diff --git a/hw/intc/arm_gic_kvm.c b/hw/intc/arm_gic_kvm.c index 53defee7d5..e2a73337b1 100644 --- a/hw/intc/arm_gic_kvm.c +++ b/hw/intc/arm_gic_kvm.c @@ -547,17 +547,10 @@ static void kvm_arm_gic_realize(DeviceState *dev, Error **errp) KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true, &error_abort); } - } else if (kvm_check_extension(kvm_state, KVM_CAP_DEVICE_CTRL)) { + } else { error_setg_errno(errp, -ret, "error creating in-kernel VGIC"); error_append_hint(errp, "Perhaps the host CPU does not support GICv2?\n"); - } else if (ret != -ENODEV && ret != -ENOTSUP) { - /* - * Very ancient kernel without KVM_CAP_DEVICE_CTRL: assume that - * ENODEV or ENOTSUP mean "can't create GICv2 with KVM_CREATE_DEVICE", - * and that we will get a GICv2 via KVM_CREATE_IRQCHIP. - */ - error_setg_errno(errp, -ret, "error creating in-kernel VGIC"); return; } diff --git a/target/arm/kvm.c b/target/arm/kvm.c index 000afa0363..7b6812c0de 100644 --- a/target/arm/kvm.c +++ b/target/arm/kvm.c @@ -42,6 +42,7 @@ #include "migration/blocker.h" const KVMCapabilityInfo kvm_arch_required_capabilities[] = { + KVM_CAP_INFO(DEVICE_CTRL), KVM_CAP_LAST_INFO }; @@ -691,19 +692,11 @@ static void kvm_arm_set_device_addr(KVMDevice *kd) { struct kvm_device_attr *attr = &kd->kdattr; int ret; + uint64_t addr = kd->kda.addr; - /* If the device control API is available and we have a device fd on the - * KVMDevice struct, let's use the newer API - */ - if (kd->dev_fd >= 0) { - uint64_t addr = kd->kda.addr; - - addr |= kd->kda_addr_ormask; - attr->addr = (uintptr_t)&addr; - ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr); - } else { - ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda); - } + addr |= kd->kda_addr_ormask; + attr->addr = (uintptr_t)&addr; + ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr); if (ret < 0) { fprintf(stderr, "Failed to set device address: %s\n", diff --git a/target/arm/kvm_arm.h b/target/arm/kvm_arm.h index 4d293618a7..2e6b49bf13 100644 --- a/target/arm/kvm_arm.h +++ b/target/arm/kvm_arm.h @@ -22,17 +22,15 @@ * @devid: the KVM device ID * @group: device control API group for setting addresses * @attr: device control API address type - * @dev_fd: device control device file descriptor (or -1 if not supported) + * @dev_fd: device control device file descriptor * @addr_ormask: value to be OR'ed with resolved address * - * Remember the memory region @mr, and when it is mapped by the - * machine model, tell the kernel that base address using the - * KVM_ARM_SET_DEVICE_ADDRESS ioctl or the newer device control API. @devid - * should be the ID of the device as defined by KVM_ARM_SET_DEVICE_ADDRESS or - * the arm-vgic device in the device control API. - * The machine model may map - * and unmap the device multiple times; the kernel will only be told the final - * address at the point where machine init is complete. + * Remember the memory region @mr, and when it is mapped by the machine + * model, tell the kernel that base address using the device control API. + * @devid should be the ID of the device as defined by the arm-vgic device + * in the device control API. The machine model may map and unmap the device + * multiple times; the kernel will only be told the final address at the + * point where machine init is complete. */ void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, uint64_t attr, int dev_fd, uint64_t addr_ormask);