More user timer fixes (Robert Reif)

git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@3339 c046a42c-6fe2-441c-8c8c-71466251a162
This commit is contained in:
blueswir1 2007-10-07 10:00:55 +00:00
parent f930d07eda
commit 115646b648
2 changed files with 88 additions and 70 deletions

View File

@ -3,7 +3,7 @@
- Monitor multiplexing to several I/O channels (Jason Wessel) - Monitor multiplexing to several I/O channels (Jason Wessel)
- ds1225y nvram support (Herve Poussineau) - ds1225y nvram support (Herve Poussineau)
- CPU model selection support (J. Mayer, Paul Brook, Herve Poussineau) - CPU model selection support (J. Mayer, Paul Brook, Herve Poussineau)
- Several Sparc fixes (Aurelien Jarno, Blue Swirl) - Several Sparc fixes (Aurelien Jarno, Blue Swirl, Robert Reif)
- MIPS 64-bit FPU support (Thiemo Seufer) - MIPS 64-bit FPU support (Thiemo Seufer)
- Xscale PDA emulation (Andrzei Zaborowski) - Xscale PDA emulation (Andrzei Zaborowski)
- ColdFire system emulation (Paul Brook) - ColdFire system emulation (Paul Brook)

View File

@ -54,16 +54,24 @@ typedef struct SLAVIO_TIMERState {
ptimer_state *timer; ptimer_state *timer;
uint32_t count, counthigh, reached; uint32_t count, counthigh, reached;
uint64_t limit; uint64_t limit;
int stopped; // processor only
int mode; // 0 = processor, 1 = user, 2 = system int running;
struct SLAVIO_TIMERState *master;
int slave_index;
// system only
struct SLAVIO_TIMERState *slave[MAX_CPUS]; struct SLAVIO_TIMERState *slave[MAX_CPUS];
uint32_t slave_mode; uint32_t slave_mode;
} SLAVIO_TIMERState; } SLAVIO_TIMERState;
#define TIMER_MAXADDR 0x1f #define TIMER_MAXADDR 0x1f
#define TIMER_SIZE (TIMER_MAXADDR + 1) #define SYS_TIMER_SIZE 0x14
#define CPU_TIMER_SIZE 0x10 #define CPU_TIMER_SIZE 0x10
static int slavio_timer_is_user(SLAVIO_TIMERState *s)
{
return s->master && (s->master->slave_mode & (1 << s->slave_index));
}
// Update count, set irq, update expire_time // Update count, set irq, update expire_time
// Convert from ptimer countdown units // Convert from ptimer countdown units
static void slavio_timer_get_out(SLAVIO_TIMERState *s) static void slavio_timer_get_out(SLAVIO_TIMERState *s)
@ -84,9 +92,10 @@ static void slavio_timer_irq(void *opaque)
slavio_timer_get_out(s); slavio_timer_get_out(s);
DPRINTF("callback: count %x%08x\n", s->counthigh, s->count); DPRINTF("callback: count %x%08x\n", s->counthigh, s->count);
s->reached = 0x80000000; if (!slavio_timer_is_user(s)) {
if (s->mode != 1) s->reached = 0x80000000;
qemu_irq_raise(s->irq); qemu_irq_raise(s->irq);
}
} }
static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr) static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
@ -99,35 +108,39 @@ static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
case 0: case 0:
// read limit (system counter mode) or read most signifying // read limit (system counter mode) or read most signifying
// part of counter (user mode) // part of counter (user mode)
if (s->mode != 1) { if (slavio_timer_is_user(s)) {
// read user timer MSW
slavio_timer_get_out(s);
ret = s->counthigh;
} else {
// read limit
// clear irq // clear irq
qemu_irq_lower(s->irq); qemu_irq_lower(s->irq);
s->reached = 0; s->reached = 0;
ret = s->limit & 0x7fffffff; ret = s->limit & 0x7fffffff;
} }
else {
slavio_timer_get_out(s);
ret = s->counthigh & 0x7fffffff;
}
break; break;
case 1: case 1:
// read counter and reached bit (system mode) or read lsbits // read counter and reached bit (system mode) or read lsbits
// of counter (user mode) // of counter (user mode)
slavio_timer_get_out(s); slavio_timer_get_out(s);
if (s->mode != 1) if (slavio_timer_is_user(s)) // read user timer LSW
ret = (s->count & 0x7fffffff) | s->reached; ret = s->count & 0xffffffe00;
else else // read limit
ret = s->count; ret = (s->count & 0x7ffffe00) | s->reached;
break; break;
case 3: case 3:
// only available in processor counter/timer
// read start/stop status // read start/stop status
ret = s->stopped; ret = s->running;
break; break;
case 4: case 4:
// only available in system counter
// read user/system mode // read user/system mode
ret = s->slave_mode; ret = s->slave_mode;
break; break;
default: default:
DPRINTF("invalid read address " TARGET_FMT_plx "\n", addr);
ret = 0; ret = 0;
break; break;
} }
@ -146,20 +159,31 @@ static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint3
saddr = (addr & TIMER_MAXADDR) >> 2; saddr = (addr & TIMER_MAXADDR) >> 2;
switch (saddr) { switch (saddr) {
case 0: case 0:
if (s->mode == 1) { if (slavio_timer_is_user(s)) {
// set user counter limit MSW, reset counter // set user counter MSW, reset counter
qemu_irq_lower(s->irq); qemu_irq_lower(s->irq);
s->limit &= 0xfffffe00ULL; s->limit = 0x7ffffffffffffe00ULL;
s->limit |= (uint64_t)val << 32; DPRINTF("processor %d user timer reset\n", s->slave_index);
if (!s->limit) ptimer_set_limit(s->timer, s->limit >> 9, 1);
s->limit = 0x7ffffffffffffe00ULL; } else {
// set limit, reset counter
qemu_irq_lower(s->irq);
s->limit = val & 0x7ffffe00ULL;
if (!s->limit)
s->limit = 0x7ffffe00ULL;
ptimer_set_limit(s->timer, s->limit >> 9, 1); ptimer_set_limit(s->timer, s->limit >> 9, 1);
break;
} }
// set limit, reset counter break;
reload = 1; case 1:
qemu_irq_lower(s->irq); if (slavio_timer_is_user(s)) {
// fall through // set user counter LSW, reset counter
qemu_irq_lower(s->irq);
s->limit = 0x7ffffffffffffe00ULL;
DPRINTF("processor %d user timer reset\n", s->slave_index);
ptimer_set_limit(s->timer, s->limit >> 9, 1);
} else
DPRINTF("not user timer\n");
break;
case 2: case 2:
// set limit without resetting counter // set limit without resetting counter
s->limit = val & 0x7ffffe00ULL; s->limit = val & 0x7ffffe00ULL;
@ -167,52 +191,42 @@ static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint3
s->limit = 0x7ffffe00ULL; s->limit = 0x7ffffe00ULL;
ptimer_set_limit(s->timer, s->limit >> 9, reload); ptimer_set_limit(s->timer, s->limit >> 9, reload);
break; break;
case 1:
// set user counter limit LSW, reset counter
if (s->mode == 1) {
qemu_irq_lower(s->irq);
s->limit &= 0x7fffffff00000000ULL;
s->limit |= val & 0xfffffe00ULL;
if (!s->limit)
s->limit = 0x7ffffffffffffe00ULL;
ptimer_set_limit(s->timer, s->limit >> 9, 1);
}
break;
case 3: case 3:
// start/stop user counter if (slavio_timer_is_user(s)) {
if (s->mode == 1) { // start/stop user counter
if (val & 1) { if ((val & 1) && !s->running) {
ptimer_stop(s->timer); DPRINTF("processor %d user timer started\n", s->slave_index);
s->stopped = 1;
}
else {
ptimer_run(s->timer, 0); ptimer_run(s->timer, 0);
s->stopped = 0; s->running = 1;
} else if (!(val & 1) && s->running) {
DPRINTF("processor %d user timer stopped\n", s->slave_index);
ptimer_stop(s->timer);
s->running = 0;
} }
} }
break; break;
case 4: case 4:
// bit 0: user (1) or system (0) counter mode if (s->master == NULL) {
{
unsigned int i; unsigned int i;
for (i = 0; i < MAX_CPUS; i++) { for (i = 0; i < MAX_CPUS; i++) {
if (val & (1 << i)) { if (val & (1 << i)) {
qemu_irq_lower(s->slave[i]->irq); qemu_irq_lower(s->slave[i]->irq);
s->slave[i]->limit = -1ULL; s->slave[i]->limit = -1ULL;
s->slave[i]->mode = 1;
} else {
s->slave[i]->mode = 0;
} }
ptimer_stop(s->slave[i]->timer); if ((val & (1 << i)) != (s->slave_mode & (1 << i))) {
ptimer_set_limit(s->slave[i]->timer, s->slave[i]->limit >> 9, ptimer_stop(s->slave[i]->timer);
1); ptimer_set_limit(s->slave[i]->timer, s->slave[i]->limit >> 9, 1);
ptimer_run(s->slave[i]->timer, 0); DPRINTF("processor %d timer changed\n", s->slave[i]->slave_index);
ptimer_run(s->slave[i]->timer, 0);
}
} }
s->slave_mode = val & ((1 << MAX_CPUS) - 1); s->slave_mode = val & ((1 << MAX_CPUS) - 1);
} } else
DPRINTF("not system timer\n");
break; break;
default: default:
DPRINTF("invalid write address " TARGET_FMT_plx "\n", addr);
break; break;
} }
} }
@ -238,8 +252,8 @@ static void slavio_timer_save(QEMUFile *f, void *opaque)
qemu_put_be32s(f, &s->counthigh); qemu_put_be32s(f, &s->counthigh);
qemu_put_be32(f, 0); // Was irq qemu_put_be32(f, 0); // Was irq
qemu_put_be32s(f, &s->reached); qemu_put_be32s(f, &s->reached);
qemu_put_be32s(f, &s->stopped); qemu_put_be32s(f, &s->running);
qemu_put_be32s(f, &s->mode); qemu_put_be32s(f, 0); // Was mode
qemu_put_ptimer(f, s->timer); qemu_put_ptimer(f, s->timer);
} }
@ -256,8 +270,8 @@ static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
qemu_get_be32s(f, &s->counthigh); qemu_get_be32s(f, &s->counthigh);
qemu_get_be32s(f, &tmp); // Was irq qemu_get_be32s(f, &tmp); // Was irq
qemu_get_be32s(f, &s->reached); qemu_get_be32s(f, &s->reached);
qemu_get_be32s(f, &s->stopped); qemu_get_be32s(f, &s->running);
qemu_get_be32s(f, &s->mode); qemu_get_be32s(f, &tmp); // Was mode
qemu_get_ptimer(f, s->timer); qemu_get_ptimer(f, s->timer);
return 0; return 0;
@ -267,18 +281,22 @@ static void slavio_timer_reset(void *opaque)
{ {
SLAVIO_TIMERState *s = opaque; SLAVIO_TIMERState *s = opaque;
s->limit = 0x7ffffe00ULL; if (slavio_timer_is_user(s))
s->limit = 0x7ffffffffffffe00ULL;
else
s->limit = 0x7ffffe00ULL;
s->count = 0; s->count = 0;
s->reached = 0; s->reached = 0;
s->mode &= 2;
ptimer_set_limit(s->timer, s->limit >> 9, 1); ptimer_set_limit(s->timer, s->limit >> 9, 1);
ptimer_run(s->timer, 0); ptimer_run(s->timer, 0);
s->stopped = 1; s->running = 1;
qemu_irq_lower(s->irq); qemu_irq_lower(s->irq);
} }
static SLAVIO_TIMERState *slavio_timer_init(target_phys_addr_t addr, static SLAVIO_TIMERState *slavio_timer_init(target_phys_addr_t addr,
qemu_irq irq, int mode) qemu_irq irq,
SLAVIO_TIMERState *master,
int slave_index)
{ {
int slavio_timer_io_memory; int slavio_timer_io_memory;
SLAVIO_TIMERState *s; SLAVIO_TIMERState *s;
@ -288,18 +306,18 @@ static SLAVIO_TIMERState *slavio_timer_init(target_phys_addr_t addr,
if (!s) if (!s)
return s; return s;
s->irq = irq; s->irq = irq;
s->mode = mode; s->master = master;
s->slave_index = slave_index;
bh = qemu_bh_new(slavio_timer_irq, s); bh = qemu_bh_new(slavio_timer_irq, s);
s->timer = ptimer_init(bh); s->timer = ptimer_init(bh);
ptimer_set_period(s->timer, 500ULL); ptimer_set_period(s->timer, 500ULL);
slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read, slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
slavio_timer_mem_write, s); slavio_timer_mem_write, s);
if (mode < 2) if (master)
cpu_register_physical_memory(addr, CPU_TIMER_SIZE, slavio_timer_io_memory); cpu_register_physical_memory(addr, CPU_TIMER_SIZE, slavio_timer_io_memory);
else else
cpu_register_physical_memory(addr, TIMER_SIZE, cpu_register_physical_memory(addr, SYS_TIMER_SIZE, slavio_timer_io_memory);
slavio_timer_io_memory);
register_savevm("slavio_timer", addr, 2, slavio_timer_save, slavio_timer_load, s); register_savevm("slavio_timer", addr, 2, slavio_timer_save, slavio_timer_load, s);
qemu_register_reset(slavio_timer_reset, s); qemu_register_reset(slavio_timer_reset, s);
slavio_timer_reset(s); slavio_timer_reset(s);
@ -313,11 +331,11 @@ void slavio_timer_init_all(target_phys_addr_t base, qemu_irq master_irq,
SLAVIO_TIMERState *master; SLAVIO_TIMERState *master;
unsigned int i; unsigned int i;
master = slavio_timer_init(base + 0x10000ULL, master_irq, 2); master = slavio_timer_init(base + 0x10000ULL, master_irq, NULL, 0);
for (i = 0; i < MAX_CPUS; i++) { for (i = 0; i < MAX_CPUS; i++) {
master->slave[i] = slavio_timer_init(base + (target_phys_addr_t) master->slave[i] = slavio_timer_init(base + (target_phys_addr_t)
(i * TARGET_PAGE_SIZE), (i * TARGET_PAGE_SIZE),
cpu_irqs[i], 0); cpu_irqs[i], master, i);
} }
} }