* Some small qtest fixes

* Oss-fuzz updates
 * Publish the docs built during gitlab CI to the user's gitlab.io page
 * Update the OpenBSD VM test to v6.8
 * Fix the device-crash-test script to run with the meson build system
 * Some small s390x fixes
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCAAvFiEEJ7iIR+7gJQEY8+q5LtnXdP5wLbUFAl+qc+IRHHRodXRoQHJl
 ZGhhdC5jb20ACgkQLtnXdP5wLbUPfg//Z4AbWXNwldRTTZM/61kY88meNT6jHVaF
 narl6v1u+1oLeSlwoHaZb7PZ3auxAuukROaiUWqIzn9udpyvRBB6pXz+JzGpwmWk
 DUady8vYXg/Q9Yux8MZMgKzhOH484eVM1y9NXQ+lzJT7R3VtbcN0IvlFv20M5d+k
 S449CuAlXH5b42A6OUpABZYfxm59lWZW91qdejRnLOyqyLrv5GPhro5J3Uadv3l2
 lHExdzjSCBovK3ORCR9L6JghLMmN3M6a9VArNas6KTSLvz5Vh/Rnz5otfpf5DiHv
 D/FOXQjm1aujCmfa41oBZH84aGhZrdK/fhtryJE+OBa7a5mpSOv5mXg7IFKDeCRd
 p0bmLOo891LdzOHlkZ/p+8uK3CkdsJpxch0/8mLLLvgJCGCNpeq7GJXj7wuPa2RK
 gc2Ax+XoOR/C5f+x4PbRjHYgI3tTbO8MM9G87QT8TvV3llwpeFs7LRjegoanoAxn
 OA0hVp+4dEXBPJF0bludSNnJ+NPDUWDKVPW/sTlaVytxSgFw0v5bBtne+CUY8QGN
 xNX9T3qsSN56phaZlSzB0ktJKid8nvqEBp82/ayAVyhf6cYk4p08f+cS/qb0RpMm
 5J7GbmB54HWq8Is6BjG261BvnKfEdhl58YIREbgY0gQopGDXZzazozIysNKcZAnI
 WzL1cfWPWwc=
 =a3YE
 -----END PGP SIGNATURE-----

Merge remote-tracking branch 'remotes/huth-gitlab/tags/pull-request-2020-11-10' into staging

* Some small qtest fixes
* Oss-fuzz updates
* Publish the docs built during gitlab CI to the user's gitlab.io page
* Update the OpenBSD VM test to v6.8
* Fix the device-crash-test script to run with the meson build system
* Some small s390x fixes

# gpg: Signature made Tue 10 Nov 2020 11:05:06 GMT
# gpg:                using RSA key 27B88847EEE0250118F3EAB92ED9D774FE702DB5
# gpg:                issuer "thuth@redhat.com"
# gpg: Good signature from "Thomas Huth <th.huth@gmx.de>" [full]
# gpg:                 aka "Thomas Huth <thuth@redhat.com>" [full]
# gpg:                 aka "Thomas Huth <huth@tuxfamily.org>" [full]
# gpg:                 aka "Thomas Huth <th.huth@posteo.de>" [unknown]
# Primary key fingerprint: 27B8 8847 EEE0 2501 18F3  EAB9 2ED9 D774 FE70 2DB5

* remotes/huth-gitlab/tags/pull-request-2020-11-10:
  s390x: Avoid variable size warning in ipl.h
  s390x: fix clang 11 warnings in cpu_models.c
  qtest: Update references to parse_escape() in comments
  fuzz: add virtio-blk fuzz target
  docs: add "page source" link to sphinx documentation
  gitlab: force enable docs build in Fedora, Ubuntu, Debian
  gitlab: publish the docs built during CI
  configure: surface deprecated targets in the help output
  fuzz: Make fork_fuzz.ld compatible with LLVM's LLD
  scripts/oss-fuzz: give all fuzzers -target names
  docs/fuzz: update fuzzing documentation post-meson
  docs/fuzz: rST-ify the fuzzing documentation
  MAINTAINERS: Add gitlab-pipeline-status script to GitLab CI section
  gitlab-ci: Drop generic cache rule
  tests/qtest/tpm: Remove redundant check in the tpm_test_swtpm_test()
  qtest: Fix bad printf format specifiers
  device-crash-test: Check if path is actually an executable file
  tests/vm: update openbsd to release 6.8
  meson: always include contrib/libvhost-user

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Peter Maydell 2020-11-10 12:23:05 +00:00
commit 879860ca70
27 changed files with 577 additions and 264 deletions

View File

@ -7,12 +7,6 @@ stages:
- build
- test
# We assume GitLab has it's own caching set up for RPM/APT repositories so we
# just take care of avocado assets here.
cache:
paths:
- $HOME/avocado/data/cache
include:
- local: '/.gitlab-ci.d/edk2.yml'
- local: '/.gitlab-ci.d/opensbi.yml'
@ -80,6 +74,7 @@ build-system-ubuntu:
TARGETS: aarch64-softmmu alpha-softmmu cris-softmmu hppa-softmmu
moxie-softmmu microblazeel-softmmu mips64el-softmmu
MAKE_CHECK_ARGS: check-build
CONFIGURE_ARGS: --enable-docs
artifacts:
expire_in: 2 days
paths:
@ -111,6 +106,7 @@ build-system-debian:
TARGETS: arm-softmmu avr-softmmu i386-softmmu mipsel-softmmu
riscv64-softmmu sh4eb-softmmu sparc-softmmu xtensaeb-softmmu
MAKE_CHECK_ARGS: check-build
CONFIGURE_ARGS: --enable-docs
artifacts:
expire_in: 2 days
paths:
@ -139,7 +135,7 @@ build-system-fedora:
<<: *native_build_job_definition
variables:
IMAGE: fedora
CONFIGURE_ARGS: --disable-gcrypt --enable-nettle
CONFIGURE_ARGS: --disable-gcrypt --enable-nettle --enable-docs
TARGETS: tricore-softmmu microblaze-softmmu mips-softmmu
xtensa-softmmu m68k-softmmu riscv32-softmmu ppc-softmmu sparc64-softmmu
MAKE_CHECK_ARGS: check-build
@ -423,3 +419,17 @@ check-dco:
- $CI_PROJECT_NAMESPACE == 'qemu-project' && $CI_COMMIT_BRANCH == 'master'
variables:
GIT_DEPTH: 1000
pages:
image: $CI_REGISTRY_IMAGE/qemu/ubuntu2004:latest
stage: test
needs:
- job: build-system-ubuntu
artifacts: true
script:
- mkdir public
- mv build/docs/index.html public/
- for i in devel interop specs system tools user ; do mv build/docs/$i public/ ; done
artifacts:
paths:
- public

View File

@ -2525,7 +2525,7 @@ R: Thomas Huth <thuth@redhat.com>
S: Maintained
F: tests/qtest/fuzz/
F: scripts/oss-fuzz/
F: docs/devel/fuzzing.txt
F: docs/devel/fuzzing.rst
Register API
M: Alistair Francis <alistair@alistair23.me>
@ -3156,6 +3156,7 @@ S: Maintained
F: .gitlab-ci.yml
F: .gitlab-ci.d/crossbuilds.yml
F: .gitlab-ci.d/*py
F: scripts/ci/gitlab-pipeline-status
Guest Test Compilation Support
M: Alex Bennée <alex.bennee@linaro.org>

4
configure vendored
View File

@ -1655,9 +1655,11 @@ Standard options:
--prefix=PREFIX install in PREFIX [$prefix]
--interp-prefix=PREFIX where to find shared libraries, etc.
use %M for cpu name [$interp_prefix]
--target-list=LIST set target list (default: build everything)
--target-list=LIST set target list (default: build all non-deprecated)
$(echo Available targets: $default_target_list | \
fold -s -w 53 | sed -e 's/^/ /')
$(echo Deprecated targets: $deprecated_targets_list | \
fold -s -w 53 | sed -e 's/^/ /')
--target-list-exclude=LIST exclude a set of targets from the default target-list
Advanced options (experts only):

5
docs/_templates/editpage.html vendored Normal file
View File

@ -0,0 +1,5 @@
<div id="editpage">
<ul>
<li><a href="https://gitlab.com/qemu-project/qemu/-/blob/master/docs/{{pagename}}.rst">Page source</a></li>
</ul>
</div>

View File

@ -177,6 +177,7 @@ html_theme_options = {
html_sidebars = {
'**': [
'about.html',
'editpage.html',
'navigation.html',
'searchbox.html',
]

View File

@ -0,0 +1,5 @@
<div id="editpage">
<ul>
<li><a href="https://gitlab.com/qemu-project/qemu/-/blob/master/docs/devel/{{pagename}}.rst">Page source</a></li>
</ul>
</div>

236
docs/devel/fuzzing.rst Normal file
View File

@ -0,0 +1,236 @@
========
Fuzzing
========
This document describes the virtual-device fuzzing infrastructure in QEMU and
how to use it to implement additional fuzzers.
Basics
------
Fuzzing operates by passing inputs to an entry point/target function. The
fuzzer tracks the code coverage triggered by the input. Based on these
findings, the fuzzer mutates the input and repeats the fuzzing.
To fuzz QEMU, we rely on libfuzzer. Unlike other fuzzers such as AFL, libfuzzer
is an *in-process* fuzzer. For the developer, this means that it is their
responsibility to ensure that state is reset between fuzzing-runs.
Building the fuzzers
--------------------
*NOTE*: If possible, build a 32-bit binary. When forking, the 32-bit fuzzer is
much faster, since the page-map has a smaller size. This is due to the fact that
AddressSanitizer maps ~20TB of memory, as part of its detection. This results
in a large page-map, and a much slower ``fork()``.
To build the fuzzers, install a recent version of clang:
Configure with (substitute the clang binaries with the version you installed).
Here, enable-sanitizers, is optional but it allows us to reliably detect bugs
such as out-of-bounds accesses, use-after-frees, double-frees etc.::
CC=clang-8 CXX=clang++-8 /path/to/configure --enable-fuzzing \
--enable-sanitizers
Fuzz targets are built similarly to system targets::
make qemu-fuzz-i386
This builds ``./qemu-fuzz-i386``
The first option to this command is: ``--fuzz-target=FUZZ_NAME``
To list all of the available fuzzers run ``qemu-fuzz-i386`` with no arguments.
For example::
./qemu-fuzz-i386 --fuzz-target=virtio-scsi-fuzz
Internally, libfuzzer parses all arguments that do not begin with ``"--"``.
Information about these is available by passing ``-help=1``
Now the only thing left to do is wait for the fuzzer to trigger potential
crashes.
Useful libFuzzer flags
----------------------
As mentioned above, libFuzzer accepts some arguments. Passing ``-help=1`` will
list the available arguments. In particular, these arguments might be helpful:
* ``CORPUS_DIR/`` : Specify a directory as the last argument to libFuzzer.
libFuzzer stores each "interesting" input in this corpus directory. The next
time you run libFuzzer, it will read all of the inputs from the corpus, and
continue fuzzing from there. You can also specify multiple directories.
libFuzzer loads existing inputs from all specified directories, but will only
write new ones to the first one specified.
* ``-max_len=4096`` : specify the maximum byte-length of the inputs libFuzzer
will generate.
* ``-close_fd_mask={1,2,3}`` : close, stderr, or both. Useful for targets that
trigger many debug/error messages, or create output on the serial console.
* ``-jobs=4 -workers=4`` : These arguments configure libFuzzer to run 4 fuzzers in
parallel (4 fuzzing jobs in 4 worker processes). Alternatively, with only
``-jobs=N``, libFuzzer automatically spawns a number of workers less than or equal
to half the available CPU cores. Replace 4 with a number appropriate for your
machine. Make sure to specify a ``CORPUS_DIR``, which will allow the parallel
fuzzers to share information about the interesting inputs they find.
* ``-use_value_profile=1`` : For each comparison operation, libFuzzer computes
``(caller_pc&4095) | (popcnt(Arg1 ^ Arg2) << 12)`` and places this in the
coverage table. Useful for targets with "magic" constants. If Arg1 came from
the fuzzer's input and Arg2 is a magic constant, then each time the Hamming
distance between Arg1 and Arg2 decreases, libFuzzer adds the input to the
corpus.
* ``-shrink=1`` : Tries to make elements of the corpus "smaller". Might lead to
better coverage performance, depending on the target.
Note that libFuzzer's exact behavior will depend on the version of
clang and libFuzzer used to build the device fuzzers.
Generating Coverage Reports
---------------------------
Code coverage is a crucial metric for evaluating a fuzzer's performance.
libFuzzer's output provides a "cov: " column that provides a total number of
unique blocks/edges covered. To examine coverage on a line-by-line basis we
can use Clang coverage:
1. Configure libFuzzer to store a corpus of all interesting inputs (see
CORPUS_DIR above)
2. ``./configure`` the QEMU build with ::
--enable-fuzzing \
--extra-cflags="-fprofile-instr-generate -fcoverage-mapping"
3. Re-run the fuzzer. Specify $CORPUS_DIR/* as an argument, telling libfuzzer
to execute all of the inputs in $CORPUS_DIR and exit. Once the process
exits, you should find a file, "default.profraw" in the working directory.
4. Execute these commands to generate a detailed HTML coverage-report::
llvm-profdata merge -output=default.profdata default.profraw
llvm-cov show ./path/to/qemu-fuzz-i386 -instr-profile=default.profdata \
--format html -output-dir=/path/to/output/report
Adding a new fuzzer
-------------------
Coverage over virtual devices can be improved by adding additional fuzzers.
Fuzzers are kept in ``tests/qtest/fuzz/`` and should be added to
``tests/qtest/fuzz/Makefile.include``
Fuzzers can rely on both qtest and libqos to communicate with virtual devices.
1. Create a new source file. For example ``tests/qtest/fuzz/foo-device-fuzz.c``.
2. Write the fuzzing code using the libqtest/libqos API. See existing fuzzers
for reference.
3. Register the fuzzer in ``tests/fuzz/Makefile.include`` by appending the
corresponding object to fuzz-obj-y
Fuzzers can be more-or-less thought of as special qtest programs which can
modify the qtest commands and/or qtest command arguments based on inputs
provided by libfuzzer. Libfuzzer passes a byte array and length. Commonly the
fuzzer loops over the byte-array interpreting it as a list of qtest commands,
addresses, or values.
The Generic Fuzzer
------------------
Writing a fuzz target can be a lot of effort (especially if a device driver has
not be built-out within libqos). Many devices can be fuzzed to some degree,
without any device-specific code, using the generic-fuzz target.
The generic-fuzz target is capable of fuzzing devices over their PIO, MMIO,
and DMA input-spaces. To apply the generic-fuzz to a device, we need to define
two env-variables, at minimum:
* ``QEMU_FUZZ_ARGS=`` is the set of QEMU arguments used to configure a machine, with
the device attached. For example, if we want to fuzz the virtio-net device
attached to a pc-i440fx machine, we can specify::
QEMU_FUZZ_ARGS="-M pc -nodefaults -netdev user,id=user0 \
-device virtio-net,netdev=user0"
* ``QEMU_FUZZ_OBJECTS=`` is a set of space-delimited strings used to identify
the MemoryRegions that will be fuzzed. These strings are compared against
MemoryRegion names and MemoryRegion owner names, to decide whether each
MemoryRegion should be fuzzed. These strings support globbing. For the
virtio-net example, we could use one of ::
QEMU_FUZZ_OBJECTS='virtio-net'
QEMU_FUZZ_OBJECTS='virtio*'
QEMU_FUZZ_OBJECTS='virtio* pcspk' # Fuzz the virtio devices and the speaker
QEMU_FUZZ_OBJECTS='*' # Fuzz the whole machine``
The ``"info mtree"`` and ``"info qom-tree"`` monitor commands can be especially
useful for identifying the ``MemoryRegion`` and ``Object`` names used for
matching.
As a generic rule-of-thumb, the more ``MemoryRegions``/Devices we match, the
greater the input-space, and the smaller the probability of finding crashing
inputs for individual devices. As such, it is usually a good idea to limit the
fuzzer to only a few ``MemoryRegions``.
To ensure that these env variables have been configured correctly, we can use::
./qemu-fuzz-i386 --fuzz-target=generic-fuzz -runs=0
The output should contain a complete list of matched MemoryRegions.
Implementation Details / Fuzzer Lifecycle
-----------------------------------------
The fuzzer has two entrypoints that libfuzzer calls. libfuzzer provides it's
own ``main()``, which performs some setup, and calls the entrypoints:
``LLVMFuzzerInitialize``: called prior to fuzzing. Used to initialize all of the
necessary state
``LLVMFuzzerTestOneInput``: called for each fuzzing run. Processes the input and
resets the state at the end of each run.
In more detail:
``LLVMFuzzerInitialize`` parses the arguments to the fuzzer (must start with two
dashes, so they are ignored by libfuzzer ``main()``). Currently, the arguments
select the fuzz target. Then, the qtest client is initialized. If the target
requires qos, qgraph is set up and the QOM/LIBQOS modules are initialized.
Then the QGraph is walked and the QEMU cmd_line is determined and saved.
After this, the ``vl.c:qemu_main`` is called to set up the guest. There are
target-specific hooks that can be called before and after qemu_main, for
additional setup(e.g. PCI setup, or VM snapshotting).
``LLVMFuzzerTestOneInput``: Uses qtest/qos functions to act based on the fuzz
input. It is also responsible for manually calling ``main_loop_wait`` to ensure
that bottom halves are executed and any cleanup required before the next input.
Since the same process is reused for many fuzzing runs, QEMU state needs to
be reset at the end of each run. There are currently two implemented
options for resetting state:
- Reboot the guest between runs.
- *Pros*: Straightforward and fast for simple fuzz targets.
- *Cons*: Depending on the device, does not reset all device state. If the
device requires some initialization prior to being ready for fuzzing (common
for QOS-based targets), this initialization needs to be done after each
reboot.
- *Example target*: ``i440fx-qtest-reboot-fuzz``
- Run each test case in a separate forked process and copy the coverage
information back to the parent. This is fairly similar to AFL's "deferred"
fork-server mode [3]
- *Pros*: Relatively fast. Devices only need to be initialized once. No need to
do slow reboots or vmloads.
- *Cons*: Not officially supported by libfuzzer. Does not work well for
devices that rely on dedicated threads.
- *Example target*: ``virtio-net-fork-fuzz``

View File

@ -1,214 +0,0 @@
= Fuzzing =
== Introduction ==
This document describes the virtual-device fuzzing infrastructure in QEMU and
how to use it to implement additional fuzzers.
== Basics ==
Fuzzing operates by passing inputs to an entry point/target function. The
fuzzer tracks the code coverage triggered by the input. Based on these
findings, the fuzzer mutates the input and repeats the fuzzing.
To fuzz QEMU, we rely on libfuzzer. Unlike other fuzzers such as AFL, libfuzzer
is an _in-process_ fuzzer. For the developer, this means that it is their
responsibility to ensure that state is reset between fuzzing-runs.
== Building the fuzzers ==
NOTE: If possible, build a 32-bit binary. When forking, the 32-bit fuzzer is
much faster, since the page-map has a smaller size. This is due to the fact that
AddressSanitizer mmaps ~20TB of memory, as part of its detection. This results
in a large page-map, and a much slower fork().
To build the fuzzers, install a recent version of clang:
Configure with (substitute the clang binaries with the version you installed).
Here, enable-sanitizers, is optional but it allows us to reliably detect bugs
such as out-of-bounds accesses, use-after-frees, double-frees etc.
CC=clang-8 CXX=clang++-8 /path/to/configure --enable-fuzzing \
--enable-sanitizers
Fuzz targets are built similarly to system/softmmu:
make i386-softmmu/fuzz
This builds ./i386-softmmu/qemu-fuzz-i386
The first option to this command is: --fuzz-target=FUZZ_NAME
To list all of the available fuzzers run qemu-fuzz-i386 with no arguments.
For example:
./i386-softmmu/qemu-fuzz-i386 --fuzz-target=virtio-scsi-fuzz
Internally, libfuzzer parses all arguments that do not begin with "--".
Information about these is available by passing -help=1
Now the only thing left to do is wait for the fuzzer to trigger potential
crashes.
== Useful libFuzzer flags ==
As mentioned above, libFuzzer accepts some arguments. Passing -help=1 will list
the available arguments. In particular, these arguments might be helpful:
$CORPUS_DIR/ : Specify a directory as the last argument to libFuzzer. libFuzzer
stores each "interesting" input in this corpus directory. The next time you run
libFuzzer, it will read all of the inputs from the corpus, and continue fuzzing
from there. You can also specify multiple directories. libFuzzer loads existing
inputs from all specified directories, but will only write new ones to the
first one specified.
-max_len=4096 : specify the maximum byte-length of the inputs libFuzzer will
generate.
-close_fd_mask={1,2,3} : close, stderr, or both. Useful for targets that
trigger many debug/error messages, or create output on the serial console.
-jobs=4 -workers=4 : These arguments configure libFuzzer to run 4 fuzzers in
parallel (4 fuzzing jobs in 4 worker processes). Alternatively, with only
-jobs=N, libFuzzer automatically spawns a number of workers less than or equal
to half the available CPU cores. Replace 4 with a number appropriate for your
machine. Make sure to specify a $CORPUS_DIR, which will allow the parallel
fuzzers to share information about the interesting inputs they find.
-use_value_profile=1 : For each comparison operation, libFuzzer computes
(caller_pc&4095) | (popcnt(Arg1 ^ Arg2) << 12) and places this in the coverage
table. Useful for targets with "magic" constants. If Arg1 came from the fuzzer's
input and Arg2 is a magic constant, then each time the Hamming distance
between Arg1 and Arg2 decreases, libFuzzer adds the input to the corpus.
-shrink=1 : Tries to make elements of the corpus "smaller". Might lead to
better coverage performance, depending on the target.
Note that libFuzzer's exact behavior will depend on the version of
clang and libFuzzer used to build the device fuzzers.
== Generating Coverage Reports ==
Code coverage is a crucial metric for evaluating a fuzzer's performance.
libFuzzer's output provides a "cov: " column that provides a total number of
unique blocks/edges covered. To examine coverage on a line-by-line basis we
can use Clang coverage:
1. Configure libFuzzer to store a corpus of all interesting inputs (see
CORPUS_DIR above)
2. ./configure the QEMU build with:
--enable-fuzzing \
--extra-cflags="-fprofile-instr-generate -fcoverage-mapping"
3. Re-run the fuzzer. Specify $CORPUS_DIR/* as an argument, telling libfuzzer
to execute all of the inputs in $CORPUS_DIR and exit. Once the process
exits, you should find a file, "default.profraw" in the working directory.
4. Execute these commands to generate a detailed HTML coverage-report:
llvm-profdata merge -output=default.profdata default.profraw
llvm-cov show ./path/to/qemu-fuzz-i386 -instr-profile=default.profdata \
--format html -output-dir=/path/to/output/report
== Adding a new fuzzer ==
Coverage over virtual devices can be improved by adding additional fuzzers.
Fuzzers are kept in tests/qtest/fuzz/ and should be added to
tests/qtest/fuzz/Makefile.include
Fuzzers can rely on both qtest and libqos to communicate with virtual devices.
1. Create a new source file. For example ``tests/qtest/fuzz/foo-device-fuzz.c``.
2. Write the fuzzing code using the libqtest/libqos API. See existing fuzzers
for reference.
3. Register the fuzzer in ``tests/fuzz/Makefile.include`` by appending the
corresponding object to fuzz-obj-y
Fuzzers can be more-or-less thought of as special qtest programs which can
modify the qtest commands and/or qtest command arguments based on inputs
provided by libfuzzer. Libfuzzer passes a byte array and length. Commonly the
fuzzer loops over the byte-array interpreting it as a list of qtest commands,
addresses, or values.
== The Generic Fuzzer ==
Writing a fuzz target can be a lot of effort (especially if a device driver has
not be built-out within libqos). Many devices can be fuzzed to some degree,
without any device-specific code, using the generic-fuzz target.
The generic-fuzz target is capable of fuzzing devices over their PIO, MMIO,
and DMA input-spaces. To apply the generic-fuzz to a device, we need to define
two env-variables, at minimum:
QEMU_FUZZ_ARGS= is the set of QEMU arguments used to configure a machine, with
the device attached. For example, if we want to fuzz the virtio-net device
attached to a pc-i440fx machine, we can specify:
QEMU_FUZZ_ARGS="-M pc -nodefaults -netdev user,id=user0 \
-device virtio-net,netdev=user0"
QEMU_FUZZ_OBJECTS= is a set of space-delimited strings used to identify the
MemoryRegions that will be fuzzed. These strings are compared against
MemoryRegion names and MemoryRegion owner names, to decide whether each
MemoryRegion should be fuzzed. These strings support globbing. For the
virtio-net example, we could use QEMU_FUZZ_OBJECTS=
* 'virtio-net'
* 'virtio*'
* 'virtio* pcspk' (Fuzz the virtio devices and the PC speaker...)
* '*' (Fuzz the whole machine)
The "info mtree" and "info qom-tree" monitor commands can be especially useful
for identifying the MemoryRegion and Object names used for matching.
As a generic rule-of-thumb, the more MemoryRegions/Devices we match, the greater
the input-space, and the smaller the probability of finding crashing inputs for
individual devices. As such, it is usually a good idea to limit the fuzzer to
only a few MemoryRegions.
To ensure that these env variables have been configured correctly, we can use:
./qemu-fuzz-i386 --fuzz-target=generic-fuzz -runs=0
The output should contain a complete list of matched MemoryRegions.
= Implementation Details =
== The Fuzzer's Lifecycle ==
The fuzzer has two entrypoints that libfuzzer calls. libfuzzer provides it's
own main(), which performs some setup, and calls the entrypoints:
LLVMFuzzerInitialize: called prior to fuzzing. Used to initialize all of the
necessary state
LLVMFuzzerTestOneInput: called for each fuzzing run. Processes the input and
resets the state at the end of each run.
In more detail:
LLVMFuzzerInitialize parses the arguments to the fuzzer (must start with two
dashes, so they are ignored by libfuzzer main()). Currently, the arguments
select the fuzz target. Then, the qtest client is initialized. If the target
requires qos, qgraph is set up and the QOM/LIBQOS modules are initialized.
Then the QGraph is walked and the QEMU cmd_line is determined and saved.
After this, the vl.c:qemu__main is called to set up the guest. There are
target-specific hooks that can be called before and after qemu_main, for
additional setup(e.g. PCI setup, or VM snapshotting).
LLVMFuzzerTestOneInput: Uses qtest/qos functions to act based on the fuzz
input. It is also responsible for manually calling the main loop/main_loop_wait
to ensure that bottom halves are executed and any cleanup required before the
next input.
Since the same process is reused for many fuzzing runs, QEMU state needs to
be reset at the end of each run. There are currently two implemented
options for resetting state:
1. Reboot the guest between runs.
Pros: Straightforward and fast for simple fuzz targets.
Cons: Depending on the device, does not reset all device state. If the
device requires some initialization prior to being ready for fuzzing
(common for QOS-based targets), this initialization needs to be done after
each reboot.
Example target: i440fx-qtest-reboot-fuzz
2. Run each test case in a separate forked process and copy the coverage
information back to the parent. This is fairly similar to AFL's "deferred"
fork-server mode [3]
Pros: Relatively fast. Devices only need to be initialized once. No need
to do slow reboots or vmloads.
Cons: Not officially supported by libfuzzer. Does not work well for devices
that rely on dedicated threads.
Example target: virtio-net-fork-fuzz

View File

@ -22,6 +22,7 @@ Contents:
stable-process
testing
qtest
fuzzing
decodetree
secure-coding-practices
tcg

View File

@ -0,0 +1,5 @@
<div id="editpage">
<ul>
<li><a href="https://gitlab.com/qemu-project/qemu/-/blob/master/docs/interop/{{pagename}}.rst">Page source</a></li>
</ul>
</div>

View File

@ -0,0 +1,5 @@
<div id="editpage">
<ul>
<li><a href="https://gitlab.com/qemu-project/qemu/-/blob/master/docs/specs/{{pagename}}.rst">Page source</a></li>
</ul>
</div>

View File

@ -0,0 +1,5 @@
<div id="editpage">
<ul>
<li><a href="https://gitlab.com/qemu-project/qemu/-/blob/master/docs/system/{{pagename}}.rst">Page source</a></li>
</ul>
</div>

View File

@ -0,0 +1,5 @@
<div id="editpage">
<ul>
<li><a href="https://gitlab.com/qemu-project/qemu/-/blob/master/docs/tools/{{pagename}}.rst">Page source</a></li>
</ul>
</div>

View File

@ -0,0 +1,5 @@
<div id="editpage">
<ul>
<li><a href="https://gitlab.com/qemu-project/qemu/-/blob/master/docs/user/{{pagename}}.rst">Page source</a></li>
</ul>
</div>

View File

@ -32,7 +32,7 @@ struct IPLBlockPV {
uint32_t num_comp; /* 0x74 */
uint64_t pv_header_addr; /* 0x78 */
uint64_t pv_header_len; /* 0x80 */
struct IPLBlockPVComp components[];
struct IPLBlockPVComp components[0];
} QEMU_PACKED;
typedef struct IPLBlockPV IPLBlockPV;
@ -63,7 +63,7 @@ struct IplBlockFcp {
uint64_t br_lba;
uint32_t scp_data_len;
uint8_t reserved6[260];
uint8_t scp_data[];
uint8_t scp_data[0];
} QEMU_PACKED;
typedef struct IplBlockFcp IplBlockFcp;

View File

@ -1450,11 +1450,7 @@ trace_events_subdirs += [
'util',
]
vhost_user = not_found
if 'CONFIG_VHOST_USER' in config_host
subdir('contrib/libvhost-user')
endif
subdir('contrib/libvhost-user')
subdir('qapi')
subdir('qobject')
subdir('stubs')

View File

@ -383,7 +383,9 @@ def binariesToTest(args, testcase):
if args.qemu:
r = args.qemu
else:
r = glob.glob('./qemu-system-*')
r = [f.path for f in os.scandir('.')
if f.name.startswith('qemu-system-') and
f.is_file() and os.access(f, os.X_OK)]
return r

View File

@ -62,9 +62,6 @@ fi
mkdir -p "$DEST_DIR/lib/" # Copy the shared libraries here
mkdir -p "$DEST_DIR/bin/" # Copy executables that shouldn't
# be treated as fuzzers by oss-fuzz here
# Build once to get the list of dynamic lib paths, and copy them over
../configure --disable-werror --cc="$CC" --cxx="$CXX" --enable-fuzzing \
--prefix="$DEST_DIR" --bindir="$DEST_DIR" --datadir="$DEST_DIR/data/" \
@ -91,20 +88,23 @@ make "-j$(nproc)" qemu-fuzz-i386 V=1
# Copy over the datadir
cp -r ../pc-bios/ "$DEST_DIR/pc-bios"
cp "./qemu-fuzz-i386" "$DEST_DIR/bin/qemu-fuzz-i386.base"
targets=$(./qemu-fuzz-i386 | awk '$1 ~ /\*/ {print $2}')
base_copy="$DEST_DIR/qemu-fuzz-i386-target-$(echo "$targets" | head -n 1)"
cp "./qemu-fuzz-i386" "$base_copy"
# Run the fuzzer with no arguments, to print the help-string and get the list
# of available fuzz-targets. Copy over the qemu-fuzz-i386, naming it according
# to each available fuzz target (See 05509c8e6d fuzz: select fuzz target using
# executable name)
for target in $(./qemu-fuzz-i386 | awk '$1 ~ /\*/ {print $2}');
for target in $(echo "$targets" | tail -n +2);
do
# Ignore the generic-fuzz target, as it requires some environment variables
# to be configured. We have some generic-fuzz-{pc-q35, floppy, ...} targets
# that are thin wrappers around this target that set the required
# environment variables according to predefined configs.
if [ "$target" != "generic-fuzz" ]; then
ln "$DEST_DIR/bin/qemu-fuzz-i386.base" \
ln $base_copy \
"$DEST_DIR/qemu-fuzz-i386-target-$target"
fi
done

View File

@ -986,7 +986,7 @@ void s390_realize_cpu_model(CPUState *cs, Error **errp)
static void get_feature(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
S390Feat feat = (S390Feat) opaque;
S390Feat feat = (S390Feat) (uintptr_t) opaque;
S390CPU *cpu = S390_CPU(obj);
bool value;
@ -1003,7 +1003,7 @@ static void get_feature(Object *obj, Visitor *v, const char *name,
static void set_feature(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
S390Feat feat = (S390Feat) opaque;
S390Feat feat = (S390Feat) (uintptr_t) opaque;
DeviceState *dev = DEVICE(obj);
S390CPU *cpu = S390_CPU(obj);
bool value;
@ -1037,7 +1037,7 @@ static void set_feature(Object *obj, Visitor *v, const char *name,
static void get_feature_group(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
S390FeatGroup group = (S390FeatGroup) opaque;
S390FeatGroup group = (S390FeatGroup) (uintptr_t) opaque;
const S390FeatGroupDef *def = s390_feat_group_def(group);
S390CPU *cpu = S390_CPU(obj);
S390FeatBitmap tmp;
@ -1058,7 +1058,7 @@ static void get_feature_group(Object *obj, Visitor *v, const char *name,
static void set_feature_group(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
S390FeatGroup group = (S390FeatGroup) opaque;
S390FeatGroup group = (S390FeatGroup) (uintptr_t) opaque;
const S390FeatGroupDef *def = s390_feat_group_def(group);
DeviceState *dev = DEVICE(obj);
S390CPU *cpu = S390_CPU(obj);

View File

@ -536,7 +536,7 @@ static void test_query_cpu_model_expansion_kvm(const void *data)
if (kvm_supports_sve) {
g_assert(vls != 0);
max_vq = 64 - __builtin_clzll(vls);
sprintf(max_name, "sve%d", max_vq * 128);
sprintf(max_name, "sve%u", max_vq * 128);
/* Enabling a supported length is of course fine. */
assert_sve_vls(qts, "host", vls, "{ %s: true }", max_name);
@ -556,7 +556,7 @@ static void test_query_cpu_model_expansion_kvm(const void *data)
* unless all larger, supported vector lengths are also
* disabled.
*/
sprintf(name, "sve%d", vq * 128);
sprintf(name, "sve%u", vq * 128);
error = g_strdup_printf("cannot disable %s", name);
assert_error(qts, "host", error,
"{ %s: true, %s: false }",
@ -569,7 +569,7 @@ static void test_query_cpu_model_expansion_kvm(const void *data)
* we need at least one vector length enabled.
*/
vq = __builtin_ffsll(vls);
sprintf(name, "sve%d", vq * 128);
sprintf(name, "sve%u", vq * 128);
error = g_strdup_printf("cannot disable %s", name);
assert_error(qts, "host", error, "{ %s: false }", name);
g_free(error);
@ -581,7 +581,7 @@ static void test_query_cpu_model_expansion_kvm(const void *data)
}
}
if (vq <= SVE_MAX_VQ) {
sprintf(name, "sve%d", vq * 128);
sprintf(name, "sve%u", vq * 128);
error = g_strdup_printf("cannot enable %s", name);
assert_error(qts, "host", error, "{ %s: true }", name);
g_free(error);

View File

@ -16,6 +16,11 @@ SECTIONS
/* Lowest stack counter */
*(__sancov_lowest_stack);
}
}
INSERT AFTER .data;
SECTIONS
{
.data.fuzz_ordered :
{
/*
@ -34,6 +39,11 @@ SECTIONS
*/
*(.bss._ZN6fuzzer3TPCE);
}
}
INSERT AFTER .data.fuzz_start;
SECTIONS
{
.data.fuzz_end : ALIGN(4K)
{
__FUZZ_COUNTERS_END = .;
@ -43,4 +53,4 @@ SECTIONS
* Don't overwrite the SECTIONS in the default linker script. Instead insert the
* above into the default script
*/
INSERT AFTER .data;
INSERT AFTER .data.fuzz_ordered;

View File

@ -5,6 +5,7 @@ specific_fuzz_ss.add(files('fuzz.c', 'fork_fuzz.c', 'qos_fuzz.c',
specific_fuzz_ss.add(when: 'CONFIG_I440FX', if_true: files('i440fx_fuzz.c'))
specific_fuzz_ss.add(when: 'CONFIG_VIRTIO_NET', if_true: files('virtio_net_fuzz.c'))
specific_fuzz_ss.add(when: 'CONFIG_VIRTIO_SCSI', if_true: files('virtio_scsi_fuzz.c'))
specific_fuzz_ss.add(when: 'CONFIG_VIRTIO_BLK', if_true: files('virtio_blk_fuzz.c'))
specific_fuzz_ss.add(files('generic_fuzz.c'))
fork_fuzz = declare_dependency(

View File

@ -0,0 +1,234 @@
/*
* virtio-blk Fuzzing Target
*
* Copyright Red Hat Inc., 2020
*
* Based on virtio-scsi-fuzz target.
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "tests/qtest/libqos/libqtest.h"
#include "tests/qtest/libqos/virtio-blk.h"
#include "tests/qtest/libqos/virtio.h"
#include "tests/qtest/libqos/virtio-pci.h"
#include "standard-headers/linux/virtio_ids.h"
#include "standard-headers/linux/virtio_pci.h"
#include "standard-headers/linux/virtio_blk.h"
#include "fuzz.h"
#include "fork_fuzz.h"
#include "qos_fuzz.h"
#define TEST_IMAGE_SIZE (64 * 1024 * 1024)
#define PCI_SLOT 0x02
#define PCI_FN 0x00
#define MAX_NUM_QUEUES 64
/* Based on tests/qtest/virtio-blk-test.c. */
typedef struct {
int num_queues;
QVirtQueue *vq[MAX_NUM_QUEUES + 2];
} QVirtioBlkQueues;
static QVirtioBlkQueues *qvirtio_blk_init(QVirtioDevice *dev, uint64_t mask)
{
QVirtioBlkQueues *vs;
uint64_t features;
vs = g_new0(QVirtioBlkQueues, 1);
features = qvirtio_get_features(dev);
if (!mask) {
mask = ~((1u << VIRTIO_RING_F_INDIRECT_DESC) |
(1u << VIRTIO_RING_F_EVENT_IDX) |
(1u << VIRTIO_BLK_F_SCSI));
}
mask |= ~QVIRTIO_F_BAD_FEATURE;
features &= mask;
qvirtio_set_features(dev, features);
vs->num_queues = 1;
vs->vq[0] = qvirtqueue_setup(dev, fuzz_qos_alloc, 0);
qvirtio_set_driver_ok(dev);
return vs;
}
static void virtio_blk_fuzz(QTestState *s, QVirtioBlkQueues* queues,
const unsigned char *Data, size_t Size)
{
/*
* Data is a sequence of random bytes. We split them up into "actions",
* followed by data:
* [vqa][dddddddd][vqa][dddd][vqa][dddddddddddd] ...
* The length of the data is specified by the preceding vqa.length
*/
typedef struct vq_action {
uint8_t queue;
uint8_t length;
uint8_t write;
uint8_t next;
uint8_t kick;
} vq_action;
/* Keep track of the free head for each queue we interact with */
bool vq_touched[MAX_NUM_QUEUES + 2] = {0};
uint32_t free_head[MAX_NUM_QUEUES + 2];
QGuestAllocator *t_alloc = fuzz_qos_alloc;
QVirtioBlk *blk = fuzz_qos_obj;
QVirtioDevice *dev = blk->vdev;
QVirtQueue *q;
vq_action vqa;
while (Size >= sizeof(vqa)) {
/* Copy the action, so we can normalize length, queue and flags */
memcpy(&vqa, Data, sizeof(vqa));
Data += sizeof(vqa);
Size -= sizeof(vqa);
vqa.queue = vqa.queue % queues->num_queues;
/* Cap length at the number of remaining bytes in data */
vqa.length = vqa.length >= Size ? Size : vqa.length;
vqa.write = vqa.write & 1;
vqa.next = vqa.next & 1;
vqa.kick = vqa.kick & 1;
q = queues->vq[vqa.queue];
/* Copy the data into ram, and place it on the virtqueue */
uint64_t req_addr = guest_alloc(t_alloc, vqa.length);
qtest_memwrite(s, req_addr, Data, vqa.length);
if (vq_touched[vqa.queue] == 0) {
vq_touched[vqa.queue] = 1;
free_head[vqa.queue] = qvirtqueue_add(s, q, req_addr, vqa.length,
vqa.write, vqa.next);
} else {
qvirtqueue_add(s, q, req_addr, vqa.length, vqa.write , vqa.next);
}
if (vqa.kick) {
qvirtqueue_kick(s, dev, q, free_head[vqa.queue]);
free_head[vqa.queue] = 0;
}
Data += vqa.length;
Size -= vqa.length;
}
/* In the end, kick each queue we interacted with */
for (int i = 0; i < MAX_NUM_QUEUES + 2; i++) {
if (vq_touched[i]) {
qvirtqueue_kick(s, dev, queues->vq[i], free_head[i]);
}
}
}
static void virtio_blk_fork_fuzz(QTestState *s,
const unsigned char *Data, size_t Size)
{
QVirtioBlk *blk = fuzz_qos_obj;
static QVirtioBlkQueues *queues;
if (!queues) {
queues = qvirtio_blk_init(blk->vdev, 0);
}
if (fork() == 0) {
virtio_blk_fuzz(s, queues, Data, Size);
flush_events(s);
_Exit(0);
} else {
flush_events(s);
wait(NULL);
}
}
static void virtio_blk_with_flag_fuzz(QTestState *s,
const unsigned char *Data, size_t Size)
{
QVirtioBlk *blk = fuzz_qos_obj;
static QVirtioBlkQueues *queues;
if (fork() == 0) {
if (Size >= sizeof(uint64_t)) {
queues = qvirtio_blk_init(blk->vdev, *(uint64_t *)Data);
virtio_blk_fuzz(s, queues,
Data + sizeof(uint64_t), Size - sizeof(uint64_t));
flush_events(s);
}
_Exit(0);
} else {
flush_events(s);
wait(NULL);
}
}
static void virtio_blk_pre_fuzz(QTestState *s)
{
qos_init_path(s);
counter_shm_init();
}
static void drive_destroy(void *path)
{
unlink(path);
g_free(path);
}
static char *drive_create(void)
{
int fd, ret;
char *t_path = g_strdup("/tmp/qtest.XXXXXX");
/* Create a temporary raw image */
fd = mkstemp(t_path);
g_assert_cmpint(fd, >=, 0);
ret = ftruncate(fd, TEST_IMAGE_SIZE);
g_assert_cmpint(ret, ==, 0);
close(fd);
g_test_queue_destroy(drive_destroy, t_path);
return t_path;
}
static void *virtio_blk_test_setup(GString *cmd_line, void *arg)
{
char *tmp_path = drive_create();
g_string_append_printf(cmd_line,
" -drive if=none,id=drive0,file=%s,"
"format=raw,auto-read-only=off ",
tmp_path);
return arg;
}
static void register_virtio_blk_fuzz_targets(void)
{
fuzz_add_qos_target(&(FuzzTarget){
.name = "virtio-blk-fuzz",
.description = "Fuzz the virtio-blk virtual queues, forking "
"for each fuzz run",
.pre_vm_init = &counter_shm_init,
.pre_fuzz = &virtio_blk_pre_fuzz,
.fuzz = virtio_blk_fork_fuzz,},
"virtio-blk",
&(QOSGraphTestOptions){.before = virtio_blk_test_setup}
);
fuzz_add_qos_target(&(FuzzTarget){
.name = "virtio-blk-flags-fuzz",
.description = "Fuzz the virtio-blk virtual queues, forking "
"for each fuzz run (also fuzzes the virtio flags)",
.pre_vm_init = &counter_shm_init,
.pre_fuzz = &virtio_blk_pre_fuzz,
.fuzz = virtio_blk_with_flag_fuzz,},
"virtio-blk",
&(QOSGraphTestOptions){.before = virtio_blk_test_setup}
);
}
fuzz_target_init(register_virtio_blk_fuzz_targets);

View File

@ -88,7 +88,7 @@ void qtest_quit(QTestState *s);
* @fds: array of file descriptors
* @fds_num: number of elements in @fds
* @fmt: QMP message to send to qemu, formatted like
* qobject_from_jsonf_nofail(). See parse_escape() for what's
* qobject_from_jsonf_nofail(). See parse_interpolation() for what's
* supported after '%'.
*
* Sends a QMP message to QEMU with fds and returns the response.
@ -101,7 +101,7 @@ QDict *qtest_qmp_fds(QTestState *s, int *fds, size_t fds_num,
* qtest_qmp:
* @s: #QTestState instance to operate on.
* @fmt: QMP message to send to qemu, formatted like
* qobject_from_jsonf_nofail(). See parse_escape() for what's
* qobject_from_jsonf_nofail(). See parse_interpolation() for what's
* supported after '%'.
*
* Sends a QMP message to QEMU and returns the response.
@ -113,7 +113,7 @@ QDict *qtest_qmp(QTestState *s, const char *fmt, ...)
* qtest_qmp_send:
* @s: #QTestState instance to operate on.
* @fmt: QMP message to send to qemu, formatted like
* qobject_from_jsonf_nofail(). See parse_escape() for what's
* qobject_from_jsonf_nofail(). See parse_interpolation() for what's
* supported after '%'.
*
* Sends a QMP message to QEMU and leaves the response in the stream.
@ -138,7 +138,7 @@ void qtest_qmp_send_raw(QTestState *s, const char *fmt, ...)
* @fds: array of file descriptors
* @fds_num: number of elements in @fds
* @fmt: QMP message to send to QEMU, formatted like
* qobject_from_jsonf_nofail(). See parse_escape() for what's
* qobject_from_jsonf_nofail(). See parse_interpolation() for what's
* supported after '%'.
* @ap: QMP message arguments
*
@ -152,7 +152,7 @@ QDict *qtest_vqmp_fds(QTestState *s, int *fds, size_t fds_num,
* qtest_vqmp:
* @s: #QTestState instance to operate on.
* @fmt: QMP message to send to QEMU, formatted like
* qobject_from_jsonf_nofail(). See parse_escape() for what's
* qobject_from_jsonf_nofail(). See parse_interpolation() for what's
* supported after '%'.
* @ap: QMP message arguments
*
@ -167,7 +167,7 @@ QDict *qtest_vqmp(QTestState *s, const char *fmt, va_list ap)
* @fds: array of file descriptors
* @fds_num: number of elements in @fds
* @fmt: QMP message to send to QEMU, formatted like
* qobject_from_jsonf_nofail(). See parse_escape() for what's
* qobject_from_jsonf_nofail(). See parse_interpolation() for what's
* supported after '%'.
* @ap: QMP message arguments
*
@ -181,7 +181,7 @@ void qtest_qmp_vsend_fds(QTestState *s, int *fds, size_t fds_num,
* qtest_qmp_vsend:
* @s: #QTestState instance to operate on.
* @fmt: QMP message to send to QEMU, formatted like
* qobject_from_jsonf_nofail(). See parse_escape() for what's
* qobject_from_jsonf_nofail(). See parse_interpolation() for what's
* supported after '%'.
* @ap: QMP message arguments
*
@ -636,7 +636,7 @@ void qtest_add_abrt_handler(GHookFunc fn, const void *data);
* qtest_qmp_assert_success:
* @qts: QTestState instance to operate on
* @fmt: QMP message to send to qemu, formatted like
* qobject_from_jsonf_nofail(). See parse_escape() for what's
* qobject_from_jsonf_nofail(). See parse_interpolation() for what's
* supported after '%'.
*
* Sends a QMP message to QEMU and asserts that a 'return' key is present in
@ -683,7 +683,7 @@ void qtest_qmp_device_add_qdict(QTestState *qts, const char *drv,
* @driver: Name of the device that should be added
* @id: Identification string
* @fmt: QMP message to send to qemu, formatted like
* qobject_from_jsonf_nofail(). See parse_escape() for what's
* qobject_from_jsonf_nofail(). See parse_interpolation() for what's
* supported after '%'.
*
* Generic hot-plugging test via the device_add QMP command.

View File

@ -47,7 +47,7 @@ static inline void qtest_end(void)
/**
* qmp:
* @fmt...: QMP message to send to qemu, formatted like
* qobject_from_jsonf_nofail(). See parse_escape() for what's
* qobject_from_jsonf_nofail(). See parse_interpolation() for what's
* supported after '%'.
*
* Sends a QMP message to QEMU and returns the response.

View File

@ -70,10 +70,8 @@ void tpm_test_swtpm_test(const char *src_tpm_path, tx_func *tx,
qtest_end();
tpm_util_swtpm_kill(swtpm_pid);
if (addr) {
g_unlink(addr->u.q_unix.path);
qapi_free_SocketAddress(addr);
}
g_unlink(addr->u.q_unix.path);
qapi_free_SocketAddress(addr);
}
void tpm_test_swtpm_migration_test(const char *src_tpm_path,

View File

@ -22,8 +22,8 @@ class OpenBSDVM(basevm.BaseVM):
name = "openbsd"
arch = "x86_64"
link = "https://cdn.openbsd.org/pub/OpenBSD/6.6/amd64/install66.iso"
csum = "b22e63df56e6266de6bbeed8e9be0fbe9ee2291551c5bc03f3cc2e4ab9436ee3"
link = "https://cdn.openbsd.org/pub/OpenBSD/6.8/amd64/install68.iso"
csum = "47e291fcc2d0c1a8ae0b66329f040b33af755b6adbd21739e20bb5ad56f62b6c"
size = "20G"
pkgs = [
# tools
@ -37,10 +37,10 @@ class OpenBSDVM(basevm.BaseVM):
"bash",
"gmake",
"gsed",
"gettext",
"gettext-tools",
# libs: usb
"libusb1",
"libusb1--",
# libs: crypto
"gnutls",