mirror of https://github.com/xemu-project/xemu.git
target-arm: Separate out M profile cpu_exec_interrupt handling
The M profile cpu_exec_interrupt handling is fairly simple but does include an M profile specific oddity (disabling interrupts for certain PC values). A/R profile handling on the other hand is getting rapidly more complicated with the support for EL2 and EL3. Split the M profile code out into its own implementation of cpu_exec_interrupt to keep these two things out of each others' way. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com> Message-id: 1414684132-23971-2-git-send-email-peter.maydell@linaro.org
This commit is contained in:
parent
f4df22102a
commit
b5c633c5bd
|
@ -203,15 +203,6 @@ bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
|
|||
cc->do_interrupt(cs);
|
||||
ret = true;
|
||||
}
|
||||
/* ARMv7-M interrupt return works by loading a magic value
|
||||
into the PC. On real hardware the load causes the
|
||||
return to occur. The qemu implementation performs the
|
||||
jump normally, then does the exception return when the
|
||||
CPU tries to execute code at the magic address.
|
||||
This will cause the magic PC value to be pushed to
|
||||
the stack if an interrupt occurred at the wrong time.
|
||||
We avoid this by disabling interrupts when
|
||||
pc contains a magic address. */
|
||||
if (interrupt_request & CPU_INTERRUPT_HARD
|
||||
&& arm_excp_unmasked(cs, EXCP_IRQ)) {
|
||||
cs->exception_index = EXCP_IRQ;
|
||||
|
@ -234,6 +225,42 @@ bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
|
|||
return ret;
|
||||
}
|
||||
|
||||
#if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
|
||||
static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
|
||||
{
|
||||
CPUClass *cc = CPU_GET_CLASS(cs);
|
||||
ARMCPU *cpu = ARM_CPU(cs);
|
||||
CPUARMState *env = &cpu->env;
|
||||
bool ret = false;
|
||||
|
||||
|
||||
if (interrupt_request & CPU_INTERRUPT_FIQ
|
||||
&& !(env->daif & PSTATE_F)) {
|
||||
cs->exception_index = EXCP_FIQ;
|
||||
cc->do_interrupt(cs);
|
||||
ret = true;
|
||||
}
|
||||
/* ARMv7-M interrupt return works by loading a magic value
|
||||
* into the PC. On real hardware the load causes the
|
||||
* return to occur. The qemu implementation performs the
|
||||
* jump normally, then does the exception return when the
|
||||
* CPU tries to execute code at the magic address.
|
||||
* This will cause the magic PC value to be pushed to
|
||||
* the stack if an interrupt occurred at the wrong time.
|
||||
* We avoid this by disabling interrupts when
|
||||
* pc contains a magic address.
|
||||
*/
|
||||
if (interrupt_request & CPU_INTERRUPT_HARD
|
||||
&& !(env->daif & PSTATE_I)
|
||||
&& (env->regs[15] < 0xfffffff0)) {
|
||||
cs->exception_index = EXCP_IRQ;
|
||||
cc->do_interrupt(cs);
|
||||
ret = true;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef CONFIG_USER_ONLY
|
||||
static void arm_cpu_set_irq(void *opaque, int irq, int level)
|
||||
{
|
||||
|
@ -670,11 +697,13 @@ static void cortex_m3_initfn(Object *obj)
|
|||
|
||||
static void arm_v7m_class_init(ObjectClass *oc, void *data)
|
||||
{
|
||||
#ifndef CONFIG_USER_ONLY
|
||||
CPUClass *cc = CPU_CLASS(oc);
|
||||
|
||||
#ifndef CONFIG_USER_ONLY
|
||||
cc->do_interrupt = arm_v7m_cpu_do_interrupt;
|
||||
#endif
|
||||
|
||||
cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
|
||||
}
|
||||
|
||||
static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
|
||||
|
|
|
@ -1251,18 +1251,6 @@ static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx)
|
|||
bool secure = false;
|
||||
/* If in EL1/0, Physical IRQ routing to EL2 only happens from NS state. */
|
||||
bool irq_can_hyp = !secure && cur_el < 2 && target_el == 2;
|
||||
/* ARMv7-M interrupt return works by loading a magic value
|
||||
* into the PC. On real hardware the load causes the
|
||||
* return to occur. The qemu implementation performs the
|
||||
* jump normally, then does the exception return when the
|
||||
* CPU tries to execute code at the magic address.
|
||||
* This will cause the magic PC value to be pushed to
|
||||
* the stack if an interrupt occurred at the wrong time.
|
||||
* We avoid this by disabling interrupts when
|
||||
* pc contains a magic address.
|
||||
*/
|
||||
bool irq_unmasked = !(env->daif & PSTATE_I)
|
||||
&& (!IS_M(env) || env->regs[15] < 0xfffffff0);
|
||||
|
||||
/* Don't take exceptions if they target a lower EL. */
|
||||
if (cur_el > target_el) {
|
||||
|
@ -1279,7 +1267,7 @@ static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx)
|
|||
if (irq_can_hyp && (env->cp15.hcr_el2 & HCR_IMO)) {
|
||||
return true;
|
||||
}
|
||||
return irq_unmasked;
|
||||
return !(env->daif & PSTATE_I);
|
||||
case EXCP_VFIQ:
|
||||
if (!secure && !(env->cp15.hcr_el2 & HCR_FMO)) {
|
||||
/* VFIQs are only taken when hypervized and non-secure. */
|
||||
|
@ -1291,7 +1279,7 @@ static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx)
|
|||
/* VIRQs are only taken when hypervized and non-secure. */
|
||||
return false;
|
||||
}
|
||||
return irq_unmasked;
|
||||
return !(env->daif & PSTATE_I);
|
||||
default:
|
||||
g_assert_not_reached();
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue