target-arm: A64: Implement SIMD scalar indexed instructions

Implement the SIMD scalar indexed instructions. The encoding
here is nearly identical to the vector indexed grouping, so
we combine the two.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
This commit is contained in:
Peter Maydell 2014-02-20 10:35:49 +00:00
parent c44ad1fddc
commit 9f82e0ff4b
1 changed files with 82 additions and 33 deletions

View File

@ -6322,17 +6322,6 @@ static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
} }
} }
/* C3.6.13 AdvSIMD scalar x indexed element
* 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
* +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
* | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
* +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
*/
static void disas_simd_scalar_indexed(DisasContext *s, uint32_t insn)
{
unsupported_encoding(s, insn);
}
/* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
int immh, int immb, int opcode, int rn, int rd) int immh, int immb, int opcode, int rn, int rd)
@ -7805,13 +7794,18 @@ static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
} }
} }
/* C3.6.18 AdvSIMD vector x indexed element /* C3.6.13 AdvSIMD scalar x indexed element
* 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
* +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
* | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
* +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
* C3.6.18 AdvSIMD vector x indexed element
* 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
* +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
* | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
* +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
*/ */
static void disas_simd_indexed_vector(DisasContext *s, uint32_t insn) static void disas_simd_indexed(DisasContext *s, uint32_t insn)
{ {
/* This encoding has two kinds of instruction: /* This encoding has two kinds of instruction:
* normal, where we perform elt x idxelt => elt for each * normal, where we perform elt x idxelt => elt for each
@ -7820,6 +7814,7 @@ static void disas_simd_indexed_vector(DisasContext *s, uint32_t insn)
* double the width of the input element * double the width of the input element
* The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
*/ */
bool is_scalar = extract32(insn, 28, 1);
bool is_q = extract32(insn, 30, 1); bool is_q = extract32(insn, 30, 1);
bool u = extract32(insn, 29, 1); bool u = extract32(insn, 29, 1);
int size = extract32(insn, 22, 2); int size = extract32(insn, 22, 2);
@ -7839,7 +7834,7 @@ static void disas_simd_indexed_vector(DisasContext *s, uint32_t insn)
switch (opcode) { switch (opcode) {
case 0x0: /* MLA */ case 0x0: /* MLA */
case 0x4: /* MLS */ case 0x4: /* MLS */
if (!u) { if (!u || is_scalar) {
unallocated_encoding(s); unallocated_encoding(s);
return; return;
} }
@ -7847,6 +7842,10 @@ static void disas_simd_indexed_vector(DisasContext *s, uint32_t insn)
case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
case 0xa: /* SMULL, SMULL2, UMULL, UMULL2 */ case 0xa: /* SMULL, SMULL2, UMULL, UMULL2 */
if (is_scalar) {
unallocated_encoding(s);
return;
}
is_long = true; is_long = true;
break; break;
case 0x3: /* SQDMLAL, SQDMLAL2 */ case 0x3: /* SQDMLAL, SQDMLAL2 */
@ -7856,12 +7855,17 @@ static void disas_simd_indexed_vector(DisasContext *s, uint32_t insn)
/* fall through */ /* fall through */
case 0xc: /* SQDMULH */ case 0xc: /* SQDMULH */
case 0xd: /* SQRDMULH */ case 0xd: /* SQRDMULH */
case 0x8: /* MUL */
if (u) { if (u) {
unallocated_encoding(s); unallocated_encoding(s);
return; return;
} }
break; break;
case 0x8: /* MUL */
if (u || is_scalar) {
unallocated_encoding(s);
return;
}
break;
case 0x1: /* FMLA */ case 0x1: /* FMLA */
case 0x5: /* FMLS */ case 0x5: /* FMLS */
if (u) { if (u) {
@ -7923,7 +7927,7 @@ static void disas_simd_indexed_vector(DisasContext *s, uint32_t insn)
read_vec_element(s, tcg_idx, rm, index, MO_64); read_vec_element(s, tcg_idx, rm, index, MO_64);
for (pass = 0; pass < 2; pass++) { for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
TCGv_i64 tcg_op = tcg_temp_new_i64(); TCGv_i64 tcg_op = tcg_temp_new_i64();
TCGv_i64 tcg_res = tcg_temp_new_i64(); TCGv_i64 tcg_res = tcg_temp_new_i64();
@ -7954,15 +7958,28 @@ static void disas_simd_indexed_vector(DisasContext *s, uint32_t insn)
tcg_temp_free_i64(tcg_res); tcg_temp_free_i64(tcg_res);
} }
if (is_scalar) {
clear_vec_high(s, rd);
}
tcg_temp_free_i64(tcg_idx); tcg_temp_free_i64(tcg_idx);
} else if (!is_long) { } else if (!is_long) {
/* 32 bit floating point, or 16 or 32 bit integer */ /* 32 bit floating point, or 16 or 32 bit integer.
* For the 16 bit scalar case we use the usual Neon helpers and
* rely on the fact that 0 op 0 == 0 with no side effects.
*/
TCGv_i32 tcg_idx = tcg_temp_new_i32(); TCGv_i32 tcg_idx = tcg_temp_new_i32();
int pass; int pass, maxpasses;
if (is_scalar) {
maxpasses = 1;
} else {
maxpasses = is_q ? 4 : 2;
}
read_vec_element_i32(s, tcg_idx, rm, index, size); read_vec_element_i32(s, tcg_idx, rm, index, size);
if (size == 1) { if (size == 1 && !is_scalar) {
/* The simplest way to handle the 16x16 indexed ops is to duplicate /* The simplest way to handle the 16x16 indexed ops is to duplicate
* the index into both halves of the 32 bit tcg_idx and then use * the index into both halves of the 32 bit tcg_idx and then use
* the usual Neon helpers. * the usual Neon helpers.
@ -7970,11 +7987,11 @@ static void disas_simd_indexed_vector(DisasContext *s, uint32_t insn)
tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
} }
for (pass = 0; pass < (is_q ? 4 : 2); pass++) { for (pass = 0; pass < maxpasses; pass++) {
TCGv_i32 tcg_op = tcg_temp_new_i32(); TCGv_i32 tcg_op = tcg_temp_new_i32();
TCGv_i32 tcg_res = tcg_temp_new_i32(); TCGv_i32 tcg_res = tcg_temp_new_i32();
read_vec_element_i32(s, tcg_op, rn, pass, MO_32); read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
switch (opcode) { switch (opcode) {
case 0x0: /* MLA */ case 0x0: /* MLA */
@ -8038,7 +8055,12 @@ static void disas_simd_indexed_vector(DisasContext *s, uint32_t insn)
g_assert_not_reached(); g_assert_not_reached();
} }
write_vec_element_i32(s, tcg_res, rd, pass, MO_32); if (is_scalar) {
write_fp_sreg(s, rd, tcg_res);
} else {
write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
}
tcg_temp_free_i32(tcg_op); tcg_temp_free_i32(tcg_op);
tcg_temp_free_i32(tcg_res); tcg_temp_free_i32(tcg_res);
} }
@ -8064,11 +8086,18 @@ static void disas_simd_indexed_vector(DisasContext *s, uint32_t insn)
read_vec_element(s, tcg_idx, rm, index, memop); read_vec_element(s, tcg_idx, rm, index, memop);
for (pass = 0; pass < 2; pass++) { for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
TCGv_i64 tcg_op = tcg_temp_new_i64(); TCGv_i64 tcg_op = tcg_temp_new_i64();
TCGv_i64 tcg_passres; TCGv_i64 tcg_passres;
int passelt;
read_vec_element(s, tcg_op, rn, pass + (is_q * 2), memop); if (is_scalar) {
passelt = 0;
} else {
passelt = pass + (is_q * 2);
}
read_vec_element(s, tcg_op, rn, passelt, memop);
tcg_res[pass] = tcg_temp_new_i64(); tcg_res[pass] = tcg_temp_new_i64();
@ -8116,23 +8145,35 @@ static void disas_simd_indexed_vector(DisasContext *s, uint32_t insn)
tcg_temp_free_i64(tcg_passres); tcg_temp_free_i64(tcg_passres);
} }
tcg_temp_free_i64(tcg_idx); tcg_temp_free_i64(tcg_idx);
if (is_scalar) {
clear_vec_high(s, rd);
}
} else { } else {
TCGv_i32 tcg_idx = tcg_temp_new_i32(); TCGv_i32 tcg_idx = tcg_temp_new_i32();
assert(size == 1); assert(size == 1);
read_vec_element_i32(s, tcg_idx, rm, index, size); read_vec_element_i32(s, tcg_idx, rm, index, size);
/* The simplest way to handle the 16x16 indexed ops is to duplicate if (!is_scalar) {
* the index into both halves of the 32 bit tcg_idx and then use /* The simplest way to handle the 16x16 indexed ops is to
* the usual Neon helpers. * duplicate the index into both halves of the 32 bit tcg_idx
*/ * and then use the usual Neon helpers.
tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); */
tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
}
for (pass = 0; pass < 2; pass++) { for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
TCGv_i32 tcg_op = tcg_temp_new_i32(); TCGv_i32 tcg_op = tcg_temp_new_i32();
TCGv_i64 tcg_passres; TCGv_i64 tcg_passres;
read_vec_element_i32(s, tcg_op, rn, pass + (is_q * 2), MO_32); if (is_scalar) {
read_vec_element_i32(s, tcg_op, rn, pass, size);
} else {
read_vec_element_i32(s, tcg_op, rn,
pass + (is_q * 2), MO_32);
}
tcg_res[pass] = tcg_temp_new_i64(); tcg_res[pass] = tcg_temp_new_i64();
if (opcode == 0xa || opcode == 0xb) { if (opcode == 0xa || opcode == 0xb) {
@ -8183,6 +8224,14 @@ static void disas_simd_indexed_vector(DisasContext *s, uint32_t insn)
tcg_temp_free_i64(tcg_passres); tcg_temp_free_i64(tcg_passres);
} }
tcg_temp_free_i32(tcg_idx); tcg_temp_free_i32(tcg_idx);
if (is_scalar) {
tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
}
}
if (is_scalar) {
tcg_res[1] = tcg_const_i64(0);
} }
for (pass = 0; pass < 2; pass++) { for (pass = 0; pass < 2; pass++) {
@ -8241,7 +8290,7 @@ static const AArch64DecodeTable data_proc_simd[] = {
{ 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
{ 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
{ 0x0e000400, 0x9fe08400, disas_simd_copy }, { 0x0e000400, 0x9fe08400, disas_simd_copy },
{ 0x0f000000, 0x9f000400, disas_simd_indexed_vector }, { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
/* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
{ 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
{ 0x0f000400, 0x9f800400, disas_simd_shift_imm }, { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
@ -8253,7 +8302,7 @@ static const AArch64DecodeTable data_proc_simd[] = {
{ 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
{ 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
{ 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
{ 0x5f000000, 0xdf000400, disas_simd_scalar_indexed }, { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
{ 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
{ 0x4e280800, 0xff3e0c00, disas_crypto_aes }, { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
{ 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },