diff --git a/include/qemu/cutils.h b/include/qemu/cutils.h index 92c927a6a3..741dade7cf 100644 --- a/include/qemu/cutils.h +++ b/include/qemu/cutils.h @@ -187,9 +187,39 @@ char *freq_to_str(uint64_t freq_hz); /* used to print char* safely */ #define STR_OR_NULL(str) ((str) ? (str) : "null") -bool buffer_is_zero(const void *buf, size_t len); +/* + * Check if a buffer is all zeroes. + */ + +bool buffer_is_zero_ool(const void *vbuf, size_t len); +bool buffer_is_zero_ge256(const void *vbuf, size_t len); bool test_buffer_is_zero_next_accel(void); +static inline bool buffer_is_zero_sample3(const char *buf, size_t len) +{ + /* + * For any reasonably sized buffer, these three samples come from + * three different cachelines. In qemu-img usage, we find that + * each byte eliminates more than half of all buffer testing. + * It is therefore critical to performance that the byte tests + * short-circuit, so that we do not pull in additional cache lines. + * Do not "optimize" this to !(a | b | c). + */ + return !buf[0] && !buf[len - 1] && !buf[len / 2]; +} + +#ifdef __OPTIMIZE__ +static inline bool buffer_is_zero(const void *buf, size_t len) +{ + return (__builtin_constant_p(len) && len >= 256 + ? buffer_is_zero_sample3(buf, len) && + buffer_is_zero_ge256(buf, len) + : buffer_is_zero_ool(buf, len)); +} +#else +#define buffer_is_zero buffer_is_zero_ool +#endif + /* * Implementation of ULEB128 (http://en.wikipedia.org/wiki/LEB128) * Input is limited to 14-bit numbers diff --git a/tests/bench/bufferiszero-bench.c b/tests/bench/bufferiszero-bench.c new file mode 100644 index 0000000000..222695c1fa --- /dev/null +++ b/tests/bench/bufferiszero-bench.c @@ -0,0 +1,47 @@ +/* + * QEMU buffer_is_zero speed benchmark + * + * This work is licensed under the terms of the GNU GPL, version 2 or + * (at your option) any later version. See the COPYING file in the + * top-level directory. + */ +#include "qemu/osdep.h" +#include "qemu/cutils.h" +#include "qemu/units.h" + +static void test(const void *opaque) +{ + size_t max = 64 * KiB; + void *buf = g_malloc0(max); + int accel_index = 0; + + do { + if (accel_index != 0) { + g_test_message("%s", ""); /* gnu_printf Werror for simple "" */ + } + for (size_t len = 1 * KiB; len <= max; len *= 4) { + double total = 0.0; + + g_test_timer_start(); + do { + buffer_is_zero_ge256(buf, len); + total += len; + } while (g_test_timer_elapsed() < 0.5); + + total /= MiB; + g_test_message("buffer_is_zero #%d: %2zuKB %8.0f MB/sec", + accel_index, len / (size_t)KiB, + total / g_test_timer_last()); + } + accel_index++; + } while (test_buffer_is_zero_next_accel()); + + g_free(buf); +} + +int main(int argc, char **argv) +{ + g_test_init(&argc, &argv, NULL); + g_test_add_data_func("/cutils/bufferiszero/speed", NULL, test); + return g_test_run(); +} diff --git a/tests/bench/meson.build b/tests/bench/meson.build index 7e76338a52..4cd7a2f6b5 100644 --- a/tests/bench/meson.build +++ b/tests/bench/meson.build @@ -21,6 +21,7 @@ benchs = {} if have_block benchs += { + 'bufferiszero-bench': [], 'benchmark-crypto-hash': [crypto], 'benchmark-crypto-hmac': [crypto], 'benchmark-crypto-cipher': [crypto], diff --git a/util/bufferiszero.c b/util/bufferiszero.c index 3e6a5dfd63..74864f7b78 100644 --- a/util/bufferiszero.c +++ b/util/bufferiszero.c @@ -26,265 +26,290 @@ #include "qemu/bswap.h" #include "host/cpuinfo.h" -static bool -buffer_zero_int(const void *buf, size_t len) +typedef bool (*biz_accel_fn)(const void *, size_t); + +static bool buffer_is_zero_int_lt256(const void *buf, size_t len) { - if (unlikely(len < 8)) { - /* For a very small buffer, simply accumulate all the bytes. */ - const unsigned char *p = buf; - const unsigned char *e = buf + len; - unsigned char t = 0; + uint64_t t; + const uint64_t *p, *e; - do { - t |= *p++; - } while (p < e); - - return t == 0; - } else { - /* Otherwise, use the unaligned memory access functions to - handle the beginning and end of the buffer, with a couple - of loops handling the middle aligned section. */ - uint64_t t = ldq_he_p(buf); - const uint64_t *p = (uint64_t *)(((uintptr_t)buf + 8) & -8); - const uint64_t *e = (uint64_t *)(((uintptr_t)buf + len) & -8); - - for (; p + 8 <= e; p += 8) { - __builtin_prefetch(p + 8); - if (t) { - return false; - } - t = p[0] | p[1] | p[2] | p[3] | p[4] | p[5] | p[6] | p[7]; - } - while (p < e) { - t |= *p++; - } - t |= ldq_he_p(buf + len - 8); - - return t == 0; + /* + * Use unaligned memory access functions to handle + * the beginning and end of the buffer. + */ + if (unlikely(len <= 8)) { + return (ldl_he_p(buf) | ldl_he_p(buf + len - 4)) == 0; } + + t = ldq_he_p(buf) | ldq_he_p(buf + len - 8); + p = QEMU_ALIGN_PTR_DOWN(buf + 8, 8); + e = QEMU_ALIGN_PTR_DOWN(buf + len - 1, 8); + + /* Read 0 to 31 aligned words from the middle. */ + while (p < e) { + t |= *p++; + } + return t == 0; } -#if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT) || defined(__SSE2__) +static bool buffer_is_zero_int_ge256(const void *buf, size_t len) +{ + /* + * Use unaligned memory access functions to handle + * the beginning and end of the buffer. + */ + uint64_t t = ldq_he_p(buf) | ldq_he_p(buf + len - 8); + const uint64_t *p = QEMU_ALIGN_PTR_DOWN(buf + 8, 8); + const uint64_t *e = QEMU_ALIGN_PTR_DOWN(buf + len - 1, 8); + + /* Collect a partial block at the tail end. */ + t |= e[-7] | e[-6] | e[-5] | e[-4] | e[-3] | e[-2] | e[-1]; + + /* + * Loop over 64 byte blocks. + * With the head and tail removed, e - p >= 30, + * so the loop must iterate at least 3 times. + */ + do { + if (t) { + return false; + } + t = p[0] | p[1] | p[2] | p[3] | p[4] | p[5] | p[6] | p[7]; + p += 8; + } while (p < e - 7); + + return t == 0; +} + +#if defined(CONFIG_AVX2_OPT) || defined(__SSE2__) #include <immintrin.h> -/* Note that each of these vectorized functions require len >= 64. */ +/* Helper for preventing the compiler from reassociating + chains of binary vector operations. */ +#define SSE_REASSOC_BARRIER(vec0, vec1) asm("" : "+x"(vec0), "+x"(vec1)) + +/* Note that these vectorized functions may assume len >= 256. */ static bool __attribute__((target("sse2"))) buffer_zero_sse2(const void *buf, size_t len) { - __m128i t = _mm_loadu_si128(buf); - __m128i *p = (__m128i *)(((uintptr_t)buf + 5 * 16) & -16); - __m128i *e = (__m128i *)(((uintptr_t)buf + len) & -16); - __m128i zero = _mm_setzero_si128(); + /* Unaligned loads at head/tail. */ + __m128i v = *(__m128i_u *)(buf); + __m128i w = *(__m128i_u *)(buf + len - 16); + /* Align head/tail to 16-byte boundaries. */ + const __m128i *p = QEMU_ALIGN_PTR_DOWN(buf + 16, 16); + const __m128i *e = QEMU_ALIGN_PTR_DOWN(buf + len - 1, 16); + __m128i zero = { 0 }; - /* Loop over 16-byte aligned blocks of 64. */ - while (likely(p <= e)) { - __builtin_prefetch(p); - t = _mm_cmpeq_epi8(t, zero); - if (unlikely(_mm_movemask_epi8(t) != 0xFFFF)) { + /* Collect a partial block at tail end. */ + v |= e[-1]; w |= e[-2]; + SSE_REASSOC_BARRIER(v, w); + v |= e[-3]; w |= e[-4]; + SSE_REASSOC_BARRIER(v, w); + v |= e[-5]; w |= e[-6]; + SSE_REASSOC_BARRIER(v, w); + v |= e[-7]; v |= w; + + /* + * Loop over complete 128-byte blocks. + * With the head and tail removed, e - p >= 14, so the loop + * must iterate at least once. + */ + do { + v = _mm_cmpeq_epi8(v, zero); + if (unlikely(_mm_movemask_epi8(v) != 0xFFFF)) { return false; } - t = p[-4] | p[-3] | p[-2] | p[-1]; - p += 4; - } + v = p[0]; w = p[1]; + SSE_REASSOC_BARRIER(v, w); + v |= p[2]; w |= p[3]; + SSE_REASSOC_BARRIER(v, w); + v |= p[4]; w |= p[5]; + SSE_REASSOC_BARRIER(v, w); + v |= p[6]; w |= p[7]; + SSE_REASSOC_BARRIER(v, w); + v |= w; + p += 8; + } while (p < e - 7); - /* Finish the aligned tail. */ - t |= e[-3]; - t |= e[-2]; - t |= e[-1]; - - /* Finish the unaligned tail. */ - t |= _mm_loadu_si128(buf + len - 16); - - return _mm_movemask_epi8(_mm_cmpeq_epi8(t, zero)) == 0xFFFF; + return _mm_movemask_epi8(_mm_cmpeq_epi8(v, zero)) == 0xFFFF; } #ifdef CONFIG_AVX2_OPT -static bool __attribute__((target("sse4"))) -buffer_zero_sse4(const void *buf, size_t len) -{ - __m128i t = _mm_loadu_si128(buf); - __m128i *p = (__m128i *)(((uintptr_t)buf + 5 * 16) & -16); - __m128i *e = (__m128i *)(((uintptr_t)buf + len) & -16); - - /* Loop over 16-byte aligned blocks of 64. */ - while (likely(p <= e)) { - __builtin_prefetch(p); - if (unlikely(!_mm_testz_si128(t, t))) { - return false; - } - t = p[-4] | p[-3] | p[-2] | p[-1]; - p += 4; - } - - /* Finish the aligned tail. */ - t |= e[-3]; - t |= e[-2]; - t |= e[-1]; - - /* Finish the unaligned tail. */ - t |= _mm_loadu_si128(buf + len - 16); - - return _mm_testz_si128(t, t); -} - static bool __attribute__((target("avx2"))) buffer_zero_avx2(const void *buf, size_t len) { - /* Begin with an unaligned head of 32 bytes. */ - __m256i t = _mm256_loadu_si256(buf); - __m256i *p = (__m256i *)(((uintptr_t)buf + 5 * 32) & -32); - __m256i *e = (__m256i *)(((uintptr_t)buf + len) & -32); + /* Unaligned loads at head/tail. */ + __m256i v = *(__m256i_u *)(buf); + __m256i w = *(__m256i_u *)(buf + len - 32); + /* Align head/tail to 32-byte boundaries. */ + const __m256i *p = QEMU_ALIGN_PTR_DOWN(buf + 32, 32); + const __m256i *e = QEMU_ALIGN_PTR_DOWN(buf + len - 1, 32); + __m256i zero = { 0 }; - /* Loop over 32-byte aligned blocks of 128. */ - while (p <= e) { - __builtin_prefetch(p); - if (unlikely(!_mm256_testz_si256(t, t))) { + /* Collect a partial block at tail end. */ + v |= e[-1]; w |= e[-2]; + SSE_REASSOC_BARRIER(v, w); + v |= e[-3]; w |= e[-4]; + SSE_REASSOC_BARRIER(v, w); + v |= e[-5]; w |= e[-6]; + SSE_REASSOC_BARRIER(v, w); + v |= e[-7]; v |= w; + + /* Loop over complete 256-byte blocks. */ + for (; p < e - 7; p += 8) { + /* PTEST is not profitable here. */ + v = _mm256_cmpeq_epi8(v, zero); + if (unlikely(_mm256_movemask_epi8(v) != 0xFFFFFFFF)) { return false; } - t = p[-4] | p[-3] | p[-2] | p[-1]; - p += 4; - } ; + v = p[0]; w = p[1]; + SSE_REASSOC_BARRIER(v, w); + v |= p[2]; w |= p[3]; + SSE_REASSOC_BARRIER(v, w); + v |= p[4]; w |= p[5]; + SSE_REASSOC_BARRIER(v, w); + v |= p[6]; w |= p[7]; + SSE_REASSOC_BARRIER(v, w); + v |= w; + } - /* Finish the last block of 128 unaligned. */ - t |= _mm256_loadu_si256(buf + len - 4 * 32); - t |= _mm256_loadu_si256(buf + len - 3 * 32); - t |= _mm256_loadu_si256(buf + len - 2 * 32); - t |= _mm256_loadu_si256(buf + len - 1 * 32); - - return _mm256_testz_si256(t, t); + return _mm256_movemask_epi8(_mm256_cmpeq_epi8(v, zero)) == 0xFFFFFFFF; } #endif /* CONFIG_AVX2_OPT */ -#ifdef CONFIG_AVX512F_OPT -static bool __attribute__((target("avx512f"))) -buffer_zero_avx512(const void *buf, size_t len) -{ - /* Begin with an unaligned head of 64 bytes. */ - __m512i t = _mm512_loadu_si512(buf); - __m512i *p = (__m512i *)(((uintptr_t)buf + 5 * 64) & -64); - __m512i *e = (__m512i *)(((uintptr_t)buf + len) & -64); - - /* Loop over 64-byte aligned blocks of 256. */ - while (p <= e) { - __builtin_prefetch(p); - if (unlikely(_mm512_test_epi64_mask(t, t))) { - return false; - } - t = p[-4] | p[-3] | p[-2] | p[-1]; - p += 4; - } - - t |= _mm512_loadu_si512(buf + len - 4 * 64); - t |= _mm512_loadu_si512(buf + len - 3 * 64); - t |= _mm512_loadu_si512(buf + len - 2 * 64); - t |= _mm512_loadu_si512(buf + len - 1 * 64); - - return !_mm512_test_epi64_mask(t, t); - -} -#endif /* CONFIG_AVX512F_OPT */ - -/* - * Make sure that these variables are appropriately initialized when - * SSE2 is enabled on the compiler command-line, but the compiler is - * too old to support CONFIG_AVX2_OPT. - */ -#if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT) -# define INIT_USED 0 -# define INIT_LENGTH 0 -# define INIT_ACCEL buffer_zero_int -#else -# ifndef __SSE2__ -# error "ISA selection confusion" -# endif -# define INIT_USED CPUINFO_SSE2 -# define INIT_LENGTH 64 -# define INIT_ACCEL buffer_zero_sse2 -#endif - -static unsigned used_accel = INIT_USED; -static unsigned length_to_accel = INIT_LENGTH; -static bool (*buffer_accel)(const void *, size_t) = INIT_ACCEL; - -static unsigned __attribute__((noinline)) -select_accel_cpuinfo(unsigned info) -{ - /* Array is sorted in order of algorithm preference. */ - static const struct { - unsigned bit; - unsigned len; - bool (*fn)(const void *, size_t); - } all[] = { -#ifdef CONFIG_AVX512F_OPT - { CPUINFO_AVX512F, 256, buffer_zero_avx512 }, -#endif +static biz_accel_fn const accel_table[] = { + buffer_is_zero_int_ge256, + buffer_zero_sse2, #ifdef CONFIG_AVX2_OPT - { CPUINFO_AVX2, 128, buffer_zero_avx2 }, - { CPUINFO_SSE4, 64, buffer_zero_sse4 }, + buffer_zero_avx2, #endif - { CPUINFO_SSE2, 64, buffer_zero_sse2 }, - { CPUINFO_ALWAYS, 0, buffer_zero_int }, - }; +}; - for (unsigned i = 0; i < ARRAY_SIZE(all); ++i) { - if (info & all[i].bit) { - length_to_accel = all[i].len; - buffer_accel = all[i].fn; - return all[i].bit; - } +static unsigned best_accel(void) +{ + unsigned info = cpuinfo_init(); + +#ifdef CONFIG_AVX2_OPT + if (info & CPUINFO_AVX2) { + return 2; } - return 0; -} - -#if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT) -static void __attribute__((constructor)) init_accel(void) -{ - used_accel = select_accel_cpuinfo(cpuinfo_init()); -} -#endif /* CONFIG_AVX2_OPT */ - -bool test_buffer_is_zero_next_accel(void) -{ - /* - * Accumulate the accelerators that we've already tested, and - * remove them from the set to test this round. We'll get back - * a zero from select_accel_cpuinfo when there are no more. - */ - unsigned used = select_accel_cpuinfo(cpuinfo & ~used_accel); - used_accel |= used; - return used; -} - -static bool select_accel_fn(const void *buf, size_t len) -{ - if (likely(len >= length_to_accel)) { - return buffer_accel(buf, len); - } - return buffer_zero_int(buf, len); -} - -#else -#define select_accel_fn buffer_zero_int -bool test_buffer_is_zero_next_accel(void) -{ - return false; -} #endif + return info & CPUINFO_SSE2 ? 1 : 0; +} + +#elif defined(__aarch64__) && defined(__ARM_NEON) +#include <arm_neon.h> /* - * Checks if a buffer is all zeroes + * Helper for preventing the compiler from reassociating + * chains of binary vector operations. */ -bool buffer_is_zero(const void *buf, size_t len) +#define REASSOC_BARRIER(vec0, vec1) asm("" : "+w"(vec0), "+w"(vec1)) + +static bool buffer_is_zero_simd(const void *buf, size_t len) +{ + uint32x4_t t0, t1, t2, t3; + + /* Align head/tail to 16-byte boundaries. */ + const uint32x4_t *p = QEMU_ALIGN_PTR_DOWN(buf + 16, 16); + const uint32x4_t *e = QEMU_ALIGN_PTR_DOWN(buf + len - 1, 16); + + /* Unaligned loads at head/tail. */ + t0 = vld1q_u32(buf) | vld1q_u32(buf + len - 16); + + /* Collect a partial block at tail end. */ + t1 = e[-7] | e[-6]; + t2 = e[-5] | e[-4]; + t3 = e[-3] | e[-2]; + t0 |= e[-1]; + REASSOC_BARRIER(t0, t1); + REASSOC_BARRIER(t2, t3); + t0 |= t1; + t2 |= t3; + REASSOC_BARRIER(t0, t2); + t0 |= t2; + + /* + * Loop over complete 128-byte blocks. + * With the head and tail removed, e - p >= 14, so the loop + * must iterate at least once. + */ + do { + /* + * Reduce via UMAXV. Whatever the actual result, + * it will only be zero if all input bytes are zero. + */ + if (unlikely(vmaxvq_u32(t0) != 0)) { + return false; + } + + t0 = p[0] | p[1]; + t1 = p[2] | p[3]; + t2 = p[4] | p[5]; + t3 = p[6] | p[7]; + REASSOC_BARRIER(t0, t1); + REASSOC_BARRIER(t2, t3); + t0 |= t1; + t2 |= t3; + REASSOC_BARRIER(t0, t2); + t0 |= t2; + p += 8; + } while (p < e - 7); + + return vmaxvq_u32(t0) == 0; +} + +#define best_accel() 1 +static biz_accel_fn const accel_table[] = { + buffer_is_zero_int_ge256, + buffer_is_zero_simd, +}; +#else +#define best_accel() 0 +static biz_accel_fn const accel_table[1] = { + buffer_is_zero_int_ge256 +}; +#endif + +static biz_accel_fn buffer_is_zero_accel; +static unsigned accel_index; + +bool buffer_is_zero_ool(const void *buf, size_t len) { if (unlikely(len == 0)) { return true; } + if (!buffer_is_zero_sample3(buf, len)) { + return false; + } + /* All bytes are covered for any len <= 3. */ + if (unlikely(len <= 3)) { + return true; + } - /* Fetch the beginning of the buffer while we select the accelerator. */ - __builtin_prefetch(buf); - - /* Use an optimized zero check if possible. Note that this also - includes a check for an unrolled loop over 64-bit integers. */ - return select_accel_fn(buf, len); + if (likely(len >= 256)) { + return buffer_is_zero_accel(buf, len); + } + return buffer_is_zero_int_lt256(buf, len); +} + +bool buffer_is_zero_ge256(const void *buf, size_t len) +{ + return buffer_is_zero_accel(buf, len); +} + +bool test_buffer_is_zero_next_accel(void) +{ + if (accel_index != 0) { + buffer_is_zero_accel = accel_table[--accel_index]; + return true; + } + return false; +} + +static void __attribute__((constructor)) init_accel(void) +{ + accel_index = best_accel(); + buffer_is_zero_accel = accel_table[accel_index]; }