Sparc32: Refactor slavio timer

Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
This commit is contained in:
Blue Swirl 2009-08-08 20:08:15 +00:00
parent 10696b4fb2
commit 7204ff9c79
1 changed files with 206 additions and 178 deletions

View File

@ -52,22 +52,27 @@
#define MAX_CPUS 16 #define MAX_CPUS 16
typedef struct SLAVIO_TIMERState { typedef struct CPUTimerState {
SysBusDevice busdev;
qemu_irq irq; qemu_irq irq;
ptimer_state *timer; ptimer_state *timer;
uint32_t count, counthigh, reached; uint32_t count, counthigh, reached;
uint64_t limit; uint64_t limit;
// processor only // processor only
uint32_t running; uint32_t running;
struct SLAVIO_TIMERState *master; } CPUTimerState;
uint32_t slave_index;
// system only typedef struct SLAVIO_TIMERState {
uint32_t num_slaves; SysBusDevice busdev;
struct SLAVIO_TIMERState *slave[MAX_CPUS]; uint32_t num_cpus;
uint32_t slave_mode; CPUTimerState cputimer[MAX_CPUS + 1];
uint32_t cputimer_mode;
} SLAVIO_TIMERState; } SLAVIO_TIMERState;
typedef struct TimerContext {
SLAVIO_TIMERState *s;
unsigned int timer_index; /* 0 for system, 1 ... MAX_CPUS for CPU timers */
} TimerContext;
#define SYS_TIMER_SIZE 0x14 #define SYS_TIMER_SIZE 0x14
#define CPU_TIMER_SIZE 0x10 #define CPU_TIMER_SIZE 0x10
@ -89,85 +94,100 @@ typedef struct SLAVIO_TIMERState {
#define LIMIT_TO_PERIODS(l) ((l) >> 9) #define LIMIT_TO_PERIODS(l) ((l) >> 9)
#define PERIODS_TO_LIMIT(l) ((l) << 9) #define PERIODS_TO_LIMIT(l) ((l) << 9)
static int slavio_timer_is_user(SLAVIO_TIMERState *s) static int slavio_timer_is_user(TimerContext *tc)
{ {
return s->master && (s->master->slave_mode & (1 << s->slave_index)); SLAVIO_TIMERState *s = tc->s;
unsigned int timer_index = tc->timer_index;
return timer_index != 0 && (s->cputimer_mode & (1 << (timer_index - 1)));
} }
// Update count, set irq, update expire_time // Update count, set irq, update expire_time
// Convert from ptimer countdown units // Convert from ptimer countdown units
static void slavio_timer_get_out(SLAVIO_TIMERState *s) static void slavio_timer_get_out(CPUTimerState *t)
{ {
uint64_t count, limit; uint64_t count, limit;
if (s->limit == 0) /* free-run processor or system counter */ if (t->limit == 0) { /* free-run system or processor counter */
limit = TIMER_MAX_COUNT32; limit = TIMER_MAX_COUNT32;
else } else {
limit = s->limit; limit = t->limit;
}
if (s->timer) if (t->timer) {
count = limit - PERIODS_TO_LIMIT(ptimer_get_count(s->timer)); count = limit - PERIODS_TO_LIMIT(ptimer_get_count(t->timer));
else } else {
count = 0; count = 0;
}
DPRINTF("get_out: limit %" PRIx64 " count %x%08x\n", s->limit, DPRINTF("get_out: limit %" PRIx64 " count %x%08x\n", t->limit, t->counthigh,
s->counthigh, s->count); t->count);
s->count = count & TIMER_COUNT_MASK32; t->count = count & TIMER_COUNT_MASK32;
s->counthigh = count >> 32; t->counthigh = count >> 32;
} }
// timer callback // timer callback
static void slavio_timer_irq(void *opaque) static void slavio_timer_irq(void *opaque)
{ {
SLAVIO_TIMERState *s = opaque; TimerContext *tc = opaque;
SLAVIO_TIMERState *s = tc->s;
CPUTimerState *t = &s->cputimer[tc->timer_index];
slavio_timer_get_out(s); slavio_timer_get_out(t);
DPRINTF("callback: count %x%08x\n", s->counthigh, s->count); DPRINTF("callback: count %x%08x\n", t->counthigh, t->count);
s->reached = TIMER_REACHED; t->reached = TIMER_REACHED;
if (!slavio_timer_is_user(s)) if (!slavio_timer_is_user(tc)) {
qemu_irq_raise(s->irq); qemu_irq_raise(t->irq);
}
} }
static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr) static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
{ {
SLAVIO_TIMERState *s = opaque; TimerContext *tc = opaque;
SLAVIO_TIMERState *s = tc->s;
uint32_t saddr, ret; uint32_t saddr, ret;
unsigned int timer_index = tc->timer_index;
CPUTimerState *t = &s->cputimer[timer_index];
saddr = addr >> 2; saddr = addr >> 2;
switch (saddr) { switch (saddr) {
case TIMER_LIMIT: case TIMER_LIMIT:
// read limit (system counter mode) or read most signifying // read limit (system counter mode) or read most signifying
// part of counter (user mode) // part of counter (user mode)
if (slavio_timer_is_user(s)) { if (slavio_timer_is_user(tc)) {
// read user timer MSW // read user timer MSW
slavio_timer_get_out(s); slavio_timer_get_out(t);
ret = s->counthigh | s->reached; ret = t->counthigh | t->reached;
} else { } else {
// read limit // read limit
// clear irq // clear irq
qemu_irq_lower(s->irq); qemu_irq_lower(t->irq);
s->reached = 0; t->reached = 0;
ret = s->limit & TIMER_LIMIT_MASK32; ret = t->limit & TIMER_LIMIT_MASK32;
} }
break; break;
case TIMER_COUNTER: case TIMER_COUNTER:
// read counter and reached bit (system mode) or read lsbits // read counter and reached bit (system mode) or read lsbits
// of counter (user mode) // of counter (user mode)
slavio_timer_get_out(s); slavio_timer_get_out(t);
if (slavio_timer_is_user(s)) // read user timer LSW if (slavio_timer_is_user(tc)) { // read user timer LSW
ret = s->count & TIMER_MAX_COUNT64; ret = t->count & TIMER_MAX_COUNT64;
else // read limit } else { // read limit
ret = (s->count & TIMER_MAX_COUNT32) | s->reached; ret = (t->count & TIMER_MAX_COUNT32) |
t->reached;
}
break; break;
case TIMER_STATUS: case TIMER_STATUS:
// only available in processor counter/timer // only available in processor counter/timer
// read start/stop status // read start/stop status
ret = s->running; if (timer_index > 0) {
ret = t->running;
} else {
ret = 0;
}
break; break;
case TIMER_MODE: case TIMER_MODE:
// only available in system counter // only available in system counter
// read user/system mode // read user/system mode
ret = s->slave_mode; ret = s->cputimer_mode;
break; break;
default: default:
DPRINTF("invalid read address " TARGET_FMT_plx "\n", addr); DPRINTF("invalid read address " TARGET_FMT_plx "\n", addr);
@ -182,122 +202,136 @@ static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr,
uint32_t val) uint32_t val)
{ {
SLAVIO_TIMERState *s = opaque; TimerContext *tc = opaque;
SLAVIO_TIMERState *s = tc->s;
uint32_t saddr; uint32_t saddr;
unsigned int timer_index = tc->timer_index;
CPUTimerState *t = &s->cputimer[timer_index];
DPRINTF("write " TARGET_FMT_plx " %08x\n", addr, val); DPRINTF("write " TARGET_FMT_plx " %08x\n", addr, val);
saddr = addr >> 2; saddr = addr >> 2;
switch (saddr) { switch (saddr) {
case TIMER_LIMIT: case TIMER_LIMIT:
if (slavio_timer_is_user(s)) { if (slavio_timer_is_user(tc)) {
uint64_t count; uint64_t count;
// set user counter MSW, reset counter // set user counter MSW, reset counter
s->limit = TIMER_MAX_COUNT64; t->limit = TIMER_MAX_COUNT64;
s->counthigh = val & (TIMER_MAX_COUNT64 >> 32); t->counthigh = val & (TIMER_MAX_COUNT64 >> 32);
s->reached = 0; t->reached = 0;
count = ((uint64_t)s->counthigh << 32) | s->count; count = ((uint64_t)t->counthigh << 32) | t->count;
DPRINTF("processor %d user timer set to %016" PRIx64 "\n", DPRINTF("processor %d user timer set to %016" PRIx64 "\n",
s->slave_index, count); timer_index, count);
if (s->timer) if (t->timer) {
ptimer_set_count(s->timer, LIMIT_TO_PERIODS(s->limit - count)); ptimer_set_count(t->timer, LIMIT_TO_PERIODS(t->limit - count));
}
} else { } else {
// set limit, reset counter // set limit, reset counter
qemu_irq_lower(s->irq); qemu_irq_lower(t->irq);
s->limit = val & TIMER_MAX_COUNT32; t->limit = val & TIMER_MAX_COUNT32;
if (s->timer) { if (t->timer) {
if (s->limit == 0) /* free-run */ if (t->limit == 0) { /* free-run */
ptimer_set_limit(s->timer, ptimer_set_limit(t->timer,
LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1); LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
else } else {
ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 1); ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(t->limit), 1);
}
} }
} }
break; break;
case TIMER_COUNTER: case TIMER_COUNTER:
if (slavio_timer_is_user(s)) { if (slavio_timer_is_user(tc)) {
uint64_t count; uint64_t count;
// set user counter LSW, reset counter // set user counter LSW, reset counter
s->limit = TIMER_MAX_COUNT64; t->limit = TIMER_MAX_COUNT64;
s->count = val & TIMER_MAX_COUNT64; t->count = val & TIMER_MAX_COUNT64;
s->reached = 0; t->reached = 0;
count = ((uint64_t)s->counthigh) << 32 | s->count; count = ((uint64_t)t->counthigh) << 32 | t->count;
DPRINTF("processor %d user timer set to %016" PRIx64 "\n", DPRINTF("processor %d user timer set to %016" PRIx64 "\n",
s->slave_index, count); timer_index, count);
if (s->timer) if (t->timer) {
ptimer_set_count(s->timer, LIMIT_TO_PERIODS(s->limit - count)); ptimer_set_count(t->timer, LIMIT_TO_PERIODS(t->limit - count));
}
} else } else
DPRINTF("not user timer\n"); DPRINTF("not user timer\n");
break; break;
case TIMER_COUNTER_NORST: case TIMER_COUNTER_NORST:
// set limit without resetting counter // set limit without resetting counter
s->limit = val & TIMER_MAX_COUNT32; t->limit = val & TIMER_MAX_COUNT32;
if (s->timer) { if (t->timer) {
if (s->limit == 0) /* free-run */ if (t->limit == 0) { /* free-run */
ptimer_set_limit(s->timer, ptimer_set_limit(t->timer,
LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 0); LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 0);
else } else {
ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 0); ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(t->limit), 0);
}
} }
break; break;
case TIMER_STATUS: case TIMER_STATUS:
if (slavio_timer_is_user(s)) { if (slavio_timer_is_user(tc)) {
// start/stop user counter // start/stop user counter
if ((val & 1) && !s->running) { if ((val & 1) && !t->running) {
DPRINTF("processor %d user timer started\n", s->slave_index); DPRINTF("processor %d user timer started\n",
if (s->timer) timer_index);
ptimer_run(s->timer, 0); if (t->timer) {
s->running = 1; ptimer_run(t->timer, 0);
} else if (!(val & 1) && s->running) { }
DPRINTF("processor %d user timer stopped\n", s->slave_index); t->running = 1;
if (s->timer) } else if (!(val & 1) && t->running) {
ptimer_stop(s->timer); DPRINTF("processor %d user timer stopped\n",
s->running = 0; timer_index);
if (t->timer) {
ptimer_stop(t->timer);
}
t->running = 0;
} }
} }
break; break;
case TIMER_MODE: case TIMER_MODE:
if (s->master == NULL) { if (timer_index == 0) {
unsigned int i; unsigned int i;
for (i = 0; i < s->num_slaves; i++) { for (i = 0; i < s->num_cpus; i++) {
unsigned int processor = 1 << i; unsigned int processor = 1 << i;
CPUTimerState *curr_timer = &s->cputimer[i + 1];
// check for a change in timer mode for this processor // check for a change in timer mode for this processor
if ((val & processor) != (s->slave_mode & processor)) { if ((val & processor) != (s->cputimer_mode & processor)) {
if (val & processor) { // counter -> user timer if (val & processor) { // counter -> user timer
qemu_irq_lower(s->slave[i]->irq); qemu_irq_lower(curr_timer->irq);
// counters are always running // counters are always running
ptimer_stop(s->slave[i]->timer); ptimer_stop(curr_timer->timer);
s->slave[i]->running = 0; curr_timer->running = 0;
// user timer limit is always the same // user timer limit is always the same
s->slave[i]->limit = TIMER_MAX_COUNT64; curr_timer->limit = TIMER_MAX_COUNT64;
ptimer_set_limit(s->slave[i]->timer, ptimer_set_limit(curr_timer->timer,
LIMIT_TO_PERIODS(s->slave[i]->limit), LIMIT_TO_PERIODS(curr_timer->limit),
1); 1);
// set this processors user timer bit in config // set this processors user timer bit in config
// register // register
s->slave_mode |= processor; s->cputimer_mode |= processor;
DPRINTF("processor %d changed from counter to user " DPRINTF("processor %d changed from counter to user "
"timer\n", s->slave[i]->slave_index); "timer\n", timer_index);
} else { // user timer -> counter } else { // user timer -> counter
// stop the user timer if it is running // stop the user timer if it is running
if (s->slave[i]->running) if (curr_timer->running) {
ptimer_stop(s->slave[i]->timer); ptimer_stop(curr_timer->timer);
}
// start the counter // start the counter
ptimer_run(s->slave[i]->timer, 0); ptimer_run(curr_timer->timer, 0);
s->slave[i]->running = 1; curr_timer->running = 1;
// clear this processors user timer bit in config // clear this processors user timer bit in config
// register // register
s->slave_mode &= ~processor; s->cputimer_mode &= ~processor;
DPRINTF("processor %d changed from user timer to " DPRINTF("processor %d changed from user timer to "
"counter\n", s->slave[i]->slave_index); "counter\n", timer_index);
} }
} }
} }
} else } else {
DPRINTF("not system timer\n"); DPRINTF("not system timer\n");
}
break; break;
default: default:
DPRINTF("invalid write address " TARGET_FMT_plx "\n", addr); DPRINTF("invalid write address " TARGET_FMT_plx "\n", addr);
@ -320,30 +354,42 @@ static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
static void slavio_timer_save(QEMUFile *f, void *opaque) static void slavio_timer_save(QEMUFile *f, void *opaque)
{ {
SLAVIO_TIMERState *s = opaque; SLAVIO_TIMERState *s = opaque;
unsigned int i;
CPUTimerState *curr_timer;
qemu_put_be64s(f, &s->limit); for (i = 0; i <= MAX_CPUS; i++) {
qemu_put_be32s(f, &s->count); curr_timer = &s->cputimer[i];
qemu_put_be32s(f, &s->counthigh); qemu_put_be64s(f, &curr_timer->limit);
qemu_put_be32s(f, &s->reached); qemu_put_be32s(f, &curr_timer->count);
qemu_put_be32s(f, &s->running); qemu_put_be32s(f, &curr_timer->counthigh);
if (s->timer) qemu_put_be32s(f, &curr_timer->reached);
qemu_put_ptimer(f, s->timer); qemu_put_be32s(f, &curr_timer->running);
if (curr_timer->timer) {
qemu_put_ptimer(f, curr_timer->timer);
}
}
} }
static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id) static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
{ {
SLAVIO_TIMERState *s = opaque; SLAVIO_TIMERState *s = opaque;
unsigned int i;
CPUTimerState *curr_timer;
if (version_id != 3) if (version_id != 3)
return -EINVAL; return -EINVAL;
qemu_get_be64s(f, &s->limit); for (i = 0; i <= MAX_CPUS; i++) {
qemu_get_be32s(f, &s->count); curr_timer = &s->cputimer[i];
qemu_get_be32s(f, &s->counthigh); qemu_get_be64s(f, &curr_timer->limit);
qemu_get_be32s(f, &s->reached); qemu_get_be32s(f, &curr_timer->count);
qemu_get_be32s(f, &s->running); qemu_get_be32s(f, &curr_timer->counthigh);
if (s->timer) qemu_get_be32s(f, &curr_timer->reached);
qemu_get_ptimer(f, s->timer); qemu_get_be32s(f, &curr_timer->running);
if (curr_timer->timer) {
qemu_get_ptimer(f, curr_timer->timer);
}
}
return 0; return 0;
} }
@ -351,40 +397,42 @@ static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
static void slavio_timer_reset(void *opaque) static void slavio_timer_reset(void *opaque)
{ {
SLAVIO_TIMERState *s = opaque; SLAVIO_TIMERState *s = opaque;
unsigned int i;
CPUTimerState *curr_timer;
s->limit = 0; for (i = 0; i <= MAX_CPUS; i++) {
s->count = 0; curr_timer = &s->cputimer[i];
s->reached = 0; curr_timer->limit = 0;
s->slave_mode = 0; curr_timer->count = 0;
if (!s->master || s->slave_index < s->master->num_slaves) { curr_timer->reached = 0;
ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1); if (i < s->num_cpus) {
ptimer_run(s->timer, 0); ptimer_set_limit(curr_timer->timer,
LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
ptimer_run(curr_timer->timer, 0);
}
curr_timer->running = 1;
} }
s->running = 1; s->cputimer_mode = 0;
} }
static SLAVIO_TIMERState *slavio_timer_init(target_phys_addr_t addr, void slavio_timer_init_all(target_phys_addr_t addr, qemu_irq master_irq,
qemu_irq irq, qemu_irq *cpu_irqs, unsigned int num_cpus)
SLAVIO_TIMERState *master,
uint32_t slave_index,
uint32_t num_slaves)
{ {
DeviceState *dev; DeviceState *dev;
SysBusDevice *s; SysBusDevice *s;
SLAVIO_TIMERState *d; unsigned int i;
dev = qdev_create(NULL, "slavio_timer"); dev = qdev_create(NULL, "slavio_timer");
qdev_prop_set_uint32(dev, "slave_index", slave_index); qdev_prop_set_uint32(dev, "num_cpus", num_cpus);
qdev_prop_set_uint32(dev, "num_slaves", num_slaves);
qdev_prop_set_ptr(dev, "master", master);
qdev_init(dev); qdev_init(dev);
s = sysbus_from_qdev(dev); s = sysbus_from_qdev(dev);
sysbus_connect_irq(s, 0, irq); sysbus_connect_irq(s, 0, master_irq);
sysbus_mmio_map(s, 0, addr); sysbus_mmio_map(s, 0, addr + SYS_TIMER_OFFSET);
d = FROM_SYSBUS(SLAVIO_TIMERState, s); for (i = 0; i < MAX_CPUS; i++) {
sysbus_mmio_map(s, i + 1, addr + (target_phys_addr_t)CPU_TIMER_OFFSET(i));
return d; sysbus_connect_irq(s, i + 1, cpu_irqs[i]);
}
} }
static void slavio_timer_init1(SysBusDevice *dev) static void slavio_timer_init1(SysBusDevice *dev)
@ -392,21 +440,27 @@ static void slavio_timer_init1(SysBusDevice *dev)
int io; int io;
SLAVIO_TIMERState *s = FROM_SYSBUS(SLAVIO_TIMERState, dev); SLAVIO_TIMERState *s = FROM_SYSBUS(SLAVIO_TIMERState, dev);
QEMUBH *bh; QEMUBH *bh;
unsigned int i;
TimerContext *tc;
sysbus_init_irq(dev, &s->irq); for (i = 0; i <= MAX_CPUS; i++) {
tc = qemu_mallocz(sizeof(TimerContext));
tc->s = s;
tc->timer_index = i;
if (!s->master || s->slave_index < s->master->num_slaves) { bh = qemu_bh_new(slavio_timer_irq, tc);
bh = qemu_bh_new(slavio_timer_irq, s); s->cputimer[i].timer = ptimer_init(bh);
s->timer = ptimer_init(bh); ptimer_set_period(s->cputimer[i].timer, TIMER_PERIOD);
ptimer_set_period(s->timer, TIMER_PERIOD);
}
io = cpu_register_io_memory(slavio_timer_mem_read, slavio_timer_mem_write, io = cpu_register_io_memory(slavio_timer_mem_read,
s); slavio_timer_mem_write, tc);
if (s->master) { if (i == 0) {
sysbus_init_mmio(dev, CPU_TIMER_SIZE, io); sysbus_init_mmio(dev, SYS_TIMER_SIZE, io);
} else { } else {
sysbus_init_mmio(dev, SYS_TIMER_SIZE, io); sysbus_init_mmio(dev, CPU_TIMER_SIZE, io);
}
sysbus_init_irq(dev, &s->cputimer[i].irq);
} }
register_savevm("slavio_timer", -1, 3, slavio_timer_save, register_savevm("slavio_timer", -1, 3, slavio_timer_save,
@ -415,41 +469,15 @@ static void slavio_timer_init1(SysBusDevice *dev)
slavio_timer_reset(s); slavio_timer_reset(s);
} }
void slavio_timer_init_all(target_phys_addr_t base, qemu_irq master_irq,
qemu_irq *cpu_irqs, unsigned int num_cpus)
{
SLAVIO_TIMERState *master;
unsigned int i;
master = slavio_timer_init(base + SYS_TIMER_OFFSET, master_irq, NULL, 0,
num_cpus);
for (i = 0; i < MAX_CPUS; i++) {
master->slave[i] = slavio_timer_init(base + (target_phys_addr_t)
CPU_TIMER_OFFSET(i),
cpu_irqs[i], master, i, 0);
}
}
static SysBusDeviceInfo slavio_timer_info = { static SysBusDeviceInfo slavio_timer_info = {
.init = slavio_timer_init1, .init = slavio_timer_init1,
.qdev.name = "slavio_timer", .qdev.name = "slavio_timer",
.qdev.size = sizeof(SLAVIO_TIMERState), .qdev.size = sizeof(SLAVIO_TIMERState),
.qdev.props = (Property[]) { .qdev.props = (Property[]) {
{ {
.name = "num_slaves", .name = "num_cpus",
.info = &qdev_prop_uint32, .info = &qdev_prop_uint32,
.offset = offsetof(SLAVIO_TIMERState, num_slaves), .offset = offsetof(SLAVIO_TIMERState, num_cpus),
},
{
.name = "slave_index",
.info = &qdev_prop_uint32,
.offset = offsetof(SLAVIO_TIMERState, slave_index),
},
{
.name = "master",
.info = &qdev_prop_ptr,
.offset = offsetof(SLAVIO_TIMERState, master),
}, },
{/* end of property list */} {/* end of property list */}
} }