-6fe2-441c-8c8c-71466251a162
This commit is contained in:
bellard 2005-02-22 19:27:29 +00:00
parent 55754d9ef2
commit b7bcbe9524
8 changed files with 1104 additions and 14 deletions

View File

@ -15,6 +15,7 @@ version 0.6.2:
- PC parallel port support (Mark Jonckheere)
- initial SPARC64 support (Blue Swirl)
- armv5te user mode support (Paul Brook)
- ARM VFP support (Paul Brook)
version 0.6.1:

View File

@ -259,6 +259,10 @@ ifeq ($(TARGET_BASE_ARCH), sparc)
LIBOBJS+= op_helper.o helper.o
endif
ifeq ($(TARGET_BASE_ARCH), arm)
LIBOBJS+= op_helper.o
endif
# NOTE: the disassembler code is only needed for debugging
LIBOBJS+=disas.o
ifeq ($(findstring i386, $(TARGET_ARCH) $(ARCH)),i386)

View File

@ -346,7 +346,8 @@ int cpu_exec(CPUState *env1)
cs_base = env->segs[R_CS].base;
pc = cs_base + env->eip;
#elif defined(TARGET_ARM)
flags = env->thumb;
flags = env->thumb | (env->vfp.vec_len << 1)
| (env->vfp.vec_stride << 4);
cs_base = 0;
pc = env->regs[15];
#elif defined(TARGET_SPARC)
@ -619,6 +620,7 @@ int cpu_exec(CPUState *env1)
#endif
#elif defined(TARGET_ARM)
env->cpsr = compute_cpsr();
/* XXX: Save/restore host fpu exception state?. */
#elif defined(TARGET_SPARC)
#elif defined(TARGET_PPC)
#else

View File

@ -29,6 +29,14 @@
#define EXCP_PREFETCH_ABORT 3
#define EXCP_DATA_ABORT 4
/* We currently assume float and double are IEEE single and double
precision respectively.
Doing runtime conversions is tricky because VFP registers may contain
integer values (eg. as the result of a FTOSI instruction).
A double precision register load/store must also load/store the
corresponding single precision pair, although it is undefined how
these overlap. */
typedef struct CPUARMState {
uint32_t regs[16];
uint32_t cpsr;
@ -50,6 +58,7 @@ typedef struct CPUARMState {
int interrupt_request;
struct TranslationBlock *current_tb;
int user_mode_only;
uint32_t address;
/* in order to avoid passing too many arguments to the memory
write helpers, we store some rarely used information in the CPU
@ -58,6 +67,25 @@ typedef struct CPUARMState {
written */
unsigned long mem_write_vaddr; /* target virtual addr at which the
memory was written */
/* VFP coprocessor state. */
struct {
union {
float s[32];
double d[16];
} regs;
/* We store these fpcsr fields separately for convenience. */
int vec_len;
int vec_stride;
uint32_t fpscr;
/* Temporary variables if we don't have spare fp regs. */
float tmp0s, tmp1s;
double tmp0d, tmp1d;
} vfp;
/* user data */
void *opaque;
} CPUARMState;

View File

@ -24,13 +24,16 @@ register uint32_t T0 asm(AREG1);
register uint32_t T1 asm(AREG2);
register uint32_t T2 asm(AREG3);
/* TODO: Put these in FP regs on targets that have such things. */
/* It is ok for FT0s and FT0d to overlap. Likewise FT1s and FT1d. */
#define FT0s env->vfp.tmp0s
#define FT1s env->vfp.tmp1s
#define FT0d env->vfp.tmp0d
#define FT1d env->vfp.tmp1d
#include "cpu.h"
#include "exec-all.h"
void cpu_lock(void);
void cpu_unlock(void);
void cpu_loop_exit(void);
/* Implemented CPSR bits. */
#define CACHED_CPSR_BITS 0xf8000000
static inline int compute_cpsr(void)
@ -51,3 +54,24 @@ static inline void regs_to_env(void)
int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
int is_user, int is_softmmu);
/* In op_helper.c */
void cpu_lock(void);
void cpu_unlock(void);
void cpu_loop_exit(void);
void raise_exception(int);
void do_vfp_abss(void);
void do_vfp_absd(void);
void do_vfp_negs(void);
void do_vfp_negd(void);
void do_vfp_sqrts(void);
void do_vfp_sqrtd(void);
void do_vfp_cmps(void);
void do_vfp_cmpd(void);
void do_vfp_cmpes(void);
void do_vfp_cmped(void);
void do_vfp_set_fpscr(void);
void do_vfp_get_fpscr(void);

View File

@ -2,6 +2,7 @@
* ARM micro operations
*
* Copyright (c) 2003 Fabrice Bellard
* Copyright (c) 2005 CodeSourcery, LLC
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
@ -857,17 +858,259 @@ void OPPROTO op_undef_insn(void)
cpu_loop_exit();
}
/* thread support */
/* VFP support. We follow the convention used for VFP instrunctions:
Single precition routines have a "s" suffix, double precision a
"d" suffix. */
spinlock_t global_cpu_lock = SPIN_LOCK_UNLOCKED;
#define VFP_OP(name, p) void OPPROTO op_vfp_##name##p(void)
void cpu_lock(void)
#define VFP_BINOP(name, op) \
VFP_OP(name, s) \
{ \
FT0s = FT0s op FT1s; \
} \
VFP_OP(name, d) \
{ \
FT0d = FT0d op FT1d; \
}
VFP_BINOP(add, +)
VFP_BINOP(sub, -)
VFP_BINOP(mul, *)
VFP_BINOP(div, /)
#undef VFP_BINOP
#define VFP_HELPER(name) \
VFP_OP(name, s) \
{ \
do_vfp_##name##s(); \
} \
VFP_OP(name, d) \
{ \
do_vfp_##name##d(); \
}
VFP_HELPER(abs)
VFP_HELPER(sqrt)
VFP_HELPER(cmp)
VFP_HELPER(cmpe)
#undef VFP_HELPER
/* XXX: Will this do the right thing for NANs. Should invert the signbit
without looking at the rest of the value. */
VFP_OP(neg, s)
{
spin_lock(&global_cpu_lock);
FT0s = -FT0s;
}
void cpu_unlock(void)
VFP_OP(neg, d)
{
spin_unlock(&global_cpu_lock);
FT0d = -FT0d;
}
VFP_OP(F1_ld0, s)
{
FT1s = 0.0f;
}
VFP_OP(F1_ld0, d)
{
FT1d = 0.0;
}
/* Helper routines to perform bitwise copies between float and int. */
static inline float vfp_itos(uint32_t i)
{
union {
uint32_t i;
float s;
} v;
v.i = i;
return v.s;
}
static inline uint32_t vfp_stoi(float s)
{
union {
uint32_t i;
float s;
} v;
v.s = s;
return v.i;
}
/* Integer to float conversion. */
VFP_OP(uito, s)
{
FT0s = (float)(uint32_t)vfp_stoi(FT0s);
}
VFP_OP(uito, d)
{
FT0d = (double)(uint32_t)vfp_stoi(FT0s);
}
VFP_OP(sito, s)
{
FT0s = (float)(int32_t)vfp_stoi(FT0s);
}
VFP_OP(sito, d)
{
FT0d = (double)(int32_t)vfp_stoi(FT0s);
}
/* Float to integer conversion. */
VFP_OP(toui, s)
{
FT0s = vfp_itos((uint32_t)FT0s);
}
VFP_OP(toui, d)
{
FT0s = vfp_itos((uint32_t)FT0d);
}
VFP_OP(tosi, s)
{
FT0s = vfp_itos((int32_t)FT0s);
}
VFP_OP(tosi, d)
{
FT0s = vfp_itos((int32_t)FT0d);
}
/* TODO: Set rounding mode properly. */
VFP_OP(touiz, s)
{
FT0s = vfp_itos((uint32_t)FT0s);
}
VFP_OP(touiz, d)
{
FT0s = vfp_itos((uint32_t)FT0d);
}
VFP_OP(tosiz, s)
{
FT0s = vfp_itos((int32_t)FT0s);
}
VFP_OP(tosiz, d)
{
FT0s = vfp_itos((int32_t)FT0d);
}
/* floating point conversion */
VFP_OP(fcvtd, s)
{
FT0d = (double)FT0s;
}
VFP_OP(fcvts, d)
{
FT0s = (float)FT0d;
}
/* Get and Put values from registers. */
VFP_OP(getreg_F0, d)
{
FT0d = *(double *)((char *) env + PARAM1);
}
VFP_OP(getreg_F0, s)
{
FT0s = *(float *)((char *) env + PARAM1);
}
VFP_OP(getreg_F1, d)
{
FT1d = *(double *)((char *) env + PARAM1);
}
VFP_OP(getreg_F1, s)
{
FT1s = *(float *)((char *) env + PARAM1);
}
VFP_OP(setreg_F0, d)
{
*(double *)((char *) env + PARAM1) = FT0d;
}
VFP_OP(setreg_F0, s)
{
*(float *)((char *) env + PARAM1) = FT0s;
}
VFP_OP(foobar, d)
{
FT0d = env->vfp.regs.s[3];
}
void OPPROTO op_vfp_movl_T0_fpscr(void)
{
do_vfp_get_fpscr ();
}
void OPPROTO op_vfp_movl_T0_fpscr_flags(void)
{
T0 = env->vfp.fpscr & (0xf << 28);
}
void OPPROTO op_vfp_movl_fpscr_T0(void)
{
do_vfp_set_fpscr();
}
/* Move between FT0s to T0 */
void OPPROTO op_vfp_mrs(void)
{
T0 = vfp_stoi(FT0s);
}
void OPPROTO op_vfp_msr(void)
{
FT0s = vfp_itos(T0);
}
/* Move between FT0d and {T0,T1} */
void OPPROTO op_vfp_mrrd(void)
{
CPU_DoubleU u;
u.d = FT0d;
T0 = u.l.lower;
T1 = u.l.upper;
}
void OPPROTO op_vfp_mdrr(void)
{
CPU_DoubleU u;
u.l.lower = T0;
u.l.upper = T1;
FT0d = u.d;
}
/* Floating point load/store. Address is in T1 */
void OPPROTO op_vfp_lds(void)
{
FT0s = ldfl((void *)T1);
}
void OPPROTO op_vfp_ldd(void)
{
FT0d = ldfq((void *)T1);
}
void OPPROTO op_vfp_sts(void)
{
stfl((void *)T1, FT0s);
}
void OPPROTO op_vfp_std(void)
{
stfq((void *)T1, FT0d);
}

229
target-arm/op_helper.c Normal file
View File

@ -0,0 +1,229 @@
/*
* ARM helper routines
*
* Copyright (c) 2005 CodeSourcery, LLC
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <math.h>
#include <fenv.h>
#include "exec.h"
/* If the host doesn't define C99 math intrinsics then use the normal
operators. This may generate excess exceptions, but it's probably
near enough for most things. */
#ifndef isless
#define isless(x, y) (x < y)
#endif
#ifndef isgreater
#define isgreater(x, y) (x > y)
#endif
#ifndef isunordered
#define isunordered(x, y) (!((x < y) || (x >= y)))
#endif
void raise_exception(int tt)
{
env->exception_index = tt;
cpu_loop_exit();
}
/* thread support */
spinlock_t global_cpu_lock = SPIN_LOCK_UNLOCKED;
void cpu_lock(void)
{
spin_lock(&global_cpu_lock);
}
void cpu_unlock(void)
{
spin_unlock(&global_cpu_lock);
}
/* VFP support. */
void do_vfp_abss(void)
{
FT0s = fabsf(FT0s);
}
void do_vfp_absd(void)
{
FT0d = fabs(FT0d);
}
void do_vfp_sqrts(void)
{
FT0s = sqrtf(FT0s);
}
void do_vfp_sqrtd(void)
{
FT0d = sqrt(FT0d);
}
/* We use an == operator first to generate teh correct floating point
exception. Subsequent comparisons use the exception-safe macros. */
#define DO_VFP_cmp(p) \
void do_vfp_cmp##p(void) \
{ \
uint32_t flags; \
if (FT0##p == FT1##p) \
flags = 0xc; \
else if (isless (FT0##p, FT1##p)) \
flags = 0x8; \
else if (isgreater (FT0##p, FT1##p)) \
flags = 0x2; \
else /* unordered */ \
flags = 0x3; \
env->vfp.fpscr = (flags << 28) | (env->vfp.fpscr & 0x0fffffff); \
FORCE_RET(); \
}
DO_VFP_cmp(s)
DO_VFP_cmp(d)
#undef DO_VFP_cmp
/* We use a > operator first to get FP exceptions right. */
#define DO_VFP_cmpe(p) \
void do_vfp_cmpe##p(void) \
{ \
uint32_t flags; \
if (FT0##p > FT1##p) \
flags = 0x2; \
else if (isless (FT0##p, FT1##p)) \
flags = 0x8; \
else if (isunordered (FT0##p, FT1##p)) \
flags = 0x3; \
else /* equal */ \
flags = 0xc; \
env->vfp.fpscr = (flags << 28) | (env->vfp.fpscr & 0x0fffffff); \
FORCE_RET(); \
}
DO_VFP_cmpe(s)
DO_VFP_cmpe(d)
#undef DO_VFP_cmpe
/* Convert host exception flags to vfp form. */
int vfp_exceptbits_from_host(int host_bits)
{
int target_bits = 0;
#ifdef FE_INVALID
if (host_bits & FE_INVALID)
target_bits |= 1;
#endif
#ifdef FE_DIVBYZERO
if (host_bits & FE_DIVBYZERO)
target_bits |= 2;
#endif
#ifdef FE_OVERFLOW
if (host_bits & FE_OVERFLOW)
target_bits |= 4;
#endif
#ifdef FE_UNDERFLOW
if (host_bits & FE_UNDERFLOW)
target_bits |= 8;
#endif
#ifdef FE_INEXACT
if (host_bits & FE_INEXACT)
target_bits |= 0x10;
#endif
/* C doesn't define an inexact exception. */
return target_bits;
}
/* Convert vfp exception flags to target form. */
int vfp_host_exceptbits_to_host(int target_bits)
{
int host_bits = 0;
#ifdef FE_INVALID
if (target_bits & 1)
host_bits |= FE_INVALID;
#endif
#ifdef FE_DIVBYZERO
if (target_bits & 2)
host_bits |= FE_DIVBYZERO;
#endif
#ifdef FE_OVERFLOW
if (target_bits & 4)
host_bits |= FE_OVERFLOW;
#endif
#ifdef FE_UNDERFLOW
if (target_bits & 8)
host_bits |= FE_UNDERFLOW;
#endif
#ifdef FE_INEXACT
if (target_bits & 0x10)
host_bits |= FE_INEXACT;
#endif
return host_bits;
}
void do_vfp_set_fpscr(void)
{
int i;
uint32_t changed;
changed = env->vfp.fpscr;
env->vfp.fpscr = (T0 & 0xffc8ffff);
env->vfp.vec_len = (T0 >> 16) & 7;
env->vfp.vec_stride = (T0 >> 20) & 3;
changed ^= T0;
if (changed & (3 << 22)) {
i = (T0 >> 22) & 3;
switch (i) {
case 0:
i = FE_TONEAREST;
break;
case 1:
i = FE_UPWARD;
break;
case 2:
i = FE_DOWNWARD;
break;
case 3:
i = FE_TOWARDZERO;
break;
}
fesetround (i);
}
/* Clear host exception flags. */
feclearexcept(FE_ALL_EXCEPT);
#ifdef feenableexcept
if (changed & 0x1f00) {
i = vfp_exceptbits_to_host((T0 >> 8) & 0x1f);
feenableexcept (i);
fedisableexcept (FE_ALL_EXCEPT & ~i);
}
#endif
/* XXX: FZ and DN are not implemented. */
}
void do_vfp_get_fpscr(void)
{
int i;
T0 = (env->vfp.fpscr & 0xffc8ffff) | (env->vfp.vec_len << 16)
| (env->vfp.vec_stride << 20);
i = fetestexcept(FE_ALL_EXCEPT);
T0 |= vfp_exceptbits_from_host(i);
}

View File

@ -2,6 +2,7 @@
* ARM translation
*
* Copyright (c) 2003 Fabrice Bellard
* Copyright (c) 2005 CodeSourcery, LLC
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
@ -354,7 +355,527 @@ static inline void gen_add_datah_offset(DisasContext *s, unsigned int insn)
}
}
static void disas_arm_insn(DisasContext *s)
#define VFP_OP(name) \
static inline void gen_vfp_##name(int dp) \
{ \
if (dp) \
gen_op_vfp_##name##d(); \
else \
gen_op_vfp_##name##s(); \
}
VFP_OP(add)
VFP_OP(sub)
VFP_OP(mul)
VFP_OP(div)
VFP_OP(neg)
VFP_OP(abs)
VFP_OP(sqrt)
VFP_OP(cmp)
VFP_OP(cmpe)
VFP_OP(F1_ld0)
VFP_OP(uito)
VFP_OP(sito)
VFP_OP(toui)
VFP_OP(touiz)
VFP_OP(tosi)
VFP_OP(tosiz)
VFP_OP(ld)
VFP_OP(st)
#undef VFP_OP
static inline void gen_mov_F0_vreg(int dp, int reg)
{
if (dp)
gen_op_vfp_getreg_F0d(offsetof(CPUARMState, vfp.regs.d[reg]));
else
gen_op_vfp_getreg_F0s(offsetof(CPUARMState, vfp.regs.s[reg]));
}
static inline void gen_mov_F1_vreg(int dp, int reg)
{
if (dp)
gen_op_vfp_getreg_F1d(offsetof(CPUARMState, vfp.regs.d[reg]));
else
gen_op_vfp_getreg_F1s(offsetof(CPUARMState, vfp.regs.s[reg]));
}
static inline void gen_mov_vreg_F0(int dp, int reg)
{
if (dp)
gen_op_vfp_setreg_F0d(offsetof(CPUARMState, vfp.regs.d[reg]));
else
gen_op_vfp_setreg_F0s(offsetof(CPUARMState, vfp.regs.s[reg]));
}
/* Disassemble a VFP instruction. Returns nonzero if an error occured
(ie. an undefined instruction). */
static int disas_vfp_insn(CPUState * env, DisasContext *s, uint32_t insn)
{
uint32_t rd, rn, rm, op, i, n, offset, delta_d, delta_m, bank_mask;
int dp, veclen;
dp = ((insn & 0xf00) == 0xb00);
switch ((insn >> 24) & 0xf) {
case 0xe:
if (insn & (1 << 4)) {
/* single register transfer */
if ((insn & 0x6f) != 0x00)
return 1;
rd = (insn >> 12) & 0xf;
if (dp) {
if (insn & 0x80)
return 1;
rn = (insn >> 16) & 0xf;
/* Get the existing value even for arm->vfp moves because
we only set half the register. */
gen_mov_F0_vreg(1, rn);
gen_op_vfp_mrrd();
if (insn & (1 << 20)) {
/* vfp->arm */
if (insn & (1 << 21))
gen_movl_reg_T1(s, rd);
else
gen_movl_reg_T0(s, rd);
} else {
/* arm->vfp */
if (insn & (1 << 21))
gen_movl_T1_reg(s, rd);
else
gen_movl_T0_reg(s, rd);
gen_op_vfp_mdrr();
gen_mov_vreg_F0(dp, rn);
}
} else {
rn = ((insn >> 15) & 0x1e) | ((insn >> 7) & 1);
if (insn & (1 << 20)) {
/* vfp->arm */
if (insn & (1 << 21)) {
/* system register */
switch (rn) {
case 0: /* fpsid */
n = 0x0091A0000;
break;
case 2: /* fpscr */
if (rd == 15)
gen_op_vfp_movl_T0_fpscr_flags();
else
gen_op_vfp_movl_T0_fpscr();
break;
default:
return 1;
}
} else {
gen_mov_F0_vreg(0, rn);
gen_op_vfp_mrs();
}
if (rd == 15) {
/* This will only set the 4 flag bits */
gen_op_movl_psr_T0();
} else
gen_movl_reg_T0(s, rd);
} else {
/* arm->vfp */
gen_movl_T0_reg(s, rd);
if (insn & (1 << 21)) {
/* system register */
switch (rn) {
case 0: /* fpsid */
/* Writes are ignored. */
break;
case 2: /* fpscr */
gen_op_vfp_movl_fpscr_T0();
/* This could change vector settings, so jump to
the next instuction. */
gen_op_movl_T0_im(s->pc);
gen_movl_reg_T0(s, 15);
s->is_jmp = DISAS_UPDATE;
break;
default:
return 1;
}
} else {
gen_op_vfp_msr();
gen_mov_vreg_F0(0, rn);
}
}
}
} else {
/* data processing */
/* The opcode is in bits 23, 21, 20 and 6. */
op = ((insn >> 20) & 8) | ((insn >> 19) & 6) | ((insn >> 6) & 1);
if (dp) {
if (op == 15) {
/* rn is opcode */
rn = ((insn >> 15) & 0x1e) | ((insn >> 7) & 1);
} else {
/* rn is register number */
if (insn & (1 << 7))
return 1;
rn = (insn >> 16) & 0xf;
}
if (op == 15 && (rn == 15 || rn > 17)) {
/* Integer or single precision destination. */
rd = ((insn >> 11) & 0x1e) | ((insn >> 22) & 1);
} else {
if (insn & (1 << 22))
return 1;
rd = (insn >> 12) & 0xf;
}
if (op == 15 && (rn == 16 || rn == 17)) {
/* Integer source. */
rm = ((insn << 1) & 0x1e) | ((insn >> 5) & 1);
} else {
if (insn & (1 << 5))
return 1;
rm = insn & 0xf;
}
} else {
rn = ((insn >> 15) & 0x1e) | ((insn >> 7) & 1);
if (op == 15 && rn == 15) {
/* Double precision destination. */
if (insn & (1 << 22))
return 1;
rd = (insn >> 12) & 0xf;
} else
rd = ((insn >> 11) & 0x1e) | ((insn >> 22) & 1);
rm = ((insn << 1) & 0x1e) | ((insn >> 5) & 1);
}
veclen = env->vfp.vec_len;
if (op == 15 && rn > 3)
veclen = 0;
/* Shut up compiler warnings. */
delta_m = 0;
delta_d = 0;
bank_mask = 0;
if (veclen > 0) {
if (dp)
bank_mask = 0xc;
else
bank_mask = 0x18;
/* Figure out what type of vector operation this is. */
if ((rd & bank_mask) == 0) {
/* scalar */
veclen = 0;
} else {
if (dp)
delta_d = (env->vfp.vec_stride >> 1) + 1;
else
delta_d = env->vfp.vec_stride + 1;
if ((rm & bank_mask) == 0) {
/* mixed scalar/vector */
delta_m = 0;
} else {
/* vector */
delta_m = delta_d;
}
}
}
/* Load the initial operands. */
if (op == 15) {
switch (rn) {
case 16:
case 17:
/* Integer source */
gen_mov_F0_vreg(0, rm);
break;
case 8:
case 9:
/* Compare */
gen_mov_F0_vreg(dp, rd);
gen_mov_F1_vreg(dp, rm);
break;
case 10:
case 11:
/* Compare with zero */
gen_mov_F0_vreg(dp, rd);
gen_vfp_F1_ld0(dp);
break;
default:
/* One source operand. */
gen_mov_F0_vreg(dp, rm);
}
} else {
/* Two source operands. */
gen_mov_F0_vreg(dp, rn);
gen_mov_F1_vreg(dp, rm);
}
for (;;) {
/* Perform the calculation. */
switch (op) {
case 0: /* mac: fd + (fn * fm) */
gen_vfp_mul(dp);
gen_mov_F1_vreg(dp, rd);
gen_vfp_add(dp);
break;
case 1: /* nmac: fd - (fn * fm) */
gen_vfp_mul(dp);
gen_vfp_neg(dp);
gen_mov_F1_vreg(dp, rd);
gen_vfp_add(dp);
break;
case 2: /* msc: -fd + (fn * fm) */
gen_vfp_mul(dp);
gen_mov_F1_vreg(dp, rd);
gen_vfp_sub(dp);
break;
case 3: /* nmsc: -fd - (fn * fm) */
gen_vfp_mul(dp);
gen_mov_F1_vreg(dp, rd);
gen_vfp_add(dp);
gen_vfp_neg(dp);
break;
case 4: /* mul: fn * fm */
gen_vfp_mul(dp);
break;
case 5: /* nmul: -(fn * fm) */
gen_vfp_mul(dp);
gen_vfp_neg(dp);
break;
case 6: /* add: fn + fm */
gen_vfp_add(dp);
break;
case 7: /* sub: fn - fm */
gen_vfp_sub(dp);
break;
case 8: /* div: fn / fm */
gen_vfp_div(dp);
break;
case 15: /* extension space */
switch (rn) {
case 0: /* cpy */
/* no-op */
break;
case 1: /* abs */
gen_vfp_abs(dp);
break;
case 2: /* neg */
gen_vfp_neg(dp);
break;
case 3: /* sqrt */
gen_vfp_sqrt(dp);
break;
case 8: /* cmp */
gen_vfp_cmp(dp);
break;
case 9: /* cmpe */
gen_vfp_cmpe(dp);
break;
case 10: /* cmpz */
gen_vfp_cmp(dp);
break;
case 11: /* cmpez */
gen_vfp_F1_ld0(dp);
gen_vfp_cmpe(dp);
break;
case 15: /* single<->double conversion */
if (dp)
gen_op_vfp_fcvtsd();
else
gen_op_vfp_fcvtds();
break;
case 16: /* fuito */
gen_vfp_uito(dp);
break;
case 17: /* fsito */
gen_vfp_sito(dp);
break;
case 24: /* ftoui */
gen_vfp_toui(dp);
break;
case 25: /* ftouiz */
gen_vfp_touiz(dp);
break;
case 26: /* ftosi */
gen_vfp_tosi(dp);
break;
case 27: /* ftosiz */
gen_vfp_tosiz(dp);
break;
default: /* undefined */
printf ("rn:%d\n", rn);
return 1;
}
break;
default: /* undefined */
printf ("op:%d\n", op);
return 1;
}
/* Write back the result. */
if (op == 15 && (rn >= 8 && rn <= 11))
; /* Comparison, do nothing. */
else if (op == 15 && rn > 17)
/* Integer result. */
gen_mov_vreg_F0(0, rd);
else if (op == 15 && rn == 15)
/* conversion */
gen_mov_vreg_F0(!dp, rd);
else
gen_mov_vreg_F0(dp, rd);
/* break out of the loop if we have finished */
if (veclen == 0)
break;
if (op == 15 && delta_m == 0) {
/* single source one-many */
while (veclen--) {
rd = ((rd + delta_d) & (bank_mask - 1))
| (rd & bank_mask);
gen_mov_vreg_F0(dp, rd);
}
break;
}
/* Setup the next operands. */
veclen--;
rd = ((rd + delta_d) & (bank_mask - 1))
| (rd & bank_mask);
if (op == 15) {
/* One source operand. */
rm = ((rm + delta_m) & (bank_mask - 1))
| (rm & bank_mask);
gen_mov_F0_vreg(dp, rm);
} else {
/* Two source operands. */
rn = ((rn + delta_d) & (bank_mask - 1))
| (rn & bank_mask);
gen_mov_F0_vreg(dp, rn);
if (delta_m) {
rm = ((rm + delta_m) & (bank_mask - 1))
| (rm & bank_mask);
gen_mov_F1_vreg(dp, rm);
}
}
}
}
break;
case 0xc:
case 0xd:
if (dp && (insn & (1 << 22))) {
/* two-register transfer */
rn = (insn >> 16) & 0xf;
rd = (insn >> 12) & 0xf;
if (dp) {
if (insn & (1 << 5))
return 1;
rm = insn & 0xf;
} else
rm = ((insn << 1) & 0x1e) | ((insn >> 5) & 1);
if (insn & (1 << 20)) {
/* vfp->arm */
if (dp) {
gen_mov_F0_vreg(1, rm);
gen_op_vfp_mrrd();
gen_movl_reg_T0(s, rd);
gen_movl_reg_T1(s, rn);
} else {
gen_mov_F0_vreg(0, rm);
gen_op_vfp_mrs();
gen_movl_reg_T0(s, rn);
gen_mov_F0_vreg(0, rm + 1);
gen_op_vfp_mrs();
gen_movl_reg_T0(s, rd);
}
} else {
/* arm->vfp */
if (dp) {
gen_movl_T0_reg(s, rd);
gen_movl_T1_reg(s, rn);
gen_op_vfp_mdrr();
gen_mov_vreg_F0(1, rm);
} else {
gen_movl_T0_reg(s, rn);
gen_op_vfp_msr();
gen_mov_vreg_F0(0, rm);
gen_movl_T0_reg(s, rd);
gen_op_vfp_msr();
gen_mov_vreg_F0(0, rm + 1);
}
}
} else {
/* Load/store */
rn = (insn >> 16) & 0xf;
if (dp)
rd = (insn >> 12) & 0xf;
else
rd = ((insn >> 11) & 0x1e) | ((insn >> 22) & 1);
gen_movl_T1_reg(s, rn);
if ((insn & 0x01200000) == 0x01000000) {
/* Single load/store */
offset = (insn & 0xff) << 2;
if ((insn & (1 << 23)) == 0)
offset = -offset;
gen_op_addl_T1_im(offset);
if (insn & (1 << 20)) {
gen_vfp_ld(dp);
gen_mov_vreg_F0(dp, rd);
} else {
gen_mov_F0_vreg(dp, rd);
gen_vfp_st(dp);
}
} else {
/* load/store multiple */
if (dp)
n = (insn >> 1) & 0x7f;
else
n = insn & 0xff;
if (insn & (1 << 24)) /* pre-decrement */
gen_op_addl_T1_im(-((insn & 0xff) << 2));
if (dp)
offset = 8;
else
offset = 4;
for (i = 0; i < n; i++) {
if (insn & (1 << 20)) {
/* load */
gen_vfp_ld(dp);
gen_mov_vreg_F0(dp, rd + i);
} else {
/* store */
gen_mov_F0_vreg(dp, rd + i);
gen_vfp_st(dp);
}
gen_op_addl_T1_im(offset);
}
if (insn & (1 << 21)) {
/* writeback */
if (insn & (1 << 24))
offset = -offset * n;
else if (dp && (insn & 1))
offset = 4;
else
offset = 0;
if (offset != 0)
gen_op_addl_T1_im(offset);
gen_movl_reg_T1(s, rn);
}
}
}
break;
default:
/* Should never happen. */
return 1;
}
return 0;
}
static void disas_arm_insn(CPUState * env, DisasContext *s)
{
unsigned int cond, insn, val, op1, i, shift, rm, rs, rn, rd, sh;
@ -363,6 +884,7 @@ static void disas_arm_insn(DisasContext *s)
cond = insn >> 28;
if (cond == 0xf){
/* Unconditional instructions. */
if ((insn & 0x0d70f000) == 0x0550f000)
return; /* PLD */
else if ((insn & 0x0e000000) == 0x0a000000) {
@ -381,6 +903,10 @@ static void disas_arm_insn(DisasContext *s)
gen_op_movl_T0_im(val);
gen_bx(s);
return;
} else if ((insn & 0x0fe00000) == 0x0c400000) {
/* Coprocessor double register transfer. */
} else if ((insn & 0x0f000010) == 0x0e000010) {
/* Additional coprocessor register transfer. */
}
goto illegal_op;
}
@ -934,6 +1460,22 @@ static void disas_arm_insn(DisasContext *s)
s->is_jmp = DISAS_TB_JUMP;
}
break;
case 0xc:
case 0xd:
case 0xe:
/* Coprocessor. */
op1 = (insn >> 8) & 0xf;
switch (op1) {
case 10:
case 11:
if (disas_vfp_insn (env, s, insn))
goto illegal_op;
break;
default:
/* unknown coprocessor. */
goto illegal_op;
}
break;
case 0xf:
/* swi */
gen_op_movl_T0_im((long)s->pc);
@ -1484,7 +2026,7 @@ static inline int gen_intermediate_code_internal(CPUState *env,
if (env->thumb)
disas_thumb_insn(dc);
else
disas_arm_insn(dc);
disas_arm_insn(env, dc);
} while (!dc->is_jmp && gen_opc_ptr < gen_opc_end &&
(dc->pc - pc_start) < (TARGET_PAGE_SIZE - 32));
switch(dc->is_jmp) {
@ -1557,6 +2099,11 @@ void cpu_dump_state(CPUState *env, FILE *f,
int flags)
{
int i;
struct {
uint32_t i;
float s;
} s0, s1;
CPU_DoubleU d;
for(i=0;i<16;i++) {
cpu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
@ -1566,11 +2113,23 @@ void cpu_dump_state(CPUState *env, FILE *f,
cpu_fprintf(f, " ");
}
cpu_fprintf(f, "PSR=%08x %c%c%c%c\n",
env->cpsr,
env->cpsr,
env->cpsr & (1 << 31) ? 'N' : '-',
env->cpsr & (1 << 30) ? 'Z' : '-',
env->cpsr & (1 << 29) ? 'C' : '-',
env->cpsr & (1 << 28) ? 'V' : '-');
for (i = 0; i < 16; i++) {
s0.s = env->vfp.regs.s[i * 2];
s1.s = env->vfp.regs.s[i * 2 + 1];
d.d = env->vfp.regs.d[i];
cpu_fprintf(f, "s%02d=%08x(%8f) s%02d=%08x(%8f) d%02d=%08x%08x(%8f)\n",
i * 2, (int)s0.i, s0.s,
i * 2 + 1, (int)s0.i, s0.s,
i, (int)(uint32_t)d.l.upper, (int)(uint32_t)d.l.lower,
d.d);
cpu_fprintf(f, "FPSCR: %08x\n", (int)env->vfp.fpscr);
}
}
target_ulong cpu_get_phys_page_debug(CPUState *env, target_ulong addr)