mirror of https://github.com/xemu-project/xemu.git
target/arm: Wrap TCG-only code in debug_helper.c
The next few patches will move helpers under CONFIG_TCG. We'd prefer to keep the debug helpers and debug registers close together, so rearrange the file a bit to be able to wrap the helpers with a TCG ifdef. Signed-off-by: Fabiano Rosas <farosas@suse.de> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
parent
fa05d1abb9
commit
2059ec754f
|
@ -12,8 +12,9 @@
|
||||||
#include "cpregs.h"
|
#include "cpregs.h"
|
||||||
#include "exec/exec-all.h"
|
#include "exec/exec-all.h"
|
||||||
#include "exec/helper-proto.h"
|
#include "exec/helper-proto.h"
|
||||||
|
#include "sysemu/tcg.h"
|
||||||
|
|
||||||
|
#ifdef CONFIG_TCG
|
||||||
/* Return the Exception Level targeted by debug exceptions. */
|
/* Return the Exception Level targeted by debug exceptions. */
|
||||||
static int arm_debug_target_el(CPUARMState *env)
|
static int arm_debug_target_el(CPUARMState *env)
|
||||||
{
|
{
|
||||||
|
@ -536,6 +537,243 @@ void HELPER(exception_swstep)(CPUARMState *env, uint32_t syndrome)
|
||||||
raise_exception_debug(env, EXCP_UDEF, syndrome);
|
raise_exception_debug(env, EXCP_UDEF, syndrome);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void hw_watchpoint_update(ARMCPU *cpu, int n)
|
||||||
|
{
|
||||||
|
CPUARMState *env = &cpu->env;
|
||||||
|
vaddr len = 0;
|
||||||
|
vaddr wvr = env->cp15.dbgwvr[n];
|
||||||
|
uint64_t wcr = env->cp15.dbgwcr[n];
|
||||||
|
int mask;
|
||||||
|
int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
|
||||||
|
|
||||||
|
if (env->cpu_watchpoint[n]) {
|
||||||
|
cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
|
||||||
|
env->cpu_watchpoint[n] = NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!FIELD_EX64(wcr, DBGWCR, E)) {
|
||||||
|
/* E bit clear : watchpoint disabled */
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
switch (FIELD_EX64(wcr, DBGWCR, LSC)) {
|
||||||
|
case 0:
|
||||||
|
/* LSC 00 is reserved and must behave as if the wp is disabled */
|
||||||
|
return;
|
||||||
|
case 1:
|
||||||
|
flags |= BP_MEM_READ;
|
||||||
|
break;
|
||||||
|
case 2:
|
||||||
|
flags |= BP_MEM_WRITE;
|
||||||
|
break;
|
||||||
|
case 3:
|
||||||
|
flags |= BP_MEM_ACCESS;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Attempts to use both MASK and BAS fields simultaneously are
|
||||||
|
* CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
|
||||||
|
* thus generating a watchpoint for every byte in the masked region.
|
||||||
|
*/
|
||||||
|
mask = FIELD_EX64(wcr, DBGWCR, MASK);
|
||||||
|
if (mask == 1 || mask == 2) {
|
||||||
|
/*
|
||||||
|
* Reserved values of MASK; we must act as if the mask value was
|
||||||
|
* some non-reserved value, or as if the watchpoint were disabled.
|
||||||
|
* We choose the latter.
|
||||||
|
*/
|
||||||
|
return;
|
||||||
|
} else if (mask) {
|
||||||
|
/* Watchpoint covers an aligned area up to 2GB in size */
|
||||||
|
len = 1ULL << mask;
|
||||||
|
/*
|
||||||
|
* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
|
||||||
|
* whether the watchpoint fires when the unmasked bits match; we opt
|
||||||
|
* to generate the exceptions.
|
||||||
|
*/
|
||||||
|
wvr &= ~(len - 1);
|
||||||
|
} else {
|
||||||
|
/* Watchpoint covers bytes defined by the byte address select bits */
|
||||||
|
int bas = FIELD_EX64(wcr, DBGWCR, BAS);
|
||||||
|
int basstart;
|
||||||
|
|
||||||
|
if (extract64(wvr, 2, 1)) {
|
||||||
|
/*
|
||||||
|
* Deprecated case of an only 4-aligned address. BAS[7:4] are
|
||||||
|
* ignored, and BAS[3:0] define which bytes to watch.
|
||||||
|
*/
|
||||||
|
bas &= 0xf;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (bas == 0) {
|
||||||
|
/* This must act as if the watchpoint is disabled */
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* The BAS bits are supposed to be programmed to indicate a contiguous
|
||||||
|
* range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
|
||||||
|
* we fire for each byte in the word/doubleword addressed by the WVR.
|
||||||
|
* We choose to ignore any non-zero bits after the first range of 1s.
|
||||||
|
*/
|
||||||
|
basstart = ctz32(bas);
|
||||||
|
len = cto32(bas >> basstart);
|
||||||
|
wvr += basstart;
|
||||||
|
}
|
||||||
|
|
||||||
|
cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
|
||||||
|
&env->cpu_watchpoint[n]);
|
||||||
|
}
|
||||||
|
|
||||||
|
void hw_watchpoint_update_all(ARMCPU *cpu)
|
||||||
|
{
|
||||||
|
int i;
|
||||||
|
CPUARMState *env = &cpu->env;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Completely clear out existing QEMU watchpoints and our array, to
|
||||||
|
* avoid possible stale entries following migration load.
|
||||||
|
*/
|
||||||
|
cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
|
||||||
|
memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
|
||||||
|
|
||||||
|
for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
|
||||||
|
hw_watchpoint_update(cpu, i);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void hw_breakpoint_update(ARMCPU *cpu, int n)
|
||||||
|
{
|
||||||
|
CPUARMState *env = &cpu->env;
|
||||||
|
uint64_t bvr = env->cp15.dbgbvr[n];
|
||||||
|
uint64_t bcr = env->cp15.dbgbcr[n];
|
||||||
|
vaddr addr;
|
||||||
|
int bt;
|
||||||
|
int flags = BP_CPU;
|
||||||
|
|
||||||
|
if (env->cpu_breakpoint[n]) {
|
||||||
|
cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
|
||||||
|
env->cpu_breakpoint[n] = NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!extract64(bcr, 0, 1)) {
|
||||||
|
/* E bit clear : watchpoint disabled */
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
bt = extract64(bcr, 20, 4);
|
||||||
|
|
||||||
|
switch (bt) {
|
||||||
|
case 4: /* unlinked address mismatch (reserved if AArch64) */
|
||||||
|
case 5: /* linked address mismatch (reserved if AArch64) */
|
||||||
|
qemu_log_mask(LOG_UNIMP,
|
||||||
|
"arm: address mismatch breakpoint types not implemented\n");
|
||||||
|
return;
|
||||||
|
case 0: /* unlinked address match */
|
||||||
|
case 1: /* linked address match */
|
||||||
|
{
|
||||||
|
/*
|
||||||
|
* Bits [1:0] are RES0.
|
||||||
|
*
|
||||||
|
* It is IMPLEMENTATION DEFINED whether bits [63:49]
|
||||||
|
* ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit
|
||||||
|
* of the VA field ([48] or [52] for FEAT_LVA), or whether the
|
||||||
|
* value is read as written. It is CONSTRAINED UNPREDICTABLE
|
||||||
|
* whether the RESS bits are ignored when comparing an address.
|
||||||
|
* Therefore we are allowed to compare the entire register, which
|
||||||
|
* lets us avoid considering whether FEAT_LVA is actually enabled.
|
||||||
|
*
|
||||||
|
* The BAS field is used to allow setting breakpoints on 16-bit
|
||||||
|
* wide instructions; it is CONSTRAINED UNPREDICTABLE whether
|
||||||
|
* a bp will fire if the addresses covered by the bp and the addresses
|
||||||
|
* covered by the insn overlap but the insn doesn't start at the
|
||||||
|
* start of the bp address range. We choose to require the insn and
|
||||||
|
* the bp to have the same address. The constraints on writing to
|
||||||
|
* BAS enforced in dbgbcr_write mean we have only four cases:
|
||||||
|
* 0b0000 => no breakpoint
|
||||||
|
* 0b0011 => breakpoint on addr
|
||||||
|
* 0b1100 => breakpoint on addr + 2
|
||||||
|
* 0b1111 => breakpoint on addr
|
||||||
|
* See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
|
||||||
|
*/
|
||||||
|
int bas = extract64(bcr, 5, 4);
|
||||||
|
addr = bvr & ~3ULL;
|
||||||
|
if (bas == 0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
if (bas == 0xc) {
|
||||||
|
addr += 2;
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
case 2: /* unlinked context ID match */
|
||||||
|
case 8: /* unlinked VMID match (reserved if no EL2) */
|
||||||
|
case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
|
||||||
|
qemu_log_mask(LOG_UNIMP,
|
||||||
|
"arm: unlinked context breakpoint types not implemented\n");
|
||||||
|
return;
|
||||||
|
case 9: /* linked VMID match (reserved if no EL2) */
|
||||||
|
case 11: /* linked context ID and VMID match (reserved if no EL2) */
|
||||||
|
case 3: /* linked context ID match */
|
||||||
|
default:
|
||||||
|
/*
|
||||||
|
* We must generate no events for Linked context matches (unless
|
||||||
|
* they are linked to by some other bp/wp, which is handled in
|
||||||
|
* updates for the linking bp/wp). We choose to also generate no events
|
||||||
|
* for reserved values.
|
||||||
|
*/
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
|
||||||
|
}
|
||||||
|
|
||||||
|
void hw_breakpoint_update_all(ARMCPU *cpu)
|
||||||
|
{
|
||||||
|
int i;
|
||||||
|
CPUARMState *env = &cpu->env;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Completely clear out existing QEMU breakpoints and our array, to
|
||||||
|
* avoid possible stale entries following migration load.
|
||||||
|
*/
|
||||||
|
cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
|
||||||
|
memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
|
||||||
|
|
||||||
|
for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
|
||||||
|
hw_breakpoint_update(cpu, i);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#if !defined(CONFIG_USER_ONLY)
|
||||||
|
|
||||||
|
vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len)
|
||||||
|
{
|
||||||
|
ARMCPU *cpu = ARM_CPU(cs);
|
||||||
|
CPUARMState *env = &cpu->env;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* In BE32 system mode, target memory is stored byteswapped (on a
|
||||||
|
* little-endian host system), and by the time we reach here (via an
|
||||||
|
* opcode helper) the addresses of subword accesses have been adjusted
|
||||||
|
* to account for that, which means that watchpoints will not match.
|
||||||
|
* Undo the adjustment here.
|
||||||
|
*/
|
||||||
|
if (arm_sctlr_b(env)) {
|
||||||
|
if (len == 1) {
|
||||||
|
addr ^= 3;
|
||||||
|
} else if (len == 2) {
|
||||||
|
addr ^= 2;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return addr;
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /* !CONFIG_USER_ONLY */
|
||||||
|
#endif /* CONFIG_TCG */
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Check for traps to "powerdown debug" registers, which are controlled
|
* Check for traps to "powerdown debug" registers, which are controlled
|
||||||
* by MDCR.TDOSA
|
* by MDCR.TDOSA
|
||||||
|
@ -813,112 +1051,6 @@ static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
|
||||||
.access = PL0_R, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
|
.access = PL0_R, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
|
||||||
};
|
};
|
||||||
|
|
||||||
void hw_watchpoint_update(ARMCPU *cpu, int n)
|
|
||||||
{
|
|
||||||
CPUARMState *env = &cpu->env;
|
|
||||||
vaddr len = 0;
|
|
||||||
vaddr wvr = env->cp15.dbgwvr[n];
|
|
||||||
uint64_t wcr = env->cp15.dbgwcr[n];
|
|
||||||
int mask;
|
|
||||||
int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
|
|
||||||
|
|
||||||
if (env->cpu_watchpoint[n]) {
|
|
||||||
cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
|
|
||||||
env->cpu_watchpoint[n] = NULL;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (!FIELD_EX64(wcr, DBGWCR, E)) {
|
|
||||||
/* E bit clear : watchpoint disabled */
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
switch (FIELD_EX64(wcr, DBGWCR, LSC)) {
|
|
||||||
case 0:
|
|
||||||
/* LSC 00 is reserved and must behave as if the wp is disabled */
|
|
||||||
return;
|
|
||||||
case 1:
|
|
||||||
flags |= BP_MEM_READ;
|
|
||||||
break;
|
|
||||||
case 2:
|
|
||||||
flags |= BP_MEM_WRITE;
|
|
||||||
break;
|
|
||||||
case 3:
|
|
||||||
flags |= BP_MEM_ACCESS;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Attempts to use both MASK and BAS fields simultaneously are
|
|
||||||
* CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
|
|
||||||
* thus generating a watchpoint for every byte in the masked region.
|
|
||||||
*/
|
|
||||||
mask = FIELD_EX64(wcr, DBGWCR, MASK);
|
|
||||||
if (mask == 1 || mask == 2) {
|
|
||||||
/*
|
|
||||||
* Reserved values of MASK; we must act as if the mask value was
|
|
||||||
* some non-reserved value, or as if the watchpoint were disabled.
|
|
||||||
* We choose the latter.
|
|
||||||
*/
|
|
||||||
return;
|
|
||||||
} else if (mask) {
|
|
||||||
/* Watchpoint covers an aligned area up to 2GB in size */
|
|
||||||
len = 1ULL << mask;
|
|
||||||
/*
|
|
||||||
* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
|
|
||||||
* whether the watchpoint fires when the unmasked bits match; we opt
|
|
||||||
* to generate the exceptions.
|
|
||||||
*/
|
|
||||||
wvr &= ~(len - 1);
|
|
||||||
} else {
|
|
||||||
/* Watchpoint covers bytes defined by the byte address select bits */
|
|
||||||
int bas = FIELD_EX64(wcr, DBGWCR, BAS);
|
|
||||||
int basstart;
|
|
||||||
|
|
||||||
if (extract64(wvr, 2, 1)) {
|
|
||||||
/*
|
|
||||||
* Deprecated case of an only 4-aligned address. BAS[7:4] are
|
|
||||||
* ignored, and BAS[3:0] define which bytes to watch.
|
|
||||||
*/
|
|
||||||
bas &= 0xf;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (bas == 0) {
|
|
||||||
/* This must act as if the watchpoint is disabled */
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
* The BAS bits are supposed to be programmed to indicate a contiguous
|
|
||||||
* range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
|
|
||||||
* we fire for each byte in the word/doubleword addressed by the WVR.
|
|
||||||
* We choose to ignore any non-zero bits after the first range of 1s.
|
|
||||||
*/
|
|
||||||
basstart = ctz32(bas);
|
|
||||||
len = cto32(bas >> basstart);
|
|
||||||
wvr += basstart;
|
|
||||||
}
|
|
||||||
|
|
||||||
cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
|
|
||||||
&env->cpu_watchpoint[n]);
|
|
||||||
}
|
|
||||||
|
|
||||||
void hw_watchpoint_update_all(ARMCPU *cpu)
|
|
||||||
{
|
|
||||||
int i;
|
|
||||||
CPUARMState *env = &cpu->env;
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Completely clear out existing QEMU watchpoints and our array, to
|
|
||||||
* avoid possible stale entries following migration load.
|
|
||||||
*/
|
|
||||||
cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
|
|
||||||
memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
|
|
||||||
|
|
||||||
for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
|
|
||||||
hw_watchpoint_update(cpu, i);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
||||||
uint64_t value)
|
uint64_t value)
|
||||||
{
|
{
|
||||||
|
@ -956,109 +1088,6 @@ static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void hw_breakpoint_update(ARMCPU *cpu, int n)
|
|
||||||
{
|
|
||||||
CPUARMState *env = &cpu->env;
|
|
||||||
uint64_t bvr = env->cp15.dbgbvr[n];
|
|
||||||
uint64_t bcr = env->cp15.dbgbcr[n];
|
|
||||||
vaddr addr;
|
|
||||||
int bt;
|
|
||||||
int flags = BP_CPU;
|
|
||||||
|
|
||||||
if (env->cpu_breakpoint[n]) {
|
|
||||||
cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
|
|
||||||
env->cpu_breakpoint[n] = NULL;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (!extract64(bcr, 0, 1)) {
|
|
||||||
/* E bit clear : watchpoint disabled */
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
bt = extract64(bcr, 20, 4);
|
|
||||||
|
|
||||||
switch (bt) {
|
|
||||||
case 4: /* unlinked address mismatch (reserved if AArch64) */
|
|
||||||
case 5: /* linked address mismatch (reserved if AArch64) */
|
|
||||||
qemu_log_mask(LOG_UNIMP,
|
|
||||||
"arm: address mismatch breakpoint types not implemented\n");
|
|
||||||
return;
|
|
||||||
case 0: /* unlinked address match */
|
|
||||||
case 1: /* linked address match */
|
|
||||||
{
|
|
||||||
/*
|
|
||||||
* Bits [1:0] are RES0.
|
|
||||||
*
|
|
||||||
* It is IMPLEMENTATION DEFINED whether bits [63:49]
|
|
||||||
* ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit
|
|
||||||
* of the VA field ([48] or [52] for FEAT_LVA), or whether the
|
|
||||||
* value is read as written. It is CONSTRAINED UNPREDICTABLE
|
|
||||||
* whether the RESS bits are ignored when comparing an address.
|
|
||||||
* Therefore we are allowed to compare the entire register, which
|
|
||||||
* lets us avoid considering whether FEAT_LVA is actually enabled.
|
|
||||||
*
|
|
||||||
* The BAS field is used to allow setting breakpoints on 16-bit
|
|
||||||
* wide instructions; it is CONSTRAINED UNPREDICTABLE whether
|
|
||||||
* a bp will fire if the addresses covered by the bp and the addresses
|
|
||||||
* covered by the insn overlap but the insn doesn't start at the
|
|
||||||
* start of the bp address range. We choose to require the insn and
|
|
||||||
* the bp to have the same address. The constraints on writing to
|
|
||||||
* BAS enforced in dbgbcr_write mean we have only four cases:
|
|
||||||
* 0b0000 => no breakpoint
|
|
||||||
* 0b0011 => breakpoint on addr
|
|
||||||
* 0b1100 => breakpoint on addr + 2
|
|
||||||
* 0b1111 => breakpoint on addr
|
|
||||||
* See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
|
|
||||||
*/
|
|
||||||
int bas = extract64(bcr, 5, 4);
|
|
||||||
addr = bvr & ~3ULL;
|
|
||||||
if (bas == 0) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
if (bas == 0xc) {
|
|
||||||
addr += 2;
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
case 2: /* unlinked context ID match */
|
|
||||||
case 8: /* unlinked VMID match (reserved if no EL2) */
|
|
||||||
case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
|
|
||||||
qemu_log_mask(LOG_UNIMP,
|
|
||||||
"arm: unlinked context breakpoint types not implemented\n");
|
|
||||||
return;
|
|
||||||
case 9: /* linked VMID match (reserved if no EL2) */
|
|
||||||
case 11: /* linked context ID and VMID match (reserved if no EL2) */
|
|
||||||
case 3: /* linked context ID match */
|
|
||||||
default:
|
|
||||||
/*
|
|
||||||
* We must generate no events for Linked context matches (unless
|
|
||||||
* they are linked to by some other bp/wp, which is handled in
|
|
||||||
* updates for the linking bp/wp). We choose to also generate no events
|
|
||||||
* for reserved values.
|
|
||||||
*/
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
|
|
||||||
}
|
|
||||||
|
|
||||||
void hw_breakpoint_update_all(ARMCPU *cpu)
|
|
||||||
{
|
|
||||||
int i;
|
|
||||||
CPUARMState *env = &cpu->env;
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Completely clear out existing QEMU breakpoints and our array, to
|
|
||||||
* avoid possible stale entries following migration load.
|
|
||||||
*/
|
|
||||||
cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
|
|
||||||
memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
|
|
||||||
|
|
||||||
for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
|
|
||||||
hw_breakpoint_update(cpu, i);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
||||||
uint64_t value)
|
uint64_t value)
|
||||||
{
|
{
|
||||||
|
@ -1210,30 +1239,3 @@ void define_debug_regs(ARMCPU *cpu)
|
||||||
g_free(dbgwcr_el1_name);
|
g_free(dbgwcr_el1_name);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#if !defined(CONFIG_USER_ONLY)
|
|
||||||
|
|
||||||
vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len)
|
|
||||||
{
|
|
||||||
ARMCPU *cpu = ARM_CPU(cs);
|
|
||||||
CPUARMState *env = &cpu->env;
|
|
||||||
|
|
||||||
/*
|
|
||||||
* In BE32 system mode, target memory is stored byteswapped (on a
|
|
||||||
* little-endian host system), and by the time we reach here (via an
|
|
||||||
* opcode helper) the addresses of subword accesses have been adjusted
|
|
||||||
* to account for that, which means that watchpoints will not match.
|
|
||||||
* Undo the adjustment here.
|
|
||||||
*/
|
|
||||||
if (arm_sctlr_b(env)) {
|
|
||||||
if (len == 1) {
|
|
||||||
addr ^= 3;
|
|
||||||
} else if (len == 2) {
|
|
||||||
addr ^= 2;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return addr;
|
|
||||||
}
|
|
||||||
|
|
||||||
#endif
|
|
||||||
|
|
Loading…
Reference in New Issue