Migration pull request

- Nick's reenabling of ppc64 tests + speed improvements
 - Yuan's IAA/QPL compression support for multifd
 - Shameer's UADK compression support for multifd
 -----BEGIN PGP SIGNATURE-----
 
 iQJEBAABCAAuFiEEqhtIsKIjJqWkw2TPx5jcdBvsMZ0FAmZseDcQHGZhcm9zYXNA
 c3VzZS5kZQAKCRDHmNx0G+wxncT/D/0RkSBDyY7Mg+WLIUkbXBFKxnCwpiDiub4K
 FsesQfTU8IBLTHSkAMeTipZ8MMg1odfTcB6CCzRpXdJ4V07UGCxKEV77WftiomUm
 bA/FmkvQRQh2iuEESV+6ciomvI33085TuZLguMQCsER1gv3BPCVjLZ3n7/oTm9MD
 IdLJx9x5vLKLgT1pfHJt0x9joER77Vk7JN97fuHHvcWBlUnZ1vsmWf3ZQnnWLJNf
 bg5TSlmxV1x/iGJh0GDIVyZHgBJ1jWKA7qONHxACP4mF14WFCVaQ8DYS+yL6Ggs3
 vAdOjTECE7kAbb6zk33NoZ8GO39xzrGTvYoxOGEnOCB8pco/dHyr01mdiH/NM+uF
 +OTymQhO8LqJ1VGPvkDfQy2CZmb7DbkER5Y/0zBPaUJCjqNlEQUoq5UfCJDPp5Am
 u5e29QQLWA1j4rsIA7L4HUP8KEuJrnANMSGaomJIjbR/rbLXwb0k5Fr9DL4J4bIu
 z6e+SMrY+0SMAmx5u9WG7HhVTw8yvZM1PnrvCvFGX35nNB0VJ0//lejLGNOXjcXm
 QZcytlkyKeLwn6mRJWCWlasbW07/lNegNRqBP394awFtG8OYKDgrHfTtxtJcLIiK
 buLmZezuI4XVPA2WxmK+viCAfPTukpnoLaQr1yxGH22VThqwjfcEyAHQFccSvY3y
 F3n9dtwpUQ==
 =HAv2
 -----END PGP SIGNATURE-----

Merge tag 'migration-20240614-pull-request' of https://gitlab.com/farosas/qemu into staging

Migration pull request

- Nick's reenabling of ppc64 tests + speed improvements
- Yuan's IAA/QPL compression support for multifd
- Shameer's UADK compression support for multifd

# -----BEGIN PGP SIGNATURE-----
#
# iQJEBAABCAAuFiEEqhtIsKIjJqWkw2TPx5jcdBvsMZ0FAmZseDcQHGZhcm9zYXNA
# c3VzZS5kZQAKCRDHmNx0G+wxncT/D/0RkSBDyY7Mg+WLIUkbXBFKxnCwpiDiub4K
# FsesQfTU8IBLTHSkAMeTipZ8MMg1odfTcB6CCzRpXdJ4V07UGCxKEV77WftiomUm
# bA/FmkvQRQh2iuEESV+6ciomvI33085TuZLguMQCsER1gv3BPCVjLZ3n7/oTm9MD
# IdLJx9x5vLKLgT1pfHJt0x9joER77Vk7JN97fuHHvcWBlUnZ1vsmWf3ZQnnWLJNf
# bg5TSlmxV1x/iGJh0GDIVyZHgBJ1jWKA7qONHxACP4mF14WFCVaQ8DYS+yL6Ggs3
# vAdOjTECE7kAbb6zk33NoZ8GO39xzrGTvYoxOGEnOCB8pco/dHyr01mdiH/NM+uF
# +OTymQhO8LqJ1VGPvkDfQy2CZmb7DbkER5Y/0zBPaUJCjqNlEQUoq5UfCJDPp5Am
# u5e29QQLWA1j4rsIA7L4HUP8KEuJrnANMSGaomJIjbR/rbLXwb0k5Fr9DL4J4bIu
# z6e+SMrY+0SMAmx5u9WG7HhVTw8yvZM1PnrvCvFGX35nNB0VJ0//lejLGNOXjcXm
# QZcytlkyKeLwn6mRJWCWlasbW07/lNegNRqBP394awFtG8OYKDgrHfTtxtJcLIiK
# buLmZezuI4XVPA2WxmK+viCAfPTukpnoLaQr1yxGH22VThqwjfcEyAHQFccSvY3y
# F3n9dtwpUQ==
# =HAv2
# -----END PGP SIGNATURE-----
# gpg: Signature made Fri 14 Jun 2024 10:04:55 AM PDT
# gpg:                using RSA key AA1B48B0A22326A5A4C364CFC798DC741BEC319D
# gpg:                issuer "farosas@suse.de"
# gpg: Good signature from "Fabiano Rosas <farosas@suse.de>" [unknown]
# gpg:                 aka "Fabiano Almeida Rosas <fabiano.rosas@suse.com>" [unknown]
# gpg: WARNING: This key is not certified with a trusted signature!
# gpg:          There is no indication that the signature belongs to the owner.
# Primary key fingerprint: AA1B 48B0 A223 26A5 A4C3  64CF C798 DC74 1BEC 319D

* tag 'migration-20240614-pull-request' of https://gitlab.com/farosas/qemu:
  tests/migration-test: add uadk compression test
  migration/multifd: Switch to no compression when no hardware support
  migration/multifd: Add UADK based compression and decompression
  migration/multifd: Add UADK initialization
  migration/multifd: add uadk compression framework
  configure: Add uadk option
  docs/migration: add uadk compression feature
  tests/migration-test: add qpl compression test
  migration/multifd: implement qpl compression and decompression
  migration/multifd: implement initialization of qpl compression
  migration/multifd: add qpl compression method
  configure: add --enable-qpl build option
  migration/multifd: put IOV initialization into compression method
  docs/migration: add qpl compression feature
  tests/qtest/migration-test: Use custom asm bios for ppc64
  tests/qtest/migration-test: Enable on ppc64 TCG
  tests/qtest/migration-test: Quieten ppc64 QEMU warnings
  tests/qtest: Move common define from libqos-spapr.h to new ppc-util.h

Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
This commit is contained in:
Richard Henderson 2024-06-15 09:16:05 -07:00
commit b23acd3e1f
26 changed files with 1816 additions and 69 deletions

View File

@ -12,3 +12,5 @@ Migration has plenty of features to support different use cases.
virtio
mapped-ram
CPR
qpl-compression
uadk-compression

View File

@ -0,0 +1,260 @@
===============
QPL Compression
===============
The Intel Query Processing Library (Intel ``QPL``) is an open-source library to
provide compression and decompression features and it is based on deflate
compression algorithm (RFC 1951).
The ``QPL`` compression relies on Intel In-Memory Analytics Accelerator(``IAA``)
and Shared Virtual Memory(``SVM``) technology, they are new features supported
from Intel 4th Gen Intel Xeon Scalable processors, codenamed Sapphire Rapids
processor(``SPR``).
For more ``QPL`` introduction, please refer to `QPL Introduction
<https://intel.github.io/qpl/documentation/introduction_docs/introduction.html>`_
QPL Compression Framework
=========================
::
+----------------+ +------------------+
| MultiFD Thread | |accel-config tool |
+-------+--------+ +--------+---------+
| |
| |
|compress/decompress |
+-------+--------+ | Setup IAA
| QPL library | | Resources
+-------+---+----+ |
| | |
| +-------------+-------+
| Open IAA |
| Devices +-----+-----+
| |idxd driver|
| +-----+-----+
| |
| |
| +-----+-----+
+-----------+IAA Devices|
Submit jobs +-----------+
via enqcmd
QPL Build And Installation
--------------------------
.. code-block:: shell
$git clone --recursive https://github.com/intel/qpl.git qpl
$mkdir qpl/build
$cd qpl/build
$cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr -DQPL_LIBRARY_TYPE=SHARED ..
$sudo cmake --build . --target install
For more details about ``QPL`` installation, please refer to `QPL Installation
<https://intel.github.io/qpl/documentation/get_started_docs/installation.html>`_
IAA Device Management
---------------------
The number of ``IAA`` devices will vary depending on the Xeon product model.
On a ``SPR`` server, there can be a maximum of 8 ``IAA`` devices, with up to
4 devices per socket.
By default, all ``IAA`` devices are disabled and need to be configured and
enabled by users manually.
Check the number of devices through the following command
.. code-block:: shell
#lspci -d 8086:0cfe
6a:02.0 System peripheral: Intel Corporation Device 0cfe
6f:02.0 System peripheral: Intel Corporation Device 0cfe
74:02.0 System peripheral: Intel Corporation Device 0cfe
79:02.0 System peripheral: Intel Corporation Device 0cfe
e7:02.0 System peripheral: Intel Corporation Device 0cfe
ec:02.0 System peripheral: Intel Corporation Device 0cfe
f1:02.0 System peripheral: Intel Corporation Device 0cfe
f6:02.0 System peripheral: Intel Corporation Device 0cfe
IAA Device Configuration And Enabling
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The ``accel-config`` tool is used to enable ``IAA`` devices and configure
``IAA`` hardware resources(work queues and engines). One ``IAA`` device
has 8 work queues and 8 processing engines, multiple engines can be assigned
to a work queue via ``group`` attribute.
For ``accel-config`` installation, please refer to `accel-config installation
<https://github.com/intel/idxd-config>`_
One example of configuring and enabling an ``IAA`` device.
.. code-block:: shell
#accel-config config-engine iax1/engine1.0 -g 0
#accel-config config-engine iax1/engine1.1 -g 0
#accel-config config-engine iax1/engine1.2 -g 0
#accel-config config-engine iax1/engine1.3 -g 0
#accel-config config-engine iax1/engine1.4 -g 0
#accel-config config-engine iax1/engine1.5 -g 0
#accel-config config-engine iax1/engine1.6 -g 0
#accel-config config-engine iax1/engine1.7 -g 0
#accel-config config-wq iax1/wq1.0 -g 0 -s 128 -p 10 -b 1 -t 128 -m shared -y user -n app1 -d user
#accel-config enable-device iax1
#accel-config enable-wq iax1/wq1.0
.. note::
IAX is an early name for IAA
- The ``IAA`` device index is 1, use ``ls -lh /sys/bus/dsa/devices/iax*``
command to query the ``IAA`` device index.
- 8 engines and 1 work queue are configured in group 0, so all compression jobs
submitted to this work queue can be processed by all engines at the same time.
- Set work queue attributes including the work mode, work queue size and so on.
- Enable the ``IAA1`` device and work queue 1.0
.. note::
Set work queue mode to shared mode, since ``QPL`` library only supports
shared mode
For more detailed configuration, please refer to `IAA Configuration Samples
<https://github.com/intel/idxd-config/tree/stable/Documentation/accfg>`_
IAA Unit Test
^^^^^^^^^^^^^
- Enabling ``IAA`` devices for Xeon platform, please refer to `IAA User Guide
<https://www.intel.com/content/www/us/en/content-details/780887/intel-in-memory-analytics-accelerator-intel-iaa.html>`_
- ``IAA`` device driver is Intel Data Accelerator Driver (idxd), it is
recommended that the minimum version of Linux kernel is 5.18.
- Add ``"intel_iommu=on,sm_on"`` parameter to kernel command line
for ``SVM`` feature enabling.
Here is an easy way to verify ``IAA`` device driver and ``SVM`` with `iaa_test
<https://github.com/intel/idxd-config/tree/stable/test>`_
.. code-block:: shell
#./test/iaa_test
[ info] alloc wq 0 shared size 128 addr 0x7f26cebe5000 batch sz 0xfffffffe xfer sz 0x80000000
[ info] test noop: tflags 0x1 num_desc 1
[ info] preparing descriptor for noop
[ info] Submitted all noop jobs
[ info] verifying task result for 0x16f7e20
[ info] test with op 0 passed
IAA Resources Allocation For Migration
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
There is no ``IAA`` resource configuration parameters for migration and
``accel-config`` tool configuration cannot directly specify the ``IAA``
resources used for migration.
The multifd migration with ``QPL`` compression method will use all work
queues that are enabled and shared mode.
.. note::
Accessing IAA resources requires ``sudo`` command or ``root`` privileges
by default. Administrators can modify the IAA device node ownership
so that QEMU can use IAA with specified user permissions.
For example
#chown -R qemu /dev/iax
Shared Virtual Memory(SVM) Introduction
=======================================
An ability for an accelerator I/O device to operate in the same virtual
memory space of applications on host processors. It also implies the
ability to operate from pageable memory, avoiding functional requirements
to pin memory for DMA operations.
When using ``SVM`` technology, users do not need to reserve memory for the
``IAA`` device and perform pin memory operation. The ``IAA`` device can
directly access data using the virtual address of the process.
For more ``SVM`` technology, please refer to
`Shared Virtual Addressing (SVA) with ENQCMD
<https://docs.kernel.org/next/x86/sva.html>`_
How To Use QPL Compression In Migration
=======================================
1 - Installation of ``QPL`` library and ``accel-config`` library if using IAA
2 - Configure and enable ``IAA`` devices and work queues via ``accel-config``
3 - Build ``QEMU`` with ``--enable-qpl`` parameter
E.g. configure --target-list=x86_64-softmmu --enable-kvm ``--enable-qpl``
4 - Enable ``QPL`` compression during migration
Set ``migrate_set_parameter multifd-compression qpl`` when migrating, the
``QPL`` compression does not support configuring the compression level, it
only supports one compression level.
The Difference Between QPL And ZLIB
===================================
Although both ``QPL`` and ``ZLIB`` are based on the deflate compression
algorithm, and ``QPL`` can support the header and tail of ``ZLIB``, ``QPL``
is still not fully compatible with the ``ZLIB`` compression in the migration.
``QPL`` only supports 4K history buffer, and ``ZLIB`` is 32K by default.
``ZLIB`` compresses data that ``QPL`` may not decompress correctly and
vice versa.
``QPL`` does not support the ``Z_SYNC_FLUSH`` operation in ``ZLIB`` streaming
compression, current ``ZLIB`` implementation uses ``Z_SYNC_FLUSH``, so each
``multifd`` thread has a ``ZLIB`` streaming context, and all page compression
and decompression are based on this stream. ``QPL`` cannot decompress such data
and vice versa.
The introduction for ``Z_SYNC_FLUSH``, please refer to `Zlib Manual
<https://www.zlib.net/manual.html>`_
The Best Practices
==================
When user enables the IAA device for ``QPL`` compression, it is recommended
to add ``-mem-prealloc`` parameter to the destination boot parameters. This
parameter can avoid the occurrence of I/O page fault and reduce the overhead
of IAA compression and decompression.
The example of booting with ``-mem-prealloc`` parameter
.. code-block:: shell
$qemu-system-x86_64 --enable-kvm -cpu host --mem-prealloc ...
An example about I/O page fault measurement of destination without
``-mem-prealloc``, the ``svm_prq`` indicates the number of I/O page fault
occurrences and processing time.
.. code-block:: shell
#echo 1 > /sys/kernel/debug/iommu/intel/dmar_perf_latency
#echo 2 > /sys/kernel/debug/iommu/intel/dmar_perf_latency
#echo 3 > /sys/kernel/debug/iommu/intel/dmar_perf_latency
#echo 4 > /sys/kernel/debug/iommu/intel/dmar_perf_latency
#cat /sys/kernel/debug/iommu/intel/dmar_perf_latency
IOMMU: dmar18 Register Base Address: c87fc000
<0.1us 0.1us-1us 1us-10us 10us-100us 100us-1ms 1ms-10ms >=10ms min(us) max(us) average(us)
inv_iotlb 0 286 123 0 0 0 0 0 1 0
inv_devtlb 0 276 133 0 0 0 0 0 2 0
inv_iec 0 0 0 0 0 0 0 0 0 0
svm_prq 0 0 25206 364 395 0 0 1 556 9

View File

@ -0,0 +1,144 @@
=========================================================
User Space Accelerator Development Kit (UADK) Compression
=========================================================
UADK is a general-purpose user space accelerator framework that uses shared
virtual addressing (SVA) to provide a unified programming interface for
hardware acceleration of cryptographic and compression algorithms.
UADK includes Unified/User-space-access-intended Accelerator Framework (UACCE),
which enables hardware accelerators from different vendors that support SVA to
adapt to UADK.
Currently, HiSilicon Kunpeng hardware accelerators have been registered with
UACCE. Through the UADK framework, users can run cryptographic and compression
algorithms using hardware accelerators instead of CPUs, freeing up CPU
computing power and improving computing performance.
https://github.com/Linaro/uadk/tree/master/docs
UADK Framework
==============
UADK consists of UACCE, vendors' drivers, and an algorithm layer. UADK requires
the hardware accelerator to support SVA, and the operating system to support
IOMMU and SVA. Hardware accelerators from different vendors are registered as
different character devices with UACCE by using kernel-mode drivers of the
vendors. A user can access the hardware accelerators by performing user-mode
operations on the character devices.
::
+----------------------------------+
| apps |
+----+------------------------+----+
| |
| |
+-------+--------+ +-------+-------+
| scheduler | | alg libraries |
+-------+--------+ +-------+-------+
| |
| |
| |
| +--------+------+
| | vendor drivers|
| +-+-------------+
| |
| |
+--+------------------+--+
| libwd |
User +----+-------------+-----+
--------------------------------------------------
Kernel +--+-----+ +------+
| uacce | | smmu |
+---+----+ +------+
|
+---+------------------+
| vendor kernel driver |
+----------------------+
--------------------------------------------------
+----------------------+
| HW Accelerators |
+----------------------+
UADK Installation
-----------------
Build UADK
^^^^^^^^^^
.. code-block:: shell
git clone https://github.com/Linaro/uadk.git
cd uadk
mkdir build
./autogen.sh
./configure --prefix=$PWD/build
make
make install
Without --prefix, UADK will be installed to /usr/local/lib by default.
If get error:"cannot find -lnuma", please install the libnuma-dev
Run pkg-config libwd to ensure env is setup correctly
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
* export PKG_CONFIG_PATH=$PWD/build/lib/pkgconfig
* pkg-config libwd --cflags --libs
-I/usr/local/include -L/usr/local/lib -lwd
* export PKG_CONFIG_PATH is required on demand.
Not required if UADK is installed to /usr/local/lib
UADK Host Kernel Requirements
-----------------------------
User needs to make sure that ``UACCE`` is already supported in Linux kernel.
The kernel version should be at least v5.9 with SVA (Shared Virtual
Addressing) enabled.
Kernel Configuration
^^^^^^^^^^^^^^^^^^^^
``UACCE`` could be built as module or built-in.
Here's an example to enable UACCE with hardware accelerator in HiSilicon
Kunpeng platform.
* CONFIG_IOMMU_SVA_LIB=y
* CONFIG_ARM_SMMU=y
* CONFIG_ARM_SMMU_V3=y
* CONFIG_ARM_SMMU_V3_SVA=y
* CONFIG_PCI_PASID=y
* CONFIG_UACCE=y
* CONFIG_CRYPTO_DEV_HISI_QM=y
* CONFIG_CRYPTO_DEV_HISI_ZIP=y
Make sure all these above kernel configurations are selected.
Accelerator dev node permissions
--------------------------------
Harware accelerators(eg: HiSilicon Kunpeng Zip accelerator) gets registered to
UADK and char devices are created in dev directory. In order to access resources
on hardware accelerator devices, write permission should be provided to user.
.. code-block:: shell
$ sudo chmod 777 /dev/hisi_zip-*
How To Use UADK Compression In QEMU Migration
---------------------------------------------
* Make sure UADK is installed as above
* Build ``QEMU`` with ``--enable-uadk`` parameter
E.g. configure --target-list=aarch64-softmmu --enable-kvm ``--enable-uadk``
* Enable ``UADK`` compression during migration
Set ``migrate_set_parameter multifd-compression uadk``
Since UADK uses Shared Virtual Addressing(SVA) and device access virtual memory
directly it is possible that SMMUv3 may enounter page faults while walking the
IO page tables. This may impact the performance. In order to mitigate this,
please make sure to specify ``-mem-prealloc`` parameter to the destination VM
boot parameters.
Though both UADK and ZLIB are based on the deflate compression algorithm, UADK
is not fully compatible with ZLIB. Hence, please make sure to use ``uadk`` on
both source and destination during migration.

View File

@ -659,7 +659,7 @@ const PropertyInfo qdev_prop_fdc_drive_type = {
const PropertyInfo qdev_prop_multifd_compression = {
.name = "MultiFDCompression",
.description = "multifd_compression values, "
"none/zlib/zstd",
"none/zlib/zstd/qpl/uadk",
.enum_table = &MultiFDCompression_lookup,
.get = qdev_propinfo_get_enum,
.set = qdev_propinfo_set_enum,

View File

@ -1201,6 +1201,24 @@ if not get_option('zstd').auto() or have_block
required: get_option('zstd'),
method: 'pkg-config')
endif
qpl = not_found
if not get_option('qpl').auto() or have_system
qpl = dependency('qpl', version: '>=1.5.0',
required: get_option('qpl'),
method: 'pkg-config')
endif
uadk = not_found
if not get_option('uadk').auto() or have_system
libwd = dependency('libwd', version: '>=2.6',
required: get_option('uadk'),
method: 'pkg-config')
libwd_comp = dependency('libwd_comp', version: '>=2.6',
required: get_option('uadk'),
method: 'pkg-config')
if libwd.found() and libwd_comp.found()
uadk = declare_dependency(dependencies: [libwd, libwd_comp])
endif
endif
virgl = not_found
have_vhost_user_gpu = have_tools and host_os == 'linux' and pixman.found()
@ -2333,6 +2351,8 @@ config_host_data.set('CONFIG_MALLOC_TRIM', has_malloc_trim)
config_host_data.set('CONFIG_STATX', has_statx)
config_host_data.set('CONFIG_STATX_MNT_ID', has_statx_mnt_id)
config_host_data.set('CONFIG_ZSTD', zstd.found())
config_host_data.set('CONFIG_QPL', qpl.found())
config_host_data.set('CONFIG_UADK', uadk.found())
config_host_data.set('CONFIG_FUSE', fuse.found())
config_host_data.set('CONFIG_FUSE_LSEEK', fuse_lseek.found())
config_host_data.set('CONFIG_SPICE_PROTOCOL', spice_protocol.found())
@ -4446,6 +4466,8 @@ summary_info += {'snappy support': snappy}
summary_info += {'bzip2 support': libbzip2}
summary_info += {'lzfse support': liblzfse}
summary_info += {'zstd support': zstd}
summary_info += {'Query Processing Library support': qpl}
summary_info += {'UADK Library support': uadk}
summary_info += {'NUMA host support': numa}
summary_info += {'capstone': capstone}
summary_info += {'libpmem support': libpmem}

View File

@ -259,6 +259,10 @@ option('xkbcommon', type : 'feature', value : 'auto',
description: 'xkbcommon support')
option('zstd', type : 'feature', value : 'auto',
description: 'zstd compression support')
option('qpl', type : 'feature', value : 'auto',
description: 'Query Processing Library support')
option('uadk', type : 'feature', value : 'auto',
description: 'UADK Library support')
option('fuse', type: 'feature', value: 'auto',
description: 'FUSE block device export')
option('fuse_lseek', type : 'feature', value : 'auto',

View File

@ -39,6 +39,8 @@ endif
system_ss.add(when: rdma, if_true: files('rdma.c'))
system_ss.add(when: zstd, if_true: files('multifd-zstd.c'))
system_ss.add(when: qpl, if_true: files('multifd-qpl.c'))
system_ss.add(when: uadk, if_true: files('multifd-uadk.c'))
specific_ss.add(when: 'CONFIG_SYSTEM_ONLY',
if_true: files('ram.c',

762
migration/multifd-qpl.c Normal file
View File

@ -0,0 +1,762 @@
/*
* Multifd qpl compression accelerator implementation
*
* Copyright (c) 2023 Intel Corporation
*
* Authors:
* Yuan Liu<yuan1.liu@intel.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/module.h"
#include "qapi/error.h"
#include "qapi/qapi-types-migration.h"
#include "exec/ramblock.h"
#include "multifd.h"
#include "qpl/qpl.h"
/* Maximum number of retries to resubmit a job if IAA work queues are full */
#define MAX_SUBMIT_RETRY_NUM (3)
typedef struct {
/* the QPL hardware path job */
qpl_job *job;
/* indicates if fallback to software path is required */
bool fallback_sw_path;
/* output data from the software path */
uint8_t *sw_output;
/* output data length from the software path */
uint32_t sw_output_len;
} QplHwJob;
typedef struct {
/* array of hardware jobs, the number of jobs equals the number pages */
QplHwJob *hw_jobs;
/* the QPL software job for the slow path and software fallback */
qpl_job *sw_job;
/* the number of pages that the QPL needs to process at one time */
uint32_t page_num;
/* array of compressed page buffers */
uint8_t *zbuf;
/* array of compressed page lengths */
uint32_t *zlen;
/* the status of the hardware device */
bool hw_avail;
} QplData;
/**
* check_hw_avail: check if IAA hardware is available
*
* If the IAA hardware does not exist or is unavailable,
* the QPL hardware job initialization will fail.
*
* Returns true if IAA hardware is available, otherwise false.
*
* @job_size: indicates the hardware job size if hardware is available
*/
static bool check_hw_avail(uint32_t *job_size)
{
qpl_path_t path = qpl_path_hardware;
uint32_t size = 0;
qpl_job *job;
if (qpl_get_job_size(path, &size) != QPL_STS_OK) {
return false;
}
assert(size > 0);
job = g_malloc0(size);
if (qpl_init_job(path, job) != QPL_STS_OK) {
g_free(job);
return false;
}
g_free(job);
*job_size = size;
return true;
}
/**
* multifd_qpl_free_sw_job: clean up software job
*
* Free the software job resources.
*
* @qpl: pointer to the QplData structure
*/
static void multifd_qpl_free_sw_job(QplData *qpl)
{
assert(qpl);
if (qpl->sw_job) {
qpl_fini_job(qpl->sw_job);
g_free(qpl->sw_job);
qpl->sw_job = NULL;
}
}
/**
* multifd_qpl_free_jobs: clean up hardware jobs
*
* Free all hardware job resources.
*
* @qpl: pointer to the QplData structure
*/
static void multifd_qpl_free_hw_job(QplData *qpl)
{
assert(qpl);
if (qpl->hw_jobs) {
for (int i = 0; i < qpl->page_num; i++) {
qpl_fini_job(qpl->hw_jobs[i].job);
g_free(qpl->hw_jobs[i].job);
qpl->hw_jobs[i].job = NULL;
}
g_free(qpl->hw_jobs);
qpl->hw_jobs = NULL;
}
}
/**
* multifd_qpl_init_sw_job: initialize a software job
*
* Use the QPL software path to initialize a job
*
* @qpl: pointer to the QplData structure
* @errp: pointer to an error
*/
static int multifd_qpl_init_sw_job(QplData *qpl, Error **errp)
{
qpl_path_t path = qpl_path_software;
uint32_t size = 0;
qpl_job *job = NULL;
qpl_status status;
status = qpl_get_job_size(path, &size);
if (status != QPL_STS_OK) {
error_setg(errp, "qpl_get_job_size failed with error %d", status);
return -1;
}
job = g_malloc0(size);
status = qpl_init_job(path, job);
if (status != QPL_STS_OK) {
error_setg(errp, "qpl_init_job failed with error %d", status);
g_free(job);
return -1;
}
qpl->sw_job = job;
return 0;
}
/**
* multifd_qpl_init_jobs: initialize hardware jobs
*
* Use the QPL hardware path to initialize jobs
*
* @qpl: pointer to the QplData structure
* @size: the size of QPL hardware path job
* @errp: pointer to an error
*/
static void multifd_qpl_init_hw_job(QplData *qpl, uint32_t size, Error **errp)
{
qpl_path_t path = qpl_path_hardware;
qpl_job *job = NULL;
qpl_status status;
qpl->hw_jobs = g_new0(QplHwJob, qpl->page_num);
for (int i = 0; i < qpl->page_num; i++) {
job = g_malloc0(size);
status = qpl_init_job(path, job);
/* the job initialization should succeed after check_hw_avail */
assert(status == QPL_STS_OK);
qpl->hw_jobs[i].job = job;
}
}
/**
* multifd_qpl_init: initialize QplData structure
*
* Allocate and initialize a QplData structure
*
* Returns a QplData pointer on success or NULL on error
*
* @num: the number of pages
* @size: the page size
* @errp: pointer to an error
*/
static QplData *multifd_qpl_init(uint32_t num, uint32_t size, Error **errp)
{
uint32_t job_size = 0;
QplData *qpl;
qpl = g_new0(QplData, 1);
qpl->page_num = num;
if (multifd_qpl_init_sw_job(qpl, errp) != 0) {
g_free(qpl);
return NULL;
}
qpl->hw_avail = check_hw_avail(&job_size);
if (qpl->hw_avail) {
multifd_qpl_init_hw_job(qpl, job_size, errp);
}
qpl->zbuf = g_malloc0(size * num);
qpl->zlen = g_new0(uint32_t, num);
return qpl;
}
/**
* multifd_qpl_deinit: clean up QplData structure
*
* Free jobs, buffers and the QplData structure
*
* @qpl: pointer to the QplData structure
*/
static void multifd_qpl_deinit(QplData *qpl)
{
if (qpl) {
multifd_qpl_free_sw_job(qpl);
multifd_qpl_free_hw_job(qpl);
g_free(qpl->zbuf);
g_free(qpl->zlen);
g_free(qpl);
}
}
/**
* multifd_qpl_send_setup: set up send side
*
* Set up the channel with QPL compression.
*
* Returns 0 on success or -1 on error
*
* @p: Params for the channel being used
* @errp: pointer to an error
*/
static int multifd_qpl_send_setup(MultiFDSendParams *p, Error **errp)
{
QplData *qpl;
qpl = multifd_qpl_init(p->page_count, p->page_size, errp);
if (!qpl) {
return -1;
}
p->compress_data = qpl;
/*
* the page will be compressed independently and sent using an IOV. The
* additional two IOVs are used to store packet header and compressed data
* length
*/
p->iov = g_new0(struct iovec, p->page_count + 2);
return 0;
}
/**
* multifd_qpl_send_cleanup: clean up send side
*
* Close the channel and free memory.
*
* @p: Params for the channel being used
* @errp: pointer to an error
*/
static void multifd_qpl_send_cleanup(MultiFDSendParams *p, Error **errp)
{
multifd_qpl_deinit(p->compress_data);
p->compress_data = NULL;
g_free(p->iov);
p->iov = NULL;
}
/**
* multifd_qpl_prepare_job: prepare the job
*
* Set the QPL job parameters and properties.
*
* @job: pointer to the qpl_job structure
* @is_compression: indicates compression and decompression
* @input: pointer to the input data buffer
* @input_len: the length of the input data
* @output: pointer to the output data buffer
* @output_len: the length of the output data
*/
static void multifd_qpl_prepare_job(qpl_job *job, bool is_compression,
uint8_t *input, uint32_t input_len,
uint8_t *output, uint32_t output_len)
{
job->op = is_compression ? qpl_op_compress : qpl_op_decompress;
job->next_in_ptr = input;
job->next_out_ptr = output;
job->available_in = input_len;
job->available_out = output_len;
job->flags = QPL_FLAG_FIRST | QPL_FLAG_LAST | QPL_FLAG_OMIT_VERIFY;
/* only supports compression level 1 */
job->level = 1;
}
/**
* multifd_qpl_prepare_comp_job: prepare the compression job
*
* Set the compression job parameters and properties.
*
* @job: pointer to the qpl_job structure
* @input: pointer to the input data buffer
* @output: pointer to the output data buffer
* @size: the page size
*/
static void multifd_qpl_prepare_comp_job(qpl_job *job, uint8_t *input,
uint8_t *output, uint32_t size)
{
/*
* Set output length to less than the page size to force the job to
* fail in case it compresses to a larger size. We'll send that page
* without compression and skip the decompression operation on the
* destination.
*/
multifd_qpl_prepare_job(job, true, input, size, output, size - 1);
}
/**
* multifd_qpl_prepare_decomp_job: prepare the decompression job
*
* Set the decompression job parameters and properties.
*
* @job: pointer to the qpl_job structure
* @input: pointer to the input data buffer
* @len: the length of the input data
* @output: pointer to the output data buffer
* @size: the page size
*/
static void multifd_qpl_prepare_decomp_job(qpl_job *job, uint8_t *input,
uint32_t len, uint8_t *output,
uint32_t size)
{
multifd_qpl_prepare_job(job, false, input, len, output, size);
}
/**
* multifd_qpl_fill_iov: fill in the IOV
*
* Fill in the QPL packet IOV
*
* @p: Params for the channel being used
* @data: pointer to the IOV data
* @len: The length of the IOV data
*/
static void multifd_qpl_fill_iov(MultiFDSendParams *p, uint8_t *data,
uint32_t len)
{
p->iov[p->iovs_num].iov_base = data;
p->iov[p->iovs_num].iov_len = len;
p->iovs_num++;
p->next_packet_size += len;
}
/**
* multifd_qpl_fill_packet: fill the compressed page into the QPL packet
*
* Fill the compressed page length and IOV into the QPL packet
*
* @idx: The index of the compressed length array
* @p: Params for the channel being used
* @data: pointer to the compressed page buffer
* @len: The length of the compressed page
*/
static void multifd_qpl_fill_packet(uint32_t idx, MultiFDSendParams *p,
uint8_t *data, uint32_t len)
{
QplData *qpl = p->compress_data;
qpl->zlen[idx] = cpu_to_be32(len);
multifd_qpl_fill_iov(p, data, len);
}
/**
* multifd_qpl_submit_job: submit a job to the hardware
*
* Submit a QPL hardware job to the IAA device
*
* Returns true if the job is submitted successfully, otherwise false.
*
* @job: pointer to the qpl_job structure
*/
static bool multifd_qpl_submit_job(qpl_job *job)
{
qpl_status status;
uint32_t num = 0;
retry:
status = qpl_submit_job(job);
if (status == QPL_STS_QUEUES_ARE_BUSY_ERR) {
if (num < MAX_SUBMIT_RETRY_NUM) {
num++;
goto retry;
}
}
return (status == QPL_STS_OK);
}
/**
* multifd_qpl_compress_pages_slow_path: compress pages using slow path
*
* Compress the pages using software. If compression fails, the uncompressed
* page will be sent.
*
* @p: Params for the channel being used
*/
static void multifd_qpl_compress_pages_slow_path(MultiFDSendParams *p)
{
QplData *qpl = p->compress_data;
uint32_t size = p->page_size;
qpl_job *job = qpl->sw_job;
uint8_t *zbuf = qpl->zbuf;
uint8_t *buf;
for (int i = 0; i < p->pages->normal_num; i++) {
buf = p->pages->block->host + p->pages->offset[i];
multifd_qpl_prepare_comp_job(job, buf, zbuf, size);
if (qpl_execute_job(job) == QPL_STS_OK) {
multifd_qpl_fill_packet(i, p, zbuf, job->total_out);
} else {
/* send the uncompressed page */
multifd_qpl_fill_packet(i, p, buf, size);
}
zbuf += size;
}
}
/**
* multifd_qpl_compress_pages: compress pages
*
* Submit the pages to the IAA hardware for compression. If hardware
* compression fails, it falls back to software compression. If software
* compression also fails, the uncompressed page is sent.
*
* @p: Params for the channel being used
*/
static void multifd_qpl_compress_pages(MultiFDSendParams *p)
{
QplData *qpl = p->compress_data;
MultiFDPages_t *pages = p->pages;
uint32_t size = p->page_size;
QplHwJob *hw_job;
uint8_t *buf;
uint8_t *zbuf;
for (int i = 0; i < pages->normal_num; i++) {
buf = pages->block->host + pages->offset[i];
zbuf = qpl->zbuf + (size * i);
hw_job = &qpl->hw_jobs[i];
multifd_qpl_prepare_comp_job(hw_job->job, buf, zbuf, size);
if (multifd_qpl_submit_job(hw_job->job)) {
hw_job->fallback_sw_path = false;
} else {
/*
* The IAA work queue is full, any immediate subsequent job
* submission is likely to fail, sending the page via the QPL
* software path at this point gives us a better chance of
* finding the queue open for the next pages.
*/
hw_job->fallback_sw_path = true;
multifd_qpl_prepare_comp_job(qpl->sw_job, buf, zbuf, size);
if (qpl_execute_job(qpl->sw_job) == QPL_STS_OK) {
hw_job->sw_output = zbuf;
hw_job->sw_output_len = qpl->sw_job->total_out;
} else {
hw_job->sw_output = buf;
hw_job->sw_output_len = size;
}
}
}
for (int i = 0; i < pages->normal_num; i++) {
buf = pages->block->host + pages->offset[i];
zbuf = qpl->zbuf + (size * i);
hw_job = &qpl->hw_jobs[i];
if (hw_job->fallback_sw_path) {
multifd_qpl_fill_packet(i, p, hw_job->sw_output,
hw_job->sw_output_len);
continue;
}
if (qpl_wait_job(hw_job->job) == QPL_STS_OK) {
multifd_qpl_fill_packet(i, p, zbuf, hw_job->job->total_out);
} else {
/* send the uncompressed page */
multifd_qpl_fill_packet(i, p, buf, size);
}
}
}
/**
* multifd_qpl_send_prepare: prepare data to be able to send
*
* Create a compressed buffer with all the pages that we are going to
* send.
*
* Returns 0 on success or -1 on error
*
* @p: Params for the channel being used
* @errp: pointer to an error
*/
static int multifd_qpl_send_prepare(MultiFDSendParams *p, Error **errp)
{
QplData *qpl = p->compress_data;
uint32_t len = 0;
if (!multifd_send_prepare_common(p)) {
goto out;
}
/* The first IOV is used to store the compressed page lengths */
len = p->pages->normal_num * sizeof(uint32_t);
multifd_qpl_fill_iov(p, (uint8_t *) qpl->zlen, len);
if (qpl->hw_avail) {
multifd_qpl_compress_pages(p);
} else {
multifd_qpl_compress_pages_slow_path(p);
}
out:
p->flags |= MULTIFD_FLAG_QPL;
multifd_send_fill_packet(p);
return 0;
}
/**
* multifd_qpl_recv_setup: set up receive side
*
* Create the compressed channel and buffer.
*
* Returns 0 on success or -1 on error
*
* @p: Params for the channel being used
* @errp: pointer to an error
*/
static int multifd_qpl_recv_setup(MultiFDRecvParams *p, Error **errp)
{
QplData *qpl;
qpl = multifd_qpl_init(p->page_count, p->page_size, errp);
if (!qpl) {
return -1;
}
p->compress_data = qpl;
return 0;
}
/**
* multifd_qpl_recv_cleanup: set up receive side
*
* Close the channel and free memory.
*
* @p: Params for the channel being used
*/
static void multifd_qpl_recv_cleanup(MultiFDRecvParams *p)
{
multifd_qpl_deinit(p->compress_data);
p->compress_data = NULL;
}
/**
* multifd_qpl_process_and_check_job: process and check a QPL job
*
* Process the job and check whether the job output length is the
* same as the specified length
*
* Returns true if the job execution succeeded and the output length
* is equal to the specified length, otherwise false.
*
* @job: pointer to the qpl_job structure
* @is_hardware: indicates whether the job is a hardware job
* @len: Specified output length
* @errp: pointer to an error
*/
static bool multifd_qpl_process_and_check_job(qpl_job *job, bool is_hardware,
uint32_t len, Error **errp)
{
qpl_status status;
status = (is_hardware ? qpl_wait_job(job) : qpl_execute_job(job));
if (status != QPL_STS_OK) {
error_setg(errp, "qpl job failed with error %d", status);
return false;
}
if (job->total_out != len) {
error_setg(errp, "qpl decompressed len %u, expected len %u",
job->total_out, len);
return false;
}
return true;
}
/**
* multifd_qpl_decompress_pages_slow_path: decompress pages using slow path
*
* Decompress the pages using software
*
* Returns 0 on success or -1 on error
*
* @p: Params for the channel being used
* @errp: pointer to an error
*/
static int multifd_qpl_decompress_pages_slow_path(MultiFDRecvParams *p,
Error **errp)
{
QplData *qpl = p->compress_data;
uint32_t size = p->page_size;
qpl_job *job = qpl->sw_job;
uint8_t *zbuf = qpl->zbuf;
uint8_t *addr;
uint32_t len;
for (int i = 0; i < p->normal_num; i++) {
len = qpl->zlen[i];
addr = p->host + p->normal[i];
/* the page is uncompressed, load it */
if (len == size) {
memcpy(addr, zbuf, size);
zbuf += size;
continue;
}
multifd_qpl_prepare_decomp_job(job, zbuf, len, addr, size);
if (!multifd_qpl_process_and_check_job(job, false, size, errp)) {
return -1;
}
zbuf += len;
}
return 0;
}
/**
* multifd_qpl_decompress_pages: decompress pages
*
* Decompress the pages using the IAA hardware. If hardware
* decompression fails, it falls back to software decompression.
*
* Returns 0 on success or -1 on error
*
* @p: Params for the channel being used
* @errp: pointer to an error
*/
static int multifd_qpl_decompress_pages(MultiFDRecvParams *p, Error **errp)
{
QplData *qpl = p->compress_data;
uint32_t size = p->page_size;
uint8_t *zbuf = qpl->zbuf;
uint8_t *addr;
uint32_t len;
qpl_job *job;
for (int i = 0; i < p->normal_num; i++) {
addr = p->host + p->normal[i];
len = qpl->zlen[i];
/* the page is uncompressed if received length equals the page size */
if (len == size) {
memcpy(addr, zbuf, size);
zbuf += size;
continue;
}
job = qpl->hw_jobs[i].job;
multifd_qpl_prepare_decomp_job(job, zbuf, len, addr, size);
if (multifd_qpl_submit_job(job)) {
qpl->hw_jobs[i].fallback_sw_path = false;
} else {
/*
* The IAA work queue is full, any immediate subsequent job
* submission is likely to fail, sending the page via the QPL
* software path at this point gives us a better chance of
* finding the queue open for the next pages.
*/
qpl->hw_jobs[i].fallback_sw_path = true;
job = qpl->sw_job;
multifd_qpl_prepare_decomp_job(job, zbuf, len, addr, size);
if (!multifd_qpl_process_and_check_job(job, false, size, errp)) {
return -1;
}
}
zbuf += len;
}
for (int i = 0; i < p->normal_num; i++) {
/* ignore pages that have already been processed */
if (qpl->zlen[i] == size || qpl->hw_jobs[i].fallback_sw_path) {
continue;
}
job = qpl->hw_jobs[i].job;
if (!multifd_qpl_process_and_check_job(job, true, size, errp)) {
return -1;
}
}
return 0;
}
/**
* multifd_qpl_recv: read the data from the channel into actual pages
*
* Read the compressed buffer, and uncompress it into the actual
* pages.
*
* Returns 0 on success or -1 on error
*
* @p: Params for the channel being used
* @errp: pointer to an error
*/
static int multifd_qpl_recv(MultiFDRecvParams *p, Error **errp)
{
QplData *qpl = p->compress_data;
uint32_t in_size = p->next_packet_size;
uint32_t flags = p->flags & MULTIFD_FLAG_COMPRESSION_MASK;
uint32_t len = 0;
uint32_t zbuf_len = 0;
int ret;
if (flags != MULTIFD_FLAG_QPL) {
error_setg(errp, "multifd %u: flags received %x flags expected %x",
p->id, flags, MULTIFD_FLAG_QPL);
return -1;
}
multifd_recv_zero_page_process(p);
if (!p->normal_num) {
assert(in_size == 0);
return 0;
}
/* read compressed page lengths */
len = p->normal_num * sizeof(uint32_t);
assert(len < in_size);
ret = qio_channel_read_all(p->c, (void *) qpl->zlen, len, errp);
if (ret != 0) {
return ret;
}
for (int i = 0; i < p->normal_num; i++) {
qpl->zlen[i] = be32_to_cpu(qpl->zlen[i]);
assert(qpl->zlen[i] <= p->page_size);
zbuf_len += qpl->zlen[i];
}
/* read compressed pages */
assert(in_size == len + zbuf_len);
ret = qio_channel_read_all(p->c, (void *) qpl->zbuf, zbuf_len, errp);
if (ret != 0) {
return ret;
}
if (qpl->hw_avail) {
return multifd_qpl_decompress_pages(p, errp);
}
return multifd_qpl_decompress_pages_slow_path(p, errp);
}
static MultiFDMethods multifd_qpl_ops = {
.send_setup = multifd_qpl_send_setup,
.send_cleanup = multifd_qpl_send_cleanup,
.send_prepare = multifd_qpl_send_prepare,
.recv_setup = multifd_qpl_recv_setup,
.recv_cleanup = multifd_qpl_recv_cleanup,
.recv = multifd_qpl_recv,
};
static void multifd_qpl_register(void)
{
multifd_register_ops(MULTIFD_COMPRESSION_QPL, &multifd_qpl_ops);
}
migration_init(multifd_qpl_register);

369
migration/multifd-uadk.c Normal file
View File

@ -0,0 +1,369 @@
/*
* Multifd UADK compression accelerator implementation
*
* Copyright (c) 2024 Huawei Technologies R & D (UK) Ltd
*
* Authors:
* Shameer Kolothum <shameerali.kolothum.thodi@huawei.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/module.h"
#include "qapi/error.h"
#include "exec/ramblock.h"
#include "migration.h"
#include "multifd.h"
#include "options.h"
#include "qemu/error-report.h"
#include "uadk/wd_comp.h"
#include "uadk/wd_sched.h"
struct wd_data {
handle_t handle;
uint8_t *buf;
uint32_t *buf_hdr;
};
static bool uadk_hw_init(void)
{
char alg[] = "zlib";
int ret;
ret = wd_comp_init2(alg, SCHED_POLICY_RR, TASK_HW);
if (ret && ret != -WD_EEXIST) {
return false;
} else {
return true;
}
}
static struct wd_data *multifd_uadk_init_sess(uint32_t count,
uint32_t page_size,
bool compress, Error **errp)
{
struct wd_comp_sess_setup ss = {0};
struct sched_params param = {0};
uint32_t size = count * page_size;
struct wd_data *wd;
wd = g_new0(struct wd_data, 1);
if (uadk_hw_init()) {
ss.alg_type = WD_ZLIB;
if (compress) {
ss.op_type = WD_DIR_COMPRESS;
/* Add an additional page for handling output > input */
size += page_size;
} else {
ss.op_type = WD_DIR_DECOMPRESS;
}
/* We use default level 1 compression and 4K window size */
param.type = ss.op_type;
ss.sched_param = &param;
wd->handle = wd_comp_alloc_sess(&ss);
if (!wd->handle) {
error_setg(errp, "multifd: failed wd_comp_alloc_sess");
goto out;
}
} else {
/* For CI test use */
warn_report_once("UADK hardware not available. Switch to no compression mode");
}
wd->buf = g_try_malloc(size);
if (!wd->buf) {
error_setg(errp, "multifd: out of mem for uadk buf");
goto out_free_sess;
}
wd->buf_hdr = g_new0(uint32_t, count);
return wd;
out_free_sess:
if (wd->handle) {
wd_comp_free_sess(wd->handle);
}
out:
wd_comp_uninit2();
g_free(wd);
return NULL;
}
static void multifd_uadk_uninit_sess(struct wd_data *wd)
{
if (wd->handle) {
wd_comp_free_sess(wd->handle);
}
wd_comp_uninit2();
g_free(wd->buf);
g_free(wd->buf_hdr);
g_free(wd);
}
/**
* multifd_uadk_send_setup: setup send side
*
* Returns 0 for success or -1 for error
*
* @p: Params for the channel that we are using
* @errp: pointer to an error
*/
static int multifd_uadk_send_setup(MultiFDSendParams *p, Error **errp)
{
struct wd_data *wd;
wd = multifd_uadk_init_sess(p->page_count, p->page_size, true, errp);
if (!wd) {
return -1;
}
p->compress_data = wd;
assert(p->iov == NULL);
/*
* Each page will be compressed independently and sent using an IOV. The
* additional two IOVs are used to store packet header and compressed data
* length
*/
p->iov = g_new0(struct iovec, p->page_count + 2);
return 0;
}
/**
* multifd_uadk_send_cleanup: cleanup send side
*
* Close the channel and return memory.
*
* @p: Params for the channel that we are using
* @errp: pointer to an error
*/
static void multifd_uadk_send_cleanup(MultiFDSendParams *p, Error **errp)
{
struct wd_data *wd = p->compress_data;
multifd_uadk_uninit_sess(wd);
p->compress_data = NULL;
}
static inline void prepare_next_iov(MultiFDSendParams *p, void *base,
uint32_t len)
{
p->iov[p->iovs_num].iov_base = (uint8_t *)base;
p->iov[p->iovs_num].iov_len = len;
p->next_packet_size += len;
p->iovs_num++;
}
/**
* multifd_uadk_send_prepare: prepare data to be able to send
*
* Create a compressed buffer with all the pages that we are going to
* send.
*
* Returns 0 for success or -1 for error
*
* @p: Params for the channel that we are using
* @errp: pointer to an error
*/
static int multifd_uadk_send_prepare(MultiFDSendParams *p, Error **errp)
{
struct wd_data *uadk_data = p->compress_data;
uint32_t hdr_size;
uint8_t *buf = uadk_data->buf;
int ret = 0;
if (!multifd_send_prepare_common(p)) {
goto out;
}
hdr_size = p->pages->normal_num * sizeof(uint32_t);
/* prepare the header that stores the lengths of all compressed data */
prepare_next_iov(p, uadk_data->buf_hdr, hdr_size);
for (int i = 0; i < p->pages->normal_num; i++) {
struct wd_comp_req creq = {
.op_type = WD_DIR_COMPRESS,
.src = p->pages->block->host + p->pages->offset[i],
.src_len = p->page_size,
.dst = buf,
/* Set dst_len to double the src in case compressed out >= page_size */
.dst_len = p->page_size * 2,
};
if (uadk_data->handle) {
ret = wd_do_comp_sync(uadk_data->handle, &creq);
if (ret || creq.status) {
error_setg(errp, "multifd %u: failed compression, ret %d status %d",
p->id, ret, creq.status);
return -1;
}
if (creq.dst_len < p->page_size) {
uadk_data->buf_hdr[i] = cpu_to_be32(creq.dst_len);
prepare_next_iov(p, buf, creq.dst_len);
buf += creq.dst_len;
}
}
/*
* Send raw data if no UADK hardware or if compressed out >= page_size.
* We might be better off sending raw data if output is slightly less
* than page_size as well because at the receive end we can skip the
* decompression. But it is tricky to find the right number here.
*/
if (!uadk_data->handle || creq.dst_len >= p->page_size) {
uadk_data->buf_hdr[i] = cpu_to_be32(p->page_size);
prepare_next_iov(p, p->pages->block->host + p->pages->offset[i],
p->page_size);
buf += p->page_size;
}
}
out:
p->flags |= MULTIFD_FLAG_UADK;
multifd_send_fill_packet(p);
return 0;
}
/**
* multifd_uadk_recv_setup: setup receive side
*
* Create the compressed channel and buffer.
*
* Returns 0 for success or -1 for error
*
* @p: Params for the channel that we are using
* @errp: pointer to an error
*/
static int multifd_uadk_recv_setup(MultiFDRecvParams *p, Error **errp)
{
struct wd_data *wd;
wd = multifd_uadk_init_sess(p->page_count, p->page_size, false, errp);
if (!wd) {
return -1;
}
p->compress_data = wd;
return 0;
}
/**
* multifd_uadk_recv_cleanup: cleanup receive side
*
* Close the channel and return memory.
*
* @p: Params for the channel that we are using
*/
static void multifd_uadk_recv_cleanup(MultiFDRecvParams *p)
{
struct wd_data *wd = p->compress_data;
multifd_uadk_uninit_sess(wd);
p->compress_data = NULL;
}
/**
* multifd_uadk_recv: read the data from the channel into actual pages
*
* Read the compressed buffer, and uncompress it into the actual
* pages.
*
* Returns 0 for success or -1 for error
*
* @p: Params for the channel that we are using
* @errp: pointer to an error
*/
static int multifd_uadk_recv(MultiFDRecvParams *p, Error **errp)
{
struct wd_data *uadk_data = p->compress_data;
uint32_t in_size = p->next_packet_size;
uint32_t flags = p->flags & MULTIFD_FLAG_COMPRESSION_MASK;
uint32_t hdr_len = p->normal_num * sizeof(uint32_t);
uint32_t data_len = 0;
uint8_t *buf = uadk_data->buf;
int ret = 0;
if (flags != MULTIFD_FLAG_UADK) {
error_setg(errp, "multifd %u: flags received %x flags expected %x",
p->id, flags, MULTIFD_FLAG_ZLIB);
return -1;
}
multifd_recv_zero_page_process(p);
if (!p->normal_num) {
assert(in_size == 0);
return 0;
}
/* read compressed data lengths */
assert(hdr_len < in_size);
ret = qio_channel_read_all(p->c, (void *) uadk_data->buf_hdr,
hdr_len, errp);
if (ret != 0) {
return ret;
}
for (int i = 0; i < p->normal_num; i++) {
uadk_data->buf_hdr[i] = be32_to_cpu(uadk_data->buf_hdr[i]);
data_len += uadk_data->buf_hdr[i];
assert(uadk_data->buf_hdr[i] <= p->page_size);
}
/* read compressed data */
assert(in_size == hdr_len + data_len);
ret = qio_channel_read_all(p->c, (void *)buf, data_len, errp);
if (ret != 0) {
return ret;
}
for (int i = 0; i < p->normal_num; i++) {
struct wd_comp_req creq = {
.op_type = WD_DIR_DECOMPRESS,
.src = buf,
.src_len = uadk_data->buf_hdr[i],
.dst = p->host + p->normal[i],
.dst_len = p->page_size,
};
if (uadk_data->buf_hdr[i] == p->page_size) {
memcpy(p->host + p->normal[i], buf, p->page_size);
buf += p->page_size;
continue;
}
if (unlikely(!uadk_data->handle)) {
error_setg(errp, "multifd %u: UADK HW not available for decompression",
p->id);
return -1;
}
ret = wd_do_comp_sync(uadk_data->handle, &creq);
if (ret || creq.status) {
error_setg(errp, "multifd %u: failed decompression, ret %d status %d",
p->id, ret, creq.status);
return -1;
}
if (creq.dst_len != p->page_size) {
error_setg(errp, "multifd %u: decompressed length error", p->id);
return -1;
}
buf += uadk_data->buf_hdr[i];
}
return 0;
}
static MultiFDMethods multifd_uadk_ops = {
.send_setup = multifd_uadk_send_setup,
.send_cleanup = multifd_uadk_send_cleanup,
.send_prepare = multifd_uadk_send_prepare,
.recv_setup = multifd_uadk_recv_setup,
.recv_cleanup = multifd_uadk_recv_cleanup,
.recv = multifd_uadk_recv,
};
static void multifd_uadk_register(void)
{
multifd_register_ops(MULTIFD_COMPRESSION_UADK, &multifd_uadk_ops);
}
migration_init(multifd_uadk_register);

View File

@ -70,6 +70,10 @@ static int zlib_send_setup(MultiFDSendParams *p, Error **errp)
goto err_free_zbuff;
}
p->compress_data = z;
/* Needs 2 IOVs, one for packet header and one for compressed data */
p->iov = g_new0(struct iovec, 2);
return 0;
err_free_zbuff:
@ -101,6 +105,9 @@ static void zlib_send_cleanup(MultiFDSendParams *p, Error **errp)
z->buf = NULL;
g_free(p->compress_data);
p->compress_data = NULL;
g_free(p->iov);
p->iov = NULL;
}
/**

View File

@ -52,7 +52,6 @@ static int zstd_send_setup(MultiFDSendParams *p, Error **errp)
struct zstd_data *z = g_new0(struct zstd_data, 1);
int res;
p->compress_data = z;
z->zcs = ZSTD_createCStream();
if (!z->zcs) {
g_free(z);
@ -77,6 +76,10 @@ static int zstd_send_setup(MultiFDSendParams *p, Error **errp)
error_setg(errp, "multifd %u: out of memory for zbuff", p->id);
return -1;
}
p->compress_data = z;
/* Needs 2 IOVs, one for packet header and one for compressed data */
p->iov = g_new0(struct iovec, 2);
return 0;
}
@ -98,6 +101,9 @@ static void zstd_send_cleanup(MultiFDSendParams *p, Error **errp)
z->zbuff = NULL;
g_free(p->compress_data);
p->compress_data = NULL;
g_free(p->iov);
p->iov = NULL;
}
/**

View File

@ -137,6 +137,13 @@ static int nocomp_send_setup(MultiFDSendParams *p, Error **errp)
p->write_flags |= QIO_CHANNEL_WRITE_FLAG_ZERO_COPY;
}
if (multifd_use_packets()) {
/* We need one extra place for the packet header */
p->iov = g_new0(struct iovec, p->page_count + 1);
} else {
p->iov = g_new0(struct iovec, p->page_count);
}
return 0;
}
@ -150,6 +157,8 @@ static int nocomp_send_setup(MultiFDSendParams *p, Error **errp)
*/
static void nocomp_send_cleanup(MultiFDSendParams *p, Error **errp)
{
g_free(p->iov);
p->iov = NULL;
return;
}
@ -228,6 +237,7 @@ static int nocomp_send_prepare(MultiFDSendParams *p, Error **errp)
*/
static int nocomp_recv_setup(MultiFDRecvParams *p, Error **errp)
{
p->iov = g_new0(struct iovec, p->page_count);
return 0;
}
@ -240,6 +250,8 @@ static int nocomp_recv_setup(MultiFDRecvParams *p, Error **errp)
*/
static void nocomp_recv_cleanup(MultiFDRecvParams *p)
{
g_free(p->iov);
p->iov = NULL;
}
/**
@ -783,8 +795,6 @@ static bool multifd_send_cleanup_channel(MultiFDSendParams *p, Error **errp)
p->packet_len = 0;
g_free(p->packet);
p->packet = NULL;
g_free(p->iov);
p->iov = NULL;
multifd_send_state->ops->send_cleanup(p, errp);
return *errp == NULL;
@ -1179,11 +1189,6 @@ bool multifd_send_setup(void)
p->packet = g_malloc0(p->packet_len);
p->packet->magic = cpu_to_be32(MULTIFD_MAGIC);
p->packet->version = cpu_to_be32(MULTIFD_VERSION);
/* We need one extra place for the packet header */
p->iov = g_new0(struct iovec, page_count + 1);
} else {
p->iov = g_new0(struct iovec, page_count);
}
p->name = g_strdup_printf("multifdsend_%d", i);
p->page_size = qemu_target_page_size();
@ -1353,8 +1358,6 @@ static void multifd_recv_cleanup_channel(MultiFDRecvParams *p)
p->packet_len = 0;
g_free(p->packet);
p->packet = NULL;
g_free(p->iov);
p->iov = NULL;
g_free(p->normal);
p->normal = NULL;
g_free(p->zero);
@ -1602,7 +1605,6 @@ int multifd_recv_setup(Error **errp)
p->packet = g_malloc0(p->packet_len);
}
p->name = g_strdup_printf("multifdrecv_%d", i);
p->iov = g_new0(struct iovec, page_count);
p->normal = g_new0(ram_addr_t, page_count);
p->zero = g_new0(ram_addr_t, page_count);
p->page_count = page_count;

View File

@ -34,12 +34,14 @@ MultiFDRecvData *multifd_get_recv_data(void);
/* Multifd Compression flags */
#define MULTIFD_FLAG_SYNC (1 << 0)
/* We reserve 3 bits for compression methods */
#define MULTIFD_FLAG_COMPRESSION_MASK (7 << 1)
/* We reserve 4 bits for compression methods */
#define MULTIFD_FLAG_COMPRESSION_MASK (0xf << 1)
/* we need to be compatible. Before compression value was 0 */
#define MULTIFD_FLAG_NOCOMP (0 << 1)
#define MULTIFD_FLAG_ZLIB (1 << 1)
#define MULTIFD_FLAG_ZSTD (2 << 1)
#define MULTIFD_FLAG_QPL (4 << 1)
#define MULTIFD_FLAG_UADK (8 << 1)
/* This value needs to be a multiple of qemu_target_page_size() */
#define MULTIFD_PACKET_SIZE (512 * 1024)

View File

@ -554,11 +554,20 @@
#
# @zstd: use zstd compression method.
#
# @qpl: use qpl compression method. Query Processing Library(qpl) is
# based on the deflate compression algorithm and use the Intel
# In-Memory Analytics Accelerator(IAA) accelerated compression
# and decompression. (Since 9.1)
#
# @uadk: use UADK library compression method. (Since 9.1)
#
# Since: 5.0
##
{ 'enum': 'MultiFDCompression',
'data': [ 'none', 'zlib',
{ 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] }
{ 'name': 'zstd', 'if': 'CONFIG_ZSTD' },
{ 'name': 'qpl', 'if': 'CONFIG_QPL' },
{ 'name': 'uadk', 'if': 'CONFIG_UADK' } ] }
##
# @MigMode:

View File

@ -220,6 +220,8 @@ meson_options_help() {
printf "%s\n" ' Xen PCI passthrough support'
printf "%s\n" ' xkbcommon xkbcommon support'
printf "%s\n" ' zstd zstd compression support'
printf "%s\n" ' qpl Query Processing Library support'
printf "%s\n" ' uadk UADK Library support'
}
_meson_option_parse() {
case $1 in
@ -558,6 +560,10 @@ _meson_option_parse() {
--disable-xkbcommon) printf "%s" -Dxkbcommon=disabled ;;
--enable-zstd) printf "%s" -Dzstd=enabled ;;
--disable-zstd) printf "%s" -Dzstd=disabled ;;
--enable-qpl) printf "%s" -Dqpl=enabled ;;
--disable-qpl) printf "%s" -Dqpl=disabled ;;
--enable-uadk) printf "%s" -Duadk=enabled ;;
--disable-uadk) printf "%s" -Duadk=disabled ;;
*) return 1 ;;
esac
}

View File

@ -5,7 +5,7 @@
# See the COPYING file in the top-level directory.
#
TARGET_LIST = i386 aarch64 s390x
TARGET_LIST = i386 aarch64 s390x ppc64
SRC_PATH = ../..

View File

@ -22,6 +22,7 @@
/* PPC */
#define PPC_TEST_MEM_START (1 * 1024 * 1024)
#define PPC_TEST_MEM_END (100 * 1024 * 1024)
#define PPC_H_PUT_TERM_CHAR 0x58
/* ARM */
#define ARM_TEST_MEM_START (0x40000000 + 1 * 1024 * 1024)

View File

@ -0,0 +1,15 @@
.PHONY: all clean
all: a-b-kernel.h
a-b-kernel.h: ppc64.kernel
echo "$$__note" > $@
xxd -i $< | sed -e 's/.*int.*//' >> $@
ppc64.kernel: ppc64.elf
$(CROSS_PREFIX)objcopy -O binary -S $< $@
ppc64.elf: a-b-kernel.S
$(CROSS_PREFIX)gcc -static -o $@ -nostdlib -Wl,--build-id=none $<
clean:
$(RM) *.kernel *.elf

View File

@ -0,0 +1,66 @@
#
# Copyright (c) 2024 IBM, Inc
#
# This work is licensed under the terms of the GNU GPL, version 2 or later.
# See the COPYING file in the top-level directory.
#include "../migration-test.h"
.section .text
.macro print ch
li %r3,PPC_H_PUT_TERM_CHAR
li %r4,0
li %r5,1
li %r6,\ch
sldi %r6,%r6,56
sc 1
.endm
.globl _start
_start:
. = 0x100
/*
* Enter 64-bit mode. Not necessary because the test uses 32-bit
* addresses, but those constants could easily be changed and break
* in 32-bit mode.
*/
mfmsr %r9
li %r10,-1
rldimi %r9,%r10,63,0
mtmsrd %r9
/*
* Set up test memory region. Non-volatiles are used because the
* hcall can clobber regs.
* r20 - start address
* r21 - number of pages
*/
lis %r20,PPC_TEST_MEM_START@h
ori %r20,%r20,PPC_TEST_MEM_START@l
lis %r9,PPC_TEST_MEM_END@h
ori %r9,%r9,PPC_TEST_MEM_END@l
subf %r21,%r20,%r9
li %r10,TEST_MEM_PAGE_SIZE
divd %r21,%r21,%r10
print 'A'
li %r3,0
mr %r9,%r20
mtctr %r21
1: stb %r3,0(%r9)
addi %r9,%r9,TEST_MEM_PAGE_SIZE
bdnz 1b
loop:
mr %r9,%r20
mtctr %r21
1: lbz %r3,0(%r9)
addi %r3,%r3,1
stb %r3,0(%r9)
addi %r9,%r9,TEST_MEM_PAGE_SIZE
bdnz 1b
print 'B'
b loop

View File

@ -0,0 +1,42 @@
/* This file is automatically generated from the assembly file in
* tests/migration/ppc64. Edit that file and then run "make all"
* inside tests/migration to update, and then remember to send both
* the header and the assembler differences in your patch submission.
*/
unsigned char ppc64_kernel[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x7d, 0x20, 0x00, 0xa6, 0x39, 0x40, 0xff, 0xff,
0x79, 0x49, 0xf8, 0x0e, 0x7d, 0x20, 0x01, 0x64, 0x3e, 0x80, 0x00, 0x10,
0x62, 0x94, 0x00, 0x00, 0x3d, 0x20, 0x06, 0x40, 0x61, 0x29, 0x00, 0x00,
0x7e, 0xb4, 0x48, 0x50, 0x39, 0x40, 0x10, 0x00, 0x7e, 0xb5, 0x53, 0xd2,
0x38, 0x60, 0x00, 0x58, 0x38, 0x80, 0x00, 0x00, 0x38, 0xa0, 0x00, 0x01,
0x38, 0xc0, 0x00, 0x41, 0x78, 0xc6, 0xc1, 0xc6, 0x44, 0x00, 0x00, 0x22,
0x38, 0x60, 0x00, 0x00, 0x7e, 0x89, 0xa3, 0x78, 0x7e, 0xa9, 0x03, 0xa6,
0x98, 0x69, 0x00, 0x00, 0x39, 0x29, 0x10, 0x00, 0x42, 0x00, 0xff, 0xf8,
0x7e, 0x89, 0xa3, 0x78, 0x7e, 0xa9, 0x03, 0xa6, 0x88, 0x69, 0x00, 0x00,
0x38, 0x63, 0x00, 0x01, 0x98, 0x69, 0x00, 0x00, 0x39, 0x29, 0x10, 0x00,
0x42, 0x00, 0xff, 0xf0, 0x38, 0x60, 0x00, 0x58, 0x38, 0x80, 0x00, 0x00,
0x38, 0xa0, 0x00, 0x01, 0x38, 0xc0, 0x00, 0x42, 0x78, 0xc6, 0xc1, 0xc6,
0x44, 0x00, 0x00, 0x22, 0x4b, 0xff, 0xff, 0xcc
};

View File

@ -15,7 +15,7 @@
#include "qemu/osdep.h"
#include "libqtest.h"
#include "libqos/libqos-spapr.h"
#include "ppc-util.h"
static const uint8_t bios_avr[] = {
0x88, 0xe0, /* ldi r24, 0x08 */

View File

@ -9,11 +9,4 @@ QOSState *qtest_spapr_boot(const char *cmdline_fmt, ...)
G_GNUC_PRINTF(1, 2);
void qtest_spapr_shutdown(QOSState *qs);
/* List of capabilities needed to silence warnings with TCG */
#define PSERIES_DEFAULT_CAPABILITIES \
"cap-cfpc=broken," \
"cap-sbbc=broken," \
"cap-ibs=broken," \
"cap-ccf-assist=off,"
#endif

View File

@ -21,6 +21,7 @@
#include "chardev/char.h"
#include "crypto/tlscredspsk.h"
#include "qapi/qmp/qlist.h"
#include "ppc-util.h"
#include "migration-helpers.h"
#include "tests/migration/migration-test.h"
@ -127,6 +128,7 @@ static char *bootpath;
*/
#include "tests/migration/i386/a-b-bootblock.h"
#include "tests/migration/aarch64/a-b-kernel.h"
#include "tests/migration/ppc64/a-b-kernel.h"
#include "tests/migration/s390x/a-b-bios.h"
static void bootfile_create(char *dir, bool suspend_me)
@ -146,10 +148,8 @@ static void bootfile_create(char *dir, bool suspend_me)
content = s390x_elf;
len = sizeof(s390x_elf);
} else if (strcmp(arch, "ppc64") == 0) {
/*
* sane architectures can be programmed at the boot prompt
*/
return;
content = ppc64_kernel;
len = sizeof(ppc64_kernel);
} else if (strcmp(arch, "aarch64") == 0) {
content = aarch64_kernel;
len = sizeof(aarch64_kernel);
@ -180,29 +180,10 @@ static void wait_for_serial(const char *side)
{
g_autofree char *serialpath = g_strdup_printf("%s/%s", tmpfs, side);
FILE *serialfile = fopen(serialpath, "r");
const char *arch = qtest_get_arch();
int started = (strcmp(side, "src_serial") == 0 &&
strcmp(arch, "ppc64") == 0) ? 0 : 1;
do {
int readvalue = fgetc(serialfile);
if (!started) {
/* SLOF prints its banner before starting test,
* to ignore it, mark the start of the test with '_',
* ignore all characters until this marker
*/
switch (readvalue) {
case '_':
started = 1;
break;
case EOF:
fseek(serialfile, 0, SEEK_SET);
usleep(1000);
break;
}
continue;
}
switch (readvalue) {
case 'A':
/* Fine */
@ -214,8 +195,6 @@ static void wait_for_serial(const char *side)
return;
case EOF:
started = (strcmp(side, "src_serial") == 0 &&
strcmp(arch, "ppc64") == 0) ? 0 : 1;
fseek(serialfile, 0, SEEK_SET);
usleep(1000);
break;
@ -736,13 +715,11 @@ static int test_migrate_start(QTestState **from, QTestState **to,
memory_size = "256M";
start_address = PPC_TEST_MEM_START;
end_address = PPC_TEST_MEM_END;
arch_source = g_strdup_printf("-prom-env 'use-nvramrc?=true' -prom-env "
"'nvramrc=hex .\" _\" begin %x %x "
"do i c@ 1 + i c! 1000 +loop .\" B\" 0 "
"until'", end_address, start_address);
machine_alias = "pseries";
machine_opts = "vsmt=8";
arch_opts = g_strdup("-nodefaults");
arch_opts = g_strdup_printf(
"-nodefaults -machine " PSERIES_DEFAULT_CAPABILITIES " "
"-bios %s", bootpath);
} else if (strcmp(arch, "aarch64") == 0) {
memory_size = "150M";
machine_alias = "virt";
@ -2661,6 +2638,23 @@ test_migrate_precopy_tcp_multifd_zstd_start(QTestState *from,
}
#endif /* CONFIG_ZSTD */
#ifdef CONFIG_QPL
static void *
test_migrate_precopy_tcp_multifd_qpl_start(QTestState *from,
QTestState *to)
{
return test_migrate_precopy_tcp_multifd_start_common(from, to, "qpl");
}
#endif /* CONFIG_QPL */
#ifdef CONFIG_UADK
static void *
test_migrate_precopy_tcp_multifd_uadk_start(QTestState *from,
QTestState *to)
{
return test_migrate_precopy_tcp_multifd_start_common(from, to, "uadk");
}
#endif /* CONFIG_UADK */
static void test_multifd_tcp_uri_none(void)
{
MigrateCommon args = {
@ -2741,6 +2735,28 @@ static void test_multifd_tcp_zstd(void)
}
#endif
#ifdef CONFIG_QPL
static void test_multifd_tcp_qpl(void)
{
MigrateCommon args = {
.listen_uri = "defer",
.start_hook = test_migrate_precopy_tcp_multifd_qpl_start,
};
test_precopy_common(&args);
}
#endif
#ifdef CONFIG_UADK
static void test_multifd_tcp_uadk(void)
{
MigrateCommon args = {
.listen_uri = "defer",
.start_hook = test_migrate_precopy_tcp_multifd_uadk_start,
};
test_precopy_common(&args);
}
#endif
#ifdef CONFIG_GNUTLS
static void *
test_migrate_multifd_tcp_tls_psk_start_match(QTestState *from,
@ -3452,19 +3468,9 @@ int main(int argc, char **argv)
#endif
/*
* On ppc64, the test only works with kvm-hv, but not with kvm-pr and TCG
* is touchy due to race conditions on dirty bits (especially on PPC for
* some reason)
*/
if (g_str_equal(arch, "ppc64") &&
(!has_kvm || access("/sys/module/kvm_hv", F_OK))) {
g_test_message("Skipping tests: kvm_hv not available");
goto test_add_done;
}
/*
* Similar to ppc64, s390x seems to be touchy with TCG, so disable it
* there until the problems are resolved
* On s390x with TCG, migration is observed to hang due to the 'pending'
* state of the flic interrupt controller not being migrated or
* reconstructed post-migration. Disable it until the problem is resolved.
*/
if (g_str_equal(arch, "s390x") && !has_kvm) {
g_test_message("Skipping tests: s390x host with KVM is required");
@ -3626,6 +3632,14 @@ int main(int argc, char **argv)
migration_test_add("/migration/multifd/tcp/plain/zstd",
test_multifd_tcp_zstd);
#endif
#ifdef CONFIG_QPL
migration_test_add("/migration/multifd/tcp/plain/qpl",
test_multifd_tcp_qpl);
#endif
#ifdef CONFIG_UADK
migration_test_add("/migration/multifd/tcp/plain/uadk",
test_multifd_tcp_uadk);
#endif
#ifdef CONFIG_GNUTLS
migration_test_add("/migration/multifd/tcp/tls/psk/match",
test_multifd_tcp_tls_psk_match);

19
tests/qtest/ppc-util.h Normal file
View File

@ -0,0 +1,19 @@
/*
* PowerPC misc useful things
*
* Copyright (c) 2024, IBM Corporation.
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#ifndef PPC_UTIL_H
#define PPC_UTIL_H
/* List of capabilities needed to silence warnings with TCG */
#define PSERIES_DEFAULT_CAPABILITIES \
"cap-cfpc=broken," \
"cap-sbbc=broken," \
"cap-ibs=broken," \
"cap-ccf-assist=off,"
#endif /* PPC_UTIL_H */

View File

@ -21,7 +21,7 @@
#include "qemu/osdep.h"
#include "libqtest.h"
#include "libqos/libqos-spapr.h"
#include "ppc-util.h"
#define MAGIC 0xcafec0de
#define ADDRESS 0x4000

View File

@ -16,7 +16,7 @@
#include <glib/gstdio.h>
#include "libqtest.h"
#include "boot-sector.h"
#include "libqos/libqos-spapr.h"
#include "ppc-util.h"
#define NETNAME "net0"