target/ppc, spapr: Move VPA information to machine_data

CPUPPCState currently contains a number of fields containing the state of
the VPA.  The VPA is a PAPR specific concept covering several guest/host
shared memory areas used to communicate some information with the
hypervisor.

As a PAPR concept this is really machine specific information, although it
is per-cpu, so it doesn't really belong in the core CPU state structure.

There's also other information that's per-cpu, but platform/machine
specific.  So create a (void *)machine_data in PowerPCCPU which can be
used by the machine to locate per-cpu data.  Intialization, lifetime and
cleanup of machine_data is entirely up to the machine type.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Tested-by: Greg Kurz <groug@kaod.org>
This commit is contained in:
David Gibson 2018-06-13 16:22:18 +10:00
parent 51c047283c
commit 7388efafc2
6 changed files with 88 additions and 67 deletions

View File

@ -28,6 +28,7 @@ static void spapr_cpu_reset(void *opaque)
CPUState *cs = CPU(cpu); CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env; CPUPPCState *env = &cpu->env;
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
sPAPRCPUState *spapr_cpu = spapr_cpu_state(cpu);
target_ulong lpcr; target_ulong lpcr;
cpu_reset(cs); cpu_reset(cs);
@ -69,6 +70,12 @@ static void spapr_cpu_reset(void *opaque)
/* Set a full AMOR so guest can use the AMR as it sees fit */ /* Set a full AMOR so guest can use the AMR as it sees fit */
env->spr[SPR_AMOR] = 0xffffffffffffffffull; env->spr[SPR_AMOR] = 0xffffffffffffffffull;
spapr_cpu->vpa_addr = 0;
spapr_cpu->slb_shadow_addr = 0;
spapr_cpu->slb_shadow_size = 0;
spapr_cpu->dtl_addr = 0;
spapr_cpu->dtl_size = 0;
} }
void spapr_cpu_set_entry_state(PowerPCCPU *cpu, target_ulong nip, target_ulong r3) void spapr_cpu_set_entry_state(PowerPCCPU *cpu, target_ulong nip, target_ulong r3)
@ -186,6 +193,8 @@ static PowerPCCPU *spapr_create_vcpu(sPAPRCPUCore *sc, int i, Error **errp)
goto err; goto err;
} }
cpu->machine_data = g_new0(sPAPRCPUState, 1);
object_unref(obj); object_unref(obj);
return cpu; return cpu;
@ -197,6 +206,10 @@ err:
static void spapr_delete_vcpu(PowerPCCPU *cpu) static void spapr_delete_vcpu(PowerPCCPU *cpu)
{ {
sPAPRCPUState *spapr_cpu = spapr_cpu_state(cpu);
cpu->machine_data = NULL;
g_free(spapr_cpu);
object_unparent(OBJECT(cpu)); object_unparent(OBJECT(cpu));
} }

View File

@ -8,6 +8,7 @@
#include "exec/exec-all.h" #include "exec/exec-all.h"
#include "helper_regs.h" #include "helper_regs.h"
#include "hw/ppc/spapr.h" #include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_cpu_core.h"
#include "mmu-hash64.h" #include "mmu-hash64.h"
#include "cpu-models.h" #include "cpu-models.h"
#include "trace.h" #include "trace.h"
@ -908,9 +909,11 @@ unmap_out:
#define VPA_SHARED_PROC_OFFSET 0x9 #define VPA_SHARED_PROC_OFFSET 0x9
#define VPA_SHARED_PROC_VAL 0x2 #define VPA_SHARED_PROC_VAL 0x2
static target_ulong register_vpa(CPUPPCState *env, target_ulong vpa) static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa)
{ {
CPUState *cs = CPU(ppc_env_get_cpu(env)); CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
sPAPRCPUState *spapr_cpu = spapr_cpu_state(cpu);
uint16_t size; uint16_t size;
uint8_t tmp; uint8_t tmp;
@ -935,32 +938,34 @@ static target_ulong register_vpa(CPUPPCState *env, target_ulong vpa)
return H_PARAMETER; return H_PARAMETER;
} }
env->vpa_addr = vpa; spapr_cpu->vpa_addr = vpa;
tmp = ldub_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET); tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET);
tmp |= VPA_SHARED_PROC_VAL; tmp |= VPA_SHARED_PROC_VAL;
stb_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp); stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
return H_SUCCESS; return H_SUCCESS;
} }
static target_ulong deregister_vpa(CPUPPCState *env, target_ulong vpa) static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa)
{ {
if (env->slb_shadow_addr) { sPAPRCPUState *spapr_cpu = spapr_cpu_state(cpu);
if (spapr_cpu->slb_shadow_addr) {
return H_RESOURCE; return H_RESOURCE;
} }
if (env->dtl_addr) { if (spapr_cpu->dtl_addr) {
return H_RESOURCE; return H_RESOURCE;
} }
env->vpa_addr = 0; spapr_cpu->vpa_addr = 0;
return H_SUCCESS; return H_SUCCESS;
} }
static target_ulong register_slb_shadow(CPUPPCState *env, target_ulong addr) static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
{ {
CPUState *cs = CPU(ppc_env_get_cpu(env)); sPAPRCPUState *spapr_cpu = spapr_cpu_state(cpu);
uint32_t size; uint32_t size;
if (addr == 0) { if (addr == 0) {
@ -968,7 +973,7 @@ static target_ulong register_slb_shadow(CPUPPCState *env, target_ulong addr)
return H_HARDWARE; return H_HARDWARE;
} }
size = ldl_be_phys(cs->as, addr + 0x4); size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
if (size < 0x8) { if (size < 0x8) {
return H_PARAMETER; return H_PARAMETER;
} }
@ -977,26 +982,28 @@ static target_ulong register_slb_shadow(CPUPPCState *env, target_ulong addr)
return H_PARAMETER; return H_PARAMETER;
} }
if (!env->vpa_addr) { if (!spapr_cpu->vpa_addr) {
return H_RESOURCE; return H_RESOURCE;
} }
env->slb_shadow_addr = addr; spapr_cpu->slb_shadow_addr = addr;
env->slb_shadow_size = size; spapr_cpu->slb_shadow_size = size;
return H_SUCCESS; return H_SUCCESS;
} }
static target_ulong deregister_slb_shadow(CPUPPCState *env, target_ulong addr) static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
{ {
env->slb_shadow_addr = 0; sPAPRCPUState *spapr_cpu = spapr_cpu_state(cpu);
env->slb_shadow_size = 0;
spapr_cpu->slb_shadow_addr = 0;
spapr_cpu->slb_shadow_size = 0;
return H_SUCCESS; return H_SUCCESS;
} }
static target_ulong register_dtl(CPUPPCState *env, target_ulong addr) static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr)
{ {
CPUState *cs = CPU(ppc_env_get_cpu(env)); sPAPRCPUState *spapr_cpu = spapr_cpu_state(cpu);
uint32_t size; uint32_t size;
if (addr == 0) { if (addr == 0) {
@ -1004,26 +1011,28 @@ static target_ulong register_dtl(CPUPPCState *env, target_ulong addr)
return H_HARDWARE; return H_HARDWARE;
} }
size = ldl_be_phys(cs->as, addr + 0x4); size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
if (size < 48) { if (size < 48) {
return H_PARAMETER; return H_PARAMETER;
} }
if (!env->vpa_addr) { if (!spapr_cpu->vpa_addr) {
return H_RESOURCE; return H_RESOURCE;
} }
env->dtl_addr = addr; spapr_cpu->dtl_addr = addr;
env->dtl_size = size; spapr_cpu->dtl_size = size;
return H_SUCCESS; return H_SUCCESS;
} }
static target_ulong deregister_dtl(CPUPPCState *env, target_ulong addr) static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr)
{ {
env->dtl_addr = 0; sPAPRCPUState *spapr_cpu = spapr_cpu_state(cpu);
env->dtl_size = 0;
spapr_cpu->dtl_addr = 0;
spapr_cpu->dtl_size = 0;
return H_SUCCESS; return H_SUCCESS;
} }
@ -1035,38 +1044,36 @@ static target_ulong h_register_vpa(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong procno = args[1]; target_ulong procno = args[1];
target_ulong vpa = args[2]; target_ulong vpa = args[2];
target_ulong ret = H_PARAMETER; target_ulong ret = H_PARAMETER;
CPUPPCState *tenv;
PowerPCCPU *tcpu; PowerPCCPU *tcpu;
tcpu = spapr_find_cpu(procno); tcpu = spapr_find_cpu(procno);
if (!tcpu) { if (!tcpu) {
return H_PARAMETER; return H_PARAMETER;
} }
tenv = &tcpu->env;
switch (flags) { switch (flags) {
case FLAGS_REGISTER_VPA: case FLAGS_REGISTER_VPA:
ret = register_vpa(tenv, vpa); ret = register_vpa(tcpu, vpa);
break; break;
case FLAGS_DEREGISTER_VPA: case FLAGS_DEREGISTER_VPA:
ret = deregister_vpa(tenv, vpa); ret = deregister_vpa(tcpu, vpa);
break; break;
case FLAGS_REGISTER_SLBSHADOW: case FLAGS_REGISTER_SLBSHADOW:
ret = register_slb_shadow(tenv, vpa); ret = register_slb_shadow(tcpu, vpa);
break; break;
case FLAGS_DEREGISTER_SLBSHADOW: case FLAGS_DEREGISTER_SLBSHADOW:
ret = deregister_slb_shadow(tenv, vpa); ret = deregister_slb_shadow(tcpu, vpa);
break; break;
case FLAGS_REGISTER_DTL: case FLAGS_REGISTER_DTL:
ret = register_dtl(tenv, vpa); ret = register_dtl(tcpu, vpa);
break; break;
case FLAGS_DEREGISTER_DTL: case FLAGS_DEREGISTER_DTL:
ret = deregister_dtl(tenv, vpa); ret = deregister_dtl(tcpu, vpa);
break; break;
} }

View File

@ -41,4 +41,15 @@ typedef struct sPAPRCPUCoreClass {
const char *spapr_get_cpu_core_type(const char *cpu_type); const char *spapr_get_cpu_core_type(const char *cpu_type);
void spapr_cpu_set_entry_state(PowerPCCPU *cpu, target_ulong nip, target_ulong r3); void spapr_cpu_set_entry_state(PowerPCCPU *cpu, target_ulong nip, target_ulong r3);
typedef struct sPAPRCPUState {
uint64_t vpa_addr;
uint64_t slb_shadow_addr, slb_shadow_size;
uint64_t dtl_addr, dtl_size;
} sPAPRCPUState;
static inline sPAPRCPUState *spapr_cpu_state(PowerPCCPU *cpu)
{
return (sPAPRCPUState *)cpu->machine_data;
}
#endif #endif

View File

@ -1091,12 +1091,6 @@ struct CPUPPCState {
target_ulong rmls; target_ulong rmls;
#endif #endif
#if defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY)
uint64_t vpa_addr;
uint64_t slb_shadow_addr, slb_shadow_size;
uint64_t dtl_addr, dtl_size;
#endif /* TARGET_PPC64 */
int error_code; int error_code;
uint32_t pending_interrupts; uint32_t pending_interrupts;
#if !defined(CONFIG_USER_ONLY) #if !defined(CONFIG_USER_ONLY)
@ -1205,6 +1199,7 @@ struct PowerPCCPU {
uint32_t compat_pvr; uint32_t compat_pvr;
PPCVirtualHypervisor *vhyp; PPCVirtualHypervisor *vhyp;
Object *intc; Object *intc;
void *machine_data;
int32_t node_id; /* NUMA node this CPU belongs to */ int32_t node_id; /* NUMA node this CPU belongs to */
PPCHash64Options *hash64_opts; PPCHash64Options *hash64_opts;

View File

@ -829,22 +829,22 @@ static int kvm_get_fp(CPUState *cs)
static int kvm_get_vpa(CPUState *cs) static int kvm_get_vpa(CPUState *cs)
{ {
PowerPCCPU *cpu = POWERPC_CPU(cs); PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env; sPAPRCPUState *spapr_cpu = spapr_cpu_state(cpu);
struct kvm_one_reg reg; struct kvm_one_reg reg;
int ret; int ret;
reg.id = KVM_REG_PPC_VPA_ADDR; reg.id = KVM_REG_PPC_VPA_ADDR;
reg.addr = (uintptr_t)&env->vpa_addr; reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg); ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret < 0) { if (ret < 0) {
DPRINTF("Unable to get VPA address from KVM: %s\n", strerror(errno)); DPRINTF("Unable to get VPA address from KVM: %s\n", strerror(errno));
return ret; return ret;
} }
assert((uintptr_t)&env->slb_shadow_size assert((uintptr_t)&spapr_cpu->slb_shadow_size
== ((uintptr_t)&env->slb_shadow_addr + 8)); == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
reg.id = KVM_REG_PPC_VPA_SLB; reg.id = KVM_REG_PPC_VPA_SLB;
reg.addr = (uintptr_t)&env->slb_shadow_addr; reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg); ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret < 0) { if (ret < 0) {
DPRINTF("Unable to get SLB shadow state from KVM: %s\n", DPRINTF("Unable to get SLB shadow state from KVM: %s\n",
@ -852,9 +852,10 @@ static int kvm_get_vpa(CPUState *cs)
return ret; return ret;
} }
assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8)); assert((uintptr_t)&spapr_cpu->dtl_size
== ((uintptr_t)&spapr_cpu->dtl_addr + 8));
reg.id = KVM_REG_PPC_VPA_DTL; reg.id = KVM_REG_PPC_VPA_DTL;
reg.addr = (uintptr_t)&env->dtl_addr; reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg); ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret < 0) { if (ret < 0) {
DPRINTF("Unable to get dispatch trace log state from KVM: %s\n", DPRINTF("Unable to get dispatch trace log state from KVM: %s\n",
@ -868,7 +869,7 @@ static int kvm_get_vpa(CPUState *cs)
static int kvm_put_vpa(CPUState *cs) static int kvm_put_vpa(CPUState *cs)
{ {
PowerPCCPU *cpu = POWERPC_CPU(cs); PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env; sPAPRCPUState *spapr_cpu = spapr_cpu_state(cpu);
struct kvm_one_reg reg; struct kvm_one_reg reg;
int ret; int ret;
@ -876,11 +877,12 @@ static int kvm_put_vpa(CPUState *cs)
* registered. That means when restoring state, if a VPA *is* * registered. That means when restoring state, if a VPA *is*
* registered, we need to set that up first. If not, we need to * registered, we need to set that up first. If not, we need to
* deregister the others before deregistering the master VPA */ * deregister the others before deregistering the master VPA */
assert(env->vpa_addr || !(env->slb_shadow_addr || env->dtl_addr)); assert(spapr_cpu->vpa_addr
|| !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr));
if (env->vpa_addr) { if (spapr_cpu->vpa_addr) {
reg.id = KVM_REG_PPC_VPA_ADDR; reg.id = KVM_REG_PPC_VPA_ADDR;
reg.addr = (uintptr_t)&env->vpa_addr; reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg); ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret < 0) { if (ret < 0) {
DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno)); DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno));
@ -888,19 +890,20 @@ static int kvm_put_vpa(CPUState *cs)
} }
} }
assert((uintptr_t)&env->slb_shadow_size assert((uintptr_t)&spapr_cpu->slb_shadow_size
== ((uintptr_t)&env->slb_shadow_addr + 8)); == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
reg.id = KVM_REG_PPC_VPA_SLB; reg.id = KVM_REG_PPC_VPA_SLB;
reg.addr = (uintptr_t)&env->slb_shadow_addr; reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg); ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret < 0) { if (ret < 0) {
DPRINTF("Unable to set SLB shadow state to KVM: %s\n", strerror(errno)); DPRINTF("Unable to set SLB shadow state to KVM: %s\n", strerror(errno));
return ret; return ret;
} }
assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8)); assert((uintptr_t)&spapr_cpu->dtl_size
== ((uintptr_t)&spapr_cpu->dtl_addr + 8));
reg.id = KVM_REG_PPC_VPA_DTL; reg.id = KVM_REG_PPC_VPA_DTL;
reg.addr = (uintptr_t)&env->dtl_addr; reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg); ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret < 0) { if (ret < 0) {
DPRINTF("Unable to set dispatch trace log state to KVM: %s\n", DPRINTF("Unable to set dispatch trace log state to KVM: %s\n",
@ -908,9 +911,9 @@ static int kvm_put_vpa(CPUState *cs)
return ret; return ret;
} }
if (!env->vpa_addr) { if (!spapr_cpu->vpa_addr) {
reg.id = KVM_REG_PPC_VPA_ADDR; reg.id = KVM_REG_PPC_VPA_ADDR;
reg.addr = (uintptr_t)&env->vpa_addr; reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg); ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret < 0) { if (ret < 0) {
DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno)); DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno));

View File

@ -10316,14 +10316,6 @@ static void ppc_cpu_reset(CPUState *s)
s->exception_index = POWERPC_EXCP_NONE; s->exception_index = POWERPC_EXCP_NONE;
env->error_code = 0; env->error_code = 0;
#if defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY)
env->vpa_addr = 0;
env->slb_shadow_addr = 0;
env->slb_shadow_size = 0;
env->dtl_addr = 0;
env->dtl_size = 0;
#endif /* TARGET_PPC64 */
for (i = 0; i < ARRAY_SIZE(env->spr_cb); i++) { for (i = 0; i < ARRAY_SIZE(env->spr_cb); i++) {
ppc_spr_t *spr = &env->spr_cb[i]; ppc_spr_t *spr = &env->spr_cb[i];