mirror of https://github.com/xemu-project/xemu.git
softfloat: Inline float128 compare specializations
Replace the float128 compare specializations with inline functions that call the standard float128_compare{,_quiet} functions. Use bool as the return type. Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
This commit is contained in:
parent
0673ecdf6c
commit
b7b1ac684f
238
fpu/softfloat.c
238
fpu/softfloat.c
|
@ -7218,244 +7218,6 @@ float128 float128_sqrt(float128 a, float_status *status)
|
|||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
|
||||
| the corresponding value `b', and 0 otherwise. The invalid exception is
|
||||
| raised if either operand is a NaN. Otherwise, the comparison is performed
|
||||
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
int float128_eq(float128 a, float128 b, float_status *status)
|
||||
{
|
||||
|
||||
if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
||||
&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
||||
|| ( ( extractFloat128Exp( b ) == 0x7FFF )
|
||||
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
||||
) {
|
||||
float_raise(float_flag_invalid, status);
|
||||
return 0;
|
||||
}
|
||||
return
|
||||
( a.low == b.low )
|
||||
&& ( ( a.high == b.high )
|
||||
|| ( ( a.low == 0 )
|
||||
&& ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
|
||||
);
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the quadruple-precision floating-point value `a' is less than
|
||||
| or equal to the corresponding value `b', and 0 otherwise. The invalid
|
||||
| exception is raised if either operand is a NaN. The comparison is performed
|
||||
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
int float128_le(float128 a, float128 b, float_status *status)
|
||||
{
|
||||
bool aSign, bSign;
|
||||
|
||||
if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
||||
&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
||||
|| ( ( extractFloat128Exp( b ) == 0x7FFF )
|
||||
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
||||
) {
|
||||
float_raise(float_flag_invalid, status);
|
||||
return 0;
|
||||
}
|
||||
aSign = extractFloat128Sign( a );
|
||||
bSign = extractFloat128Sign( b );
|
||||
if ( aSign != bSign ) {
|
||||
return
|
||||
aSign
|
||||
|| ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
||||
== 0 );
|
||||
}
|
||||
return
|
||||
aSign ? le128( b.high, b.low, a.high, a.low )
|
||||
: le128( a.high, a.low, b.high, b.low );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the quadruple-precision floating-point value `a' is less than
|
||||
| the corresponding value `b', and 0 otherwise. The invalid exception is
|
||||
| raised if either operand is a NaN. The comparison is performed according
|
||||
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
int float128_lt(float128 a, float128 b, float_status *status)
|
||||
{
|
||||
bool aSign, bSign;
|
||||
|
||||
if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
||||
&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
||||
|| ( ( extractFloat128Exp( b ) == 0x7FFF )
|
||||
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
||||
) {
|
||||
float_raise(float_flag_invalid, status);
|
||||
return 0;
|
||||
}
|
||||
aSign = extractFloat128Sign( a );
|
||||
bSign = extractFloat128Sign( b );
|
||||
if ( aSign != bSign ) {
|
||||
return
|
||||
aSign
|
||||
&& ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
||||
!= 0 );
|
||||
}
|
||||
return
|
||||
aSign ? lt128( b.high, b.low, a.high, a.low )
|
||||
: lt128( a.high, a.low, b.high, b.low );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
|
||||
| be compared, and 0 otherwise. The invalid exception is raised if either
|
||||
| operand is a NaN. The comparison is performed according to the IEC/IEEE
|
||||
| Standard for Binary Floating-Point Arithmetic.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
int float128_unordered(float128 a, float128 b, float_status *status)
|
||||
{
|
||||
if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
||||
&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
||||
|| ( ( extractFloat128Exp( b ) == 0x7FFF )
|
||||
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
||||
) {
|
||||
float_raise(float_flag_invalid, status);
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
|
||||
| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
|
||||
| exception. The comparison is performed according to the IEC/IEEE Standard
|
||||
| for Binary Floating-Point Arithmetic.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
int float128_eq_quiet(float128 a, float128 b, float_status *status)
|
||||
{
|
||||
|
||||
if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
||||
&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
||||
|| ( ( extractFloat128Exp( b ) == 0x7FFF )
|
||||
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
||||
) {
|
||||
if (float128_is_signaling_nan(a, status)
|
||||
|| float128_is_signaling_nan(b, status)) {
|
||||
float_raise(float_flag_invalid, status);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
return
|
||||
( a.low == b.low )
|
||||
&& ( ( a.high == b.high )
|
||||
|| ( ( a.low == 0 )
|
||||
&& ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
|
||||
);
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the quadruple-precision floating-point value `a' is less than
|
||||
| or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
|
||||
| cause an exception. Otherwise, the comparison is performed according to the
|
||||
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
int float128_le_quiet(float128 a, float128 b, float_status *status)
|
||||
{
|
||||
bool aSign, bSign;
|
||||
|
||||
if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
||||
&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
||||
|| ( ( extractFloat128Exp( b ) == 0x7FFF )
|
||||
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
||||
) {
|
||||
if (float128_is_signaling_nan(a, status)
|
||||
|| float128_is_signaling_nan(b, status)) {
|
||||
float_raise(float_flag_invalid, status);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
aSign = extractFloat128Sign( a );
|
||||
bSign = extractFloat128Sign( b );
|
||||
if ( aSign != bSign ) {
|
||||
return
|
||||
aSign
|
||||
|| ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
||||
== 0 );
|
||||
}
|
||||
return
|
||||
aSign ? le128( b.high, b.low, a.high, a.low )
|
||||
: le128( a.high, a.low, b.high, b.low );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the quadruple-precision floating-point value `a' is less than
|
||||
| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
|
||||
| exception. Otherwise, the comparison is performed according to the IEC/IEEE
|
||||
| Standard for Binary Floating-Point Arithmetic.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
int float128_lt_quiet(float128 a, float128 b, float_status *status)
|
||||
{
|
||||
bool aSign, bSign;
|
||||
|
||||
if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
||||
&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
||||
|| ( ( extractFloat128Exp( b ) == 0x7FFF )
|
||||
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
||||
) {
|
||||
if (float128_is_signaling_nan(a, status)
|
||||
|| float128_is_signaling_nan(b, status)) {
|
||||
float_raise(float_flag_invalid, status);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
aSign = extractFloat128Sign( a );
|
||||
bSign = extractFloat128Sign( b );
|
||||
if ( aSign != bSign ) {
|
||||
return
|
||||
aSign
|
||||
&& ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
||||
!= 0 );
|
||||
}
|
||||
return
|
||||
aSign ? lt128( b.high, b.low, a.high, a.low )
|
||||
: lt128( a.high, a.low, b.high, b.low );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
|
||||
| be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The
|
||||
| comparison is performed according to the IEC/IEEE Standard for Binary
|
||||
| Floating-Point Arithmetic.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
int float128_unordered_quiet(float128 a, float128 b, float_status *status)
|
||||
{
|
||||
if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
||||
&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
||||
|| ( ( extractFloat128Exp( b ) == 0x7FFF )
|
||||
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
||||
) {
|
||||
if (float128_is_signaling_nan(a, status)
|
||||
|| float128_is_signaling_nan(b, status)) {
|
||||
float_raise(float_flag_invalid, status);
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline FloatRelation
|
||||
floatx80_compare_internal(floatx80 a, floatx80 b, bool is_quiet,
|
||||
float_status *status)
|
||||
|
|
|
@ -901,14 +901,6 @@ float128 float128_mul(float128, float128, float_status *status);
|
|||
float128 float128_div(float128, float128, float_status *status);
|
||||
float128 float128_rem(float128, float128, float_status *status);
|
||||
float128 float128_sqrt(float128, float_status *status);
|
||||
int float128_eq(float128, float128, float_status *status);
|
||||
int float128_le(float128, float128, float_status *status);
|
||||
int float128_lt(float128, float128, float_status *status);
|
||||
int float128_unordered(float128, float128, float_status *status);
|
||||
int float128_eq_quiet(float128, float128, float_status *status);
|
||||
int float128_le_quiet(float128, float128, float_status *status);
|
||||
int float128_lt_quiet(float128, float128, float_status *status);
|
||||
int float128_unordered_quiet(float128, float128, float_status *status);
|
||||
FloatRelation float128_compare(float128, float128, float_status *status);
|
||||
FloatRelation float128_compare_quiet(float128, float128, float_status *status);
|
||||
int float128_is_quiet_nan(float128, float_status *status);
|
||||
|
@ -964,6 +956,47 @@ static inline int float128_is_any_nan(float128 a)
|
|||
((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
|
||||
}
|
||||
|
||||
static inline bool float128_eq(float128 a, float128 b, float_status *s)
|
||||
{
|
||||
return float128_compare(a, b, s) == float_relation_equal;
|
||||
}
|
||||
|
||||
static inline bool float128_le(float128 a, float128 b, float_status *s)
|
||||
{
|
||||
return float128_compare(a, b, s) <= float_relation_equal;
|
||||
}
|
||||
|
||||
static inline bool float128_lt(float128 a, float128 b, float_status *s)
|
||||
{
|
||||
return float128_compare(a, b, s) < float_relation_equal;
|
||||
}
|
||||
|
||||
static inline bool float128_unordered(float128 a, float128 b, float_status *s)
|
||||
{
|
||||
return float128_compare(a, b, s) == float_relation_unordered;
|
||||
}
|
||||
|
||||
static inline bool float128_eq_quiet(float128 a, float128 b, float_status *s)
|
||||
{
|
||||
return float128_compare_quiet(a, b, s) == float_relation_equal;
|
||||
}
|
||||
|
||||
static inline bool float128_le_quiet(float128 a, float128 b, float_status *s)
|
||||
{
|
||||
return float128_compare_quiet(a, b, s) <= float_relation_equal;
|
||||
}
|
||||
|
||||
static inline bool float128_lt_quiet(float128 a, float128 b, float_status *s)
|
||||
{
|
||||
return float128_compare_quiet(a, b, s) < float_relation_equal;
|
||||
}
|
||||
|
||||
static inline bool float128_unordered_quiet(float128 a, float128 b,
|
||||
float_status *s)
|
||||
{
|
||||
return float128_compare_quiet(a, b, s) == float_relation_unordered;
|
||||
}
|
||||
|
||||
#define float128_zero make_float128(0, 0)
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
|
|
Loading…
Reference in New Issue