linux-user/mips: fix abort on integer overflow

linux-user/sh4: Fix crashes on signal delivery
 linux-user/loongarch: Enable LSX/LASX in HWCAP
 linux-user: Fixes for zero_bss
 linux-user: Propagate failure in mmap_reserve_or_unmap back to target_munmap
 linux-user: Detect and report host crashes
 linux-user: Remap guest SIGABRT
 -----BEGIN PGP SIGNATURE-----
 
 iQFRBAABCgA7FiEEekgeeIaLTbaoWgXAZN846K9+IV8FAmUwapYdHHJpY2hhcmQu
 aGVuZGVyc29uQGxpbmFyby5vcmcACgkQZN846K9+IV92UAf/RSsFWwCBAqt1WKIK
 7/7F8AF7WW1Hhjy3bHLjNnzgsDeWYfdIVxMGfF9IYKrYMeEqFeBeQ+vcOe9LTAvW
 fEZkA//V+LosiYCwtVGBXyCbeXYxoONMp/taRv6lVHoqVU7aSlbXsYqwePcUtPWq
 r/V+Ru5vssqMueBdE9+E53JPewGPVw8xQE+xGgd1TZIeHWgegZHBzKWVap/3noey
 dKjTig3yxXXg1gQJLCRw+a6bl8oCl4vEluGsLzh5P8aV1imjvFPXkR2w1vQOC3ws
 8DmyMcPEcsY4D2WLeTAGMheURLRzs5141nT0fQCOB4yzO/I8zYFIG12xCxgWoQkg
 kW9XZw==
 =5oFh
 -----END PGP SIGNATURE-----

Merge tag 'pull-lu-20231018' of https://gitlab.com/rth7680/qemu into staging

linux-user/mips: fix abort on integer overflow
linux-user/sh4: Fix crashes on signal delivery
linux-user/loongarch: Enable LSX/LASX in HWCAP
linux-user: Fixes for zero_bss
linux-user: Propagate failure in mmap_reserve_or_unmap back to target_munmap
linux-user: Detect and report host crashes
linux-user: Remap guest SIGABRT

# -----BEGIN PGP SIGNATURE-----
#
# iQFRBAABCgA7FiEEekgeeIaLTbaoWgXAZN846K9+IV8FAmUwapYdHHJpY2hhcmQu
# aGVuZGVyc29uQGxpbmFyby5vcmcACgkQZN846K9+IV92UAf/RSsFWwCBAqt1WKIK
# 7/7F8AF7WW1Hhjy3bHLjNnzgsDeWYfdIVxMGfF9IYKrYMeEqFeBeQ+vcOe9LTAvW
# fEZkA//V+LosiYCwtVGBXyCbeXYxoONMp/taRv6lVHoqVU7aSlbXsYqwePcUtPWq
# r/V+Ru5vssqMueBdE9+E53JPewGPVw8xQE+xGgd1TZIeHWgegZHBzKWVap/3noey
# dKjTig3yxXXg1gQJLCRw+a6bl8oCl4vEluGsLzh5P8aV1imjvFPXkR2w1vQOC3ws
# 8DmyMcPEcsY4D2WLeTAGMheURLRzs5141nT0fQCOB4yzO/I8zYFIG12xCxgWoQkg
# kW9XZw==
# =5oFh
# -----END PGP SIGNATURE-----
# gpg: Signature made Wed 18 Oct 2023 16:30:30 PDT
# gpg:                using RSA key 7A481E78868B4DB6A85A05C064DF38E8AF7E215F
# gpg:                issuer "richard.henderson@linaro.org"
# gpg: Good signature from "Richard Henderson <richard.henderson@linaro.org>" [full]
# Primary key fingerprint: 7A48 1E78 868B 4DB6 A85A  05C0 64DF 38E8 AF7E 215F

* tag 'pull-lu-20231018' of https://gitlab.com/rth7680/qemu:
  linux-user: Remap guest SIGABRT
  linux-user: Detect and report host SIGILL, SIGFPE, SIGTRAP
  linux-user: Split out host_sig{segv,bus}_handler
  linux-user: Simplify signal_init
  linux-user: Map unsupported signals to an out-of-bounds value
  linux-user: Only register handlers for core_dump_signal by default
  linux-user: Detect and report host crashes
  linux-user: Exit not abort in die_with_backtrace
  linux-user: Split out die_with_signal
  linux-user: Propagate failure in mmap_reserve_or_unmap back to target_munmap
  linux-user/elfload: Enable LSX/LASX in HWCAP for LoongArch
  linux-user/sh4: Fix crashes on signal delivery
  linux-user/mips: fix abort on integer overflow
  linux-user: Fixes for zero_bss

Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
This commit is contained in:
Stefan Hajnoczi 2023-10-19 10:20:57 -07:00
commit 0d239e513e
5 changed files with 379 additions and 183 deletions

View File

@ -1237,6 +1237,14 @@ static uint32_t get_elf_hwcap(void)
hwcaps |= HWCAP_LOONGARCH_LAM; hwcaps |= HWCAP_LOONGARCH_LAM;
} }
if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LSX)) {
hwcaps |= HWCAP_LOONGARCH_LSX;
}
if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LASX)) {
hwcaps |= HWCAP_LOONGARCH_LASX;
}
return hwcaps; return hwcaps;
} }
@ -2362,31 +2370,58 @@ static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
* Map and zero the bss. We need to explicitly zero any fractional pages * Map and zero the bss. We need to explicitly zero any fractional pages
* after the data section (i.e. bss). Return false on mapping failure. * after the data section (i.e. bss). Return false on mapping failure.
*/ */
static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss, int prot) static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss,
int prot, Error **errp)
{ {
abi_ulong align_bss; abi_ulong align_bss;
/* We only expect writable bss; the code segment shouldn't need this. */
if (!(prot & PROT_WRITE)) {
error_setg(errp, "PT_LOAD with non-writable bss");
return false;
}
align_bss = TARGET_PAGE_ALIGN(start_bss); align_bss = TARGET_PAGE_ALIGN(start_bss);
end_bss = TARGET_PAGE_ALIGN(end_bss); end_bss = TARGET_PAGE_ALIGN(end_bss);
if (start_bss < align_bss) { if (start_bss < align_bss) {
int flags = page_get_flags(start_bss); int flags = page_get_flags(start_bss);
if (!(flags & PAGE_VALID)) { if (!(flags & PAGE_BITS)) {
/* Map the start of the bss. */ /*
* The whole address space of the executable was reserved
* at the start, therefore all pages will be VALID.
* But assuming there are no PROT_NONE PT_LOAD segments,
* a PROT_NONE page means no data all bss, and we can
* simply extend the new anon mapping back to the start
* of the page of bss.
*/
align_bss -= TARGET_PAGE_SIZE; align_bss -= TARGET_PAGE_SIZE;
} else if (flags & PAGE_WRITE) {
/* The page is already mapped writable. */
memset(g2h_untagged(start_bss), 0, align_bss - start_bss);
} else { } else {
/* Read-only zeros? */ /*
g_assert_not_reached(); * The start of the bss shares a page with something.
* The only thing that we expect is the data section,
* which would already be marked writable.
* Overlapping the RX code segment seems malformed.
*/
if (!(flags & PAGE_WRITE)) {
error_setg(errp, "PT_LOAD with bss overlapping "
"non-writable page");
return false;
}
/* The page is already mapped and writable. */
memset(g2h_untagged(start_bss), 0, align_bss - start_bss);
} }
} }
return align_bss >= end_bss || if (align_bss < end_bss &&
target_mmap(align_bss, end_bss - align_bss, prot, target_mmap(align_bss, end_bss - align_bss, prot,
MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) != -1; MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == -1) {
error_setg_errno(errp, errno, "Error mapping bss");
return false;
}
return true;
} }
#if defined(TARGET_ARM) #if defined(TARGET_ARM)
@ -3410,8 +3445,8 @@ static void load_elf_image(const char *image_name, int image_fd,
/* If the load segment requests extra zeros (e.g. bss), map it. */ /* If the load segment requests extra zeros (e.g. bss), map it. */
if (vaddr_ef < vaddr_em && if (vaddr_ef < vaddr_em &&
!zero_bss(vaddr_ef, vaddr_em, elf_prot)) { !zero_bss(vaddr_ef, vaddr_em, elf_prot, &err)) {
goto exit_mmap; goto exit_errmsg;
} }
/* Find the full program boundaries. */ /* Find the full program boundaries. */

View File

@ -180,7 +180,9 @@ done_syscall:
} }
force_sig_fault(TARGET_SIGFPE, si_code, env->active_tc.PC); force_sig_fault(TARGET_SIGFPE, si_code, env->active_tc.PC);
break; break;
case EXCP_OVERFLOW:
force_sig_fault(TARGET_SIGFPE, TARGET_FPE_INTOVF, env->active_tc.PC);
break;
/* The code below was inspired by the MIPS Linux kernel trap /* The code below was inspired by the MIPS Linux kernel trap
* handling code in arch/mips/kernel/traps.c. * handling code in arch/mips/kernel/traps.c.
*/ */

View File

@ -778,7 +778,7 @@ fail:
return -1; return -1;
} }
static void mmap_reserve_or_unmap(abi_ulong start, abi_ulong len) static int mmap_reserve_or_unmap(abi_ulong start, abi_ulong len)
{ {
abi_ulong real_start; abi_ulong real_start;
abi_ulong real_last; abi_ulong real_last;
@ -807,7 +807,7 @@ static void mmap_reserve_or_unmap(abi_ulong start, abi_ulong len)
prot |= page_get_flags(a + 1); prot |= page_get_flags(a + 1);
} }
if (prot != 0) { if (prot != 0) {
return; return 0;
} }
} else { } else {
for (prot = 0, a = real_start; a < start; a += TARGET_PAGE_SIZE) { for (prot = 0, a = real_start; a < start; a += TARGET_PAGE_SIZE) {
@ -825,7 +825,7 @@ static void mmap_reserve_or_unmap(abi_ulong start, abi_ulong len)
} }
if (real_last < real_start) { if (real_last < real_start) {
return; return 0;
} }
} }
@ -836,32 +836,36 @@ static void mmap_reserve_or_unmap(abi_ulong start, abi_ulong len)
void *ptr = mmap(host_start, real_len, PROT_NONE, void *ptr = mmap(host_start, real_len, PROT_NONE,
MAP_FIXED | MAP_ANONYMOUS MAP_FIXED | MAP_ANONYMOUS
| MAP_PRIVATE | MAP_NORESERVE, -1, 0); | MAP_PRIVATE | MAP_NORESERVE, -1, 0);
assert(ptr == host_start); return ptr == host_start ? 0 : -1;
} else {
int ret = munmap(host_start, real_len);
assert(ret == 0);
} }
return munmap(host_start, real_len);
} }
int target_munmap(abi_ulong start, abi_ulong len) int target_munmap(abi_ulong start, abi_ulong len)
{ {
int ret;
trace_target_munmap(start, len); trace_target_munmap(start, len);
if (start & ~TARGET_PAGE_MASK) { if (start & ~TARGET_PAGE_MASK) {
return -TARGET_EINVAL; errno = EINVAL;
return -1;
} }
len = TARGET_PAGE_ALIGN(len); len = TARGET_PAGE_ALIGN(len);
if (len == 0 || !guest_range_valid_untagged(start, len)) { if (len == 0 || !guest_range_valid_untagged(start, len)) {
return -TARGET_EINVAL; errno = EINVAL;
return -1;
} }
mmap_lock(); mmap_lock();
mmap_reserve_or_unmap(start, len); ret = mmap_reserve_or_unmap(start, len);
page_set_flags(start, start + len - 1, 0); if (likely(ret == 0)) {
shm_region_rm_complete(start, start + len - 1); page_set_flags(start, start + len - 1, 0);
shm_region_rm_complete(start, start + len - 1);
}
mmap_unlock(); mmap_unlock();
return 0; return ret;
} }
abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,

View File

@ -104,6 +104,14 @@ static void unwind_gusa(CPUSH4State *regs)
/* Reset the SP to the saved version in R1. */ /* Reset the SP to the saved version in R1. */
regs->gregs[15] = regs->gregs[1]; regs->gregs[15] = regs->gregs[1];
} else if (regs->gregs[15] >= -128u && regs->pc == regs->gregs[0]) {
/* If we are on the last instruction of a gUSA region, we must reset
the SP, otherwise we would be pushing the signal context to
invalid memory. */
regs->gregs[15] = regs->gregs[1];
} else if (regs->flags & TB_FLAG_DELAY_SLOT) {
/* If we are in a delay slot, push the previous instruction. */
regs->pc -= 2;
} }
} }

View File

@ -32,6 +32,7 @@
#include "signal-common.h" #include "signal-common.h"
#include "host-signal.h" #include "host-signal.h"
#include "user/safe-syscall.h" #include "user/safe-syscall.h"
#include "tcg/tcg.h"
static struct target_sigaction sigact_table[TARGET_NSIG]; static struct target_sigaction sigact_table[TARGET_NSIG];
@ -43,9 +44,8 @@ abi_ulong default_sigreturn;
abi_ulong default_rt_sigreturn; abi_ulong default_rt_sigreturn;
/* /*
* System includes define _NSIG as SIGRTMAX + 1, * System includes define _NSIG as SIGRTMAX + 1, but qemu (like the kernel)
* but qemu (like the kernel) defines TARGET_NSIG as TARGET_SIGRTMAX * defines TARGET_NSIG as TARGET_SIGRTMAX and the first signal is 1.
* and the first signal is SIGHUP defined as 1
* Signal number 0 is reserved for use as kill(pid, 0), to test whether * Signal number 0 is reserved for use as kill(pid, 0), to test whether
* a process exists without sending it a signal. * a process exists without sending it a signal.
*/ */
@ -56,7 +56,6 @@ static uint8_t host_to_target_signal_table[_NSIG] = {
#define MAKE_SIG_ENTRY(sig) [sig] = TARGET_##sig, #define MAKE_SIG_ENTRY(sig) [sig] = TARGET_##sig,
MAKE_SIGNAL_LIST MAKE_SIGNAL_LIST
#undef MAKE_SIG_ENTRY #undef MAKE_SIG_ENTRY
/* next signals stay the same */
}; };
static uint8_t target_to_host_signal_table[TARGET_NSIG + 1]; static uint8_t target_to_host_signal_table[TARGET_NSIG + 1];
@ -64,18 +63,24 @@ static uint8_t target_to_host_signal_table[TARGET_NSIG + 1];
/* valid sig is between 1 and _NSIG - 1 */ /* valid sig is between 1 and _NSIG - 1 */
int host_to_target_signal(int sig) int host_to_target_signal(int sig)
{ {
if (sig < 1 || sig >= _NSIG) { if (sig < 1) {
return sig; return sig;
} }
if (sig >= _NSIG) {
return TARGET_NSIG + 1;
}
return host_to_target_signal_table[sig]; return host_to_target_signal_table[sig];
} }
/* valid sig is between 1 and TARGET_NSIG */ /* valid sig is between 1 and TARGET_NSIG */
int target_to_host_signal(int sig) int target_to_host_signal(int sig)
{ {
if (sig < 1 || sig > TARGET_NSIG) { if (sig < 1) {
return sig; return sig;
} }
if (sig > TARGET_NSIG) {
return _NSIG;
}
return target_to_host_signal_table[sig]; return target_to_host_signal_table[sig];
} }
@ -487,26 +492,6 @@ void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo)
info->si_value.sival_ptr = (void *)(long)sival_ptr; info->si_value.sival_ptr = (void *)(long)sival_ptr;
} }
static int fatal_signal (int sig)
{
switch (sig) {
case TARGET_SIGCHLD:
case TARGET_SIGURG:
case TARGET_SIGWINCH:
/* Ignored by default. */
return 0;
case TARGET_SIGCONT:
case TARGET_SIGSTOP:
case TARGET_SIGTSTP:
case TARGET_SIGTTIN:
case TARGET_SIGTTOU:
/* Job control signals. */
return 0;
default:
return 1;
}
}
/* returns 1 if given signal should dump core if not handled */ /* returns 1 if given signal should dump core if not handled */
static int core_dump_signal(int sig) static int core_dump_signal(int sig)
{ {
@ -526,57 +511,69 @@ static int core_dump_signal(int sig)
static void signal_table_init(void) static void signal_table_init(void)
{ {
int host_sig, target_sig, count; int hsig, tsig, count;
/* /*
* Signals are supported starting from TARGET_SIGRTMIN and going up * Signals are supported starting from TARGET_SIGRTMIN and going up
* until we run out of host realtime signals. * until we run out of host realtime signals. Glibc uses the lower 2
* glibc at least uses only the lower 2 rt signals and probably * RT signals and (hopefully) nobody uses the upper ones.
* nobody's using the upper ones. * This is why SIGRTMIN (34) is generally greater than __SIGRTMIN (32).
* it's why SIGRTMIN (34) is generally greater than __SIGRTMIN (32) * To fix this properly we would need to do manual signal delivery
* To fix this properly we need to do manual signal delivery multiplexed * multiplexed over a single host signal.
* over a single host signal.
* Attempts for configure "missing" signals via sigaction will be * Attempts for configure "missing" signals via sigaction will be
* silently ignored. * silently ignored.
*
* Remap the target SIGABRT, so that we can distinguish host abort
* from guest abort. When the guest registers a signal handler or
* calls raise(SIGABRT), the host will raise SIG_RTn. If the guest
* arrives at dump_core_and_abort(), we will map back to host SIGABRT
* so that the parent (native or emulated) sees the correct signal.
* Finally, also map host to guest SIGABRT so that the emulated
* parent sees the correct mapping from wait status.
*/ */
for (host_sig = SIGRTMIN; host_sig <= SIGRTMAX; host_sig++) {
target_sig = host_sig - SIGRTMIN + TARGET_SIGRTMIN; hsig = SIGRTMIN;
if (target_sig <= TARGET_NSIG) { host_to_target_signal_table[SIGABRT] = 0;
host_to_target_signal_table[host_sig] = target_sig; host_to_target_signal_table[hsig++] = TARGET_SIGABRT;
for (; hsig <= SIGRTMAX; hsig++) {
tsig = hsig - SIGRTMIN + TARGET_SIGRTMIN;
if (tsig <= TARGET_NSIG) {
host_to_target_signal_table[hsig] = tsig;
} }
} }
/* generate signal conversion tables */ /* Invert the mapping that has already been assigned. */
for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) { for (hsig = 1; hsig < _NSIG; hsig++) {
target_to_host_signal_table[target_sig] = _NSIG; /* poison */ tsig = host_to_target_signal_table[hsig];
} if (tsig) {
for (host_sig = 1; host_sig < _NSIG; host_sig++) { assert(target_to_host_signal_table[tsig] == 0);
if (host_to_target_signal_table[host_sig] == 0) { target_to_host_signal_table[tsig] = hsig;
host_to_target_signal_table[host_sig] = host_sig;
}
target_sig = host_to_target_signal_table[host_sig];
if (target_sig <= TARGET_NSIG) {
target_to_host_signal_table[target_sig] = host_sig;
} }
} }
if (trace_event_get_state_backends(TRACE_SIGNAL_TABLE_INIT)) { host_to_target_signal_table[SIGABRT] = TARGET_SIGABRT;
for (target_sig = 1, count = 0; target_sig <= TARGET_NSIG; target_sig++) {
if (target_to_host_signal_table[target_sig] == _NSIG) { /* Map everything else out-of-bounds. */
count++; for (hsig = 1; hsig < _NSIG; hsig++) {
} if (host_to_target_signal_table[hsig] == 0) {
host_to_target_signal_table[hsig] = TARGET_NSIG + 1;
} }
trace_signal_table_init(count);
} }
for (count = 0, tsig = 1; tsig <= TARGET_NSIG; tsig++) {
if (target_to_host_signal_table[tsig] == 0) {
target_to_host_signal_table[tsig] = _NSIG;
count++;
}
}
trace_signal_table_init(count);
} }
void signal_init(void) void signal_init(void)
{ {
TaskState *ts = (TaskState *)thread_cpu->opaque; TaskState *ts = (TaskState *)thread_cpu->opaque;
struct sigaction act; struct sigaction act, oact;
struct sigaction oact;
int i;
int host_sig;
/* initialize signal conversion tables */ /* initialize signal conversion tables */
signal_table_init(); signal_table_init();
@ -587,22 +584,36 @@ void signal_init(void)
sigfillset(&act.sa_mask); sigfillset(&act.sa_mask);
act.sa_flags = SA_SIGINFO; act.sa_flags = SA_SIGINFO;
act.sa_sigaction = host_signal_handler; act.sa_sigaction = host_signal_handler;
for(i = 1; i <= TARGET_NSIG; i++) {
host_sig = target_to_host_signal(i); /*
sigaction(host_sig, NULL, &oact); * A parent process may configure ignored signals, but all other
if (oact.sa_sigaction == (void *)SIG_IGN) { * signals are default. For any target signals that have no host
sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN; * mapping, set to ignore. For all core_dump_signal, install our
} else if (oact.sa_sigaction == (void *)SIG_DFL) { * host signal handler so that we may invoke dump_core_and_abort.
sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL; * This includes SIGSEGV and SIGBUS, which are also need our signal
* handler for paging and exceptions.
*/
for (int tsig = 1; tsig <= TARGET_NSIG; tsig++) {
int hsig = target_to_host_signal(tsig);
abi_ptr thand = TARGET_SIG_IGN;
if (hsig >= _NSIG) {
continue;
} }
/* If there's already a handler installed then something has
gone horribly wrong, so don't even try to handle that case. */ /* As we force remap SIGABRT, cannot probe and install in one step. */
/* Install some handlers for our own use. We need at least if (tsig == TARGET_SIGABRT) {
SIGSEGV and SIGBUS, to detect exceptions. We can not just sigaction(SIGABRT, NULL, &oact);
trap all signals because it affects syscall interrupt sigaction(hsig, &act, NULL);
behavior. But do trap all default-fatal signals. */ } else {
if (fatal_signal (i)) struct sigaction *iact = core_dump_signal(tsig) ? &act : NULL;
sigaction(host_sig, &act, NULL); sigaction(hsig, iact, &oact);
}
if (oact.sa_sigaction != (void *)SIG_IGN) {
thand = TARGET_SIG_DFL;
}
sigact_table[tsig - 1]._sa_handler = thand;
} }
} }
@ -689,15 +700,46 @@ void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
} }
/* abort execution with signal */ /* abort execution with signal */
static G_NORETURN
void die_with_signal(int host_sig)
{
struct sigaction act = {
.sa_handler = SIG_DFL,
};
/*
* The proper exit code for dying from an uncaught signal is -<signal>.
* The kernel doesn't allow exit() or _exit() to pass a negative value.
* To get the proper exit code we need to actually die from an uncaught
* signal. Here the default signal handler is installed, we send
* the signal and we wait for it to arrive.
*/
sigfillset(&act.sa_mask);
sigaction(host_sig, &act, NULL);
kill(getpid(), host_sig);
/* Make sure the signal isn't masked (reusing the mask inside of act). */
sigdelset(&act.sa_mask, host_sig);
sigsuspend(&act.sa_mask);
/* unreachable */
_exit(EXIT_FAILURE);
}
static G_NORETURN static G_NORETURN
void dump_core_and_abort(CPUArchState *env, int target_sig) void dump_core_and_abort(CPUArchState *env, int target_sig)
{ {
CPUState *cpu = env_cpu(env); CPUState *cpu = env_cpu(env);
TaskState *ts = (TaskState *)cpu->opaque; TaskState *ts = (TaskState *)cpu->opaque;
int host_sig, core_dumped = 0; int host_sig, core_dumped = 0;
struct sigaction act;
host_sig = target_to_host_signal(target_sig); /* On exit, undo the remapping of SIGABRT. */
if (target_sig == TARGET_SIGABRT) {
host_sig = SIGABRT;
} else {
host_sig = target_to_host_signal(target_sig);
}
trace_user_dump_core_and_abort(env, target_sig, host_sig); trace_user_dump_core_and_abort(env, target_sig, host_sig);
gdb_signalled(env, target_sig); gdb_signalled(env, target_sig);
@ -719,29 +761,7 @@ void dump_core_and_abort(CPUArchState *env, int target_sig)
} }
preexit_cleanup(env, 128 + target_sig); preexit_cleanup(env, 128 + target_sig);
die_with_signal(host_sig);
/* The proper exit code for dying from an uncaught signal is
* -<signal>. The kernel doesn't allow exit() or _exit() to pass
* a negative value. To get the proper exit code we need to
* actually die from an uncaught signal. Here the default signal
* handler is installed, we send ourself a signal and we wait for
* it to arrive. */
sigfillset(&act.sa_mask);
act.sa_handler = SIG_DFL;
act.sa_flags = 0;
sigaction(host_sig, &act, NULL);
/* For some reason raise(host_sig) doesn't send the signal when
* statically linked on x86-64. */
kill(getpid(), host_sig);
/* Make sure the signal isn't masked (just reuse the mask inside
of act) */
sigdelset(&act.sa_mask, host_sig);
sigsuspend(&act.sa_mask);
/* unreachable */
abort();
} }
/* queue a signal so that it will be send to the virtual CPU as soon /* queue a signal so that it will be send to the virtual CPU as soon
@ -775,6 +795,161 @@ static inline void rewind_if_in_safe_syscall(void *puc)
} }
} }
static G_NORETURN
void die_from_signal(siginfo_t *info)
{
char sigbuf[4], codebuf[12];
const char *sig, *code = NULL;
switch (info->si_signo) {
case SIGSEGV:
sig = "SEGV";
switch (info->si_code) {
case SEGV_MAPERR:
code = "MAPERR";
break;
case SEGV_ACCERR:
code = "ACCERR";
break;
}
break;
case SIGBUS:
sig = "BUS";
switch (info->si_code) {
case BUS_ADRALN:
code = "ADRALN";
break;
case BUS_ADRERR:
code = "ADRERR";
break;
}
break;
case SIGILL:
sig = "ILL";
switch (info->si_code) {
case ILL_ILLOPC:
code = "ILLOPC";
break;
case ILL_ILLOPN:
code = "ILLOPN";
break;
case ILL_ILLADR:
code = "ILLADR";
break;
case ILL_PRVOPC:
code = "PRVOPC";
break;
case ILL_PRVREG:
code = "PRVREG";
break;
case ILL_COPROC:
code = "COPROC";
break;
}
break;
case SIGFPE:
sig = "FPE";
switch (info->si_code) {
case FPE_INTDIV:
code = "INTDIV";
break;
case FPE_INTOVF:
code = "INTOVF";
break;
}
break;
case SIGTRAP:
sig = "TRAP";
break;
default:
snprintf(sigbuf, sizeof(sigbuf), "%d", info->si_signo);
sig = sigbuf;
break;
}
if (code == NULL) {
snprintf(codebuf, sizeof(sigbuf), "%d", info->si_code);
code = codebuf;
}
error_report("QEMU internal SIG%s {code=%s, addr=%p}",
sig, code, info->si_addr);
die_with_signal(info->si_signo);
}
static void host_sigsegv_handler(CPUState *cpu, siginfo_t *info,
host_sigcontext *uc)
{
uintptr_t host_addr = (uintptr_t)info->si_addr;
/*
* Convert forcefully to guest address space: addresses outside
* reserved_va are still valid to report via SEGV_MAPERR.
*/
bool is_valid = h2g_valid(host_addr);
abi_ptr guest_addr = h2g_nocheck(host_addr);
uintptr_t pc = host_signal_pc(uc);
bool is_write = host_signal_write(info, uc);
MMUAccessType access_type = adjust_signal_pc(&pc, is_write);
bool maperr;
/* If this was a write to a TB protected page, restart. */
if (is_write
&& is_valid
&& info->si_code == SEGV_ACCERR
&& handle_sigsegv_accerr_write(cpu, host_signal_mask(uc),
pc, guest_addr)) {
return;
}
/*
* If the access was not on behalf of the guest, within the executable
* mapping of the generated code buffer, then it is a host bug.
*/
if (access_type != MMU_INST_FETCH
&& !in_code_gen_buffer((void *)(pc - tcg_splitwx_diff))) {
die_from_signal(info);
}
maperr = true;
if (is_valid && info->si_code == SEGV_ACCERR) {
/*
* With reserved_va, the whole address space is PROT_NONE,
* which means that we may get ACCERR when we want MAPERR.
*/
if (page_get_flags(guest_addr) & PAGE_VALID) {
maperr = false;
} else {
info->si_code = SEGV_MAPERR;
}
}
sigprocmask(SIG_SETMASK, host_signal_mask(uc), NULL);
cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
}
static void host_sigbus_handler(CPUState *cpu, siginfo_t *info,
host_sigcontext *uc)
{
uintptr_t pc = host_signal_pc(uc);
bool is_write = host_signal_write(info, uc);
MMUAccessType access_type = adjust_signal_pc(&pc, is_write);
/*
* If the access was not on behalf of the guest, within the executable
* mapping of the generated code buffer, then it is a host bug.
*/
if (!in_code_gen_buffer((void *)(pc - tcg_splitwx_diff))) {
die_from_signal(info);
}
if (info->si_code == BUS_ADRALN) {
uintptr_t host_addr = (uintptr_t)info->si_addr;
abi_ptr guest_addr = h2g_nocheck(host_addr);
sigprocmask(SIG_SETMASK, host_signal_mask(uc), NULL);
cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
}
}
static void host_signal_handler(int host_sig, siginfo_t *info, void *puc) static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
{ {
CPUState *cpu = thread_cpu; CPUState *cpu = thread_cpu;
@ -786,61 +961,28 @@ static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
int guest_sig; int guest_sig;
uintptr_t pc = 0; uintptr_t pc = 0;
bool sync_sig = false; bool sync_sig = false;
void *sigmask = host_signal_mask(uc); void *sigmask;
/* /*
* Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
* handling wrt signal blocking and unwinding. * handling wrt signal blocking and unwinding. Non-spoofed SIGILL,
* SIGFPE, SIGTRAP are always host bugs.
*/ */
if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) { if (info->si_code > 0) {
MMUAccessType access_type; switch (host_sig) {
uintptr_t host_addr; case SIGSEGV:
abi_ptr guest_addr; /* Only returns on handle_sigsegv_accerr_write success. */
bool is_write; host_sigsegv_handler(cpu, info, uc);
return;
host_addr = (uintptr_t)info->si_addr; case SIGBUS:
host_sigbus_handler(cpu, info, uc);
/* sync_sig = true;
* Convert forcefully to guest address space: addresses outside break;
* reserved_va are still valid to report via SEGV_MAPERR. case SIGILL:
*/ case SIGFPE:
guest_addr = h2g_nocheck(host_addr); case SIGTRAP:
die_from_signal(info);
pc = host_signal_pc(uc);
is_write = host_signal_write(info, uc);
access_type = adjust_signal_pc(&pc, is_write);
if (host_sig == SIGSEGV) {
bool maperr = true;
if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) {
/* If this was a write to a TB protected page, restart. */
if (is_write &&
handle_sigsegv_accerr_write(cpu, sigmask, pc, guest_addr)) {
return;
}
/*
* With reserved_va, the whole address space is PROT_NONE,
* which means that we may get ACCERR when we want MAPERR.
*/
if (page_get_flags(guest_addr) & PAGE_VALID) {
maperr = false;
} else {
info->si_code = SEGV_MAPERR;
}
}
sigprocmask(SIG_SETMASK, sigmask, NULL);
cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
} else {
sigprocmask(SIG_SETMASK, sigmask, NULL);
if (info->si_code == BUS_ADRALN) {
cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
}
} }
sync_sig = true;
} }
/* get target signal number */ /* get target signal number */
@ -881,6 +1023,7 @@ static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
* would write 0xff bytes off the end of the structure and trash * would write 0xff bytes off the end of the structure and trash
* data on the struct. * data on the struct.
*/ */
sigmask = host_signal_mask(uc);
memset(sigmask, 0xff, SIGSET_T_SIZE); memset(sigmask, 0xff, SIGSET_T_SIZE);
sigdelset(sigmask, SIGSEGV); sigdelset(sigmask, SIGSEGV);
sigdelset(sigmask, SIGBUS); sigdelset(sigmask, SIGBUS);
@ -936,7 +1079,6 @@ int do_sigaction(int sig, const struct target_sigaction *act,
struct target_sigaction *oact, abi_ulong ka_restorer) struct target_sigaction *oact, abi_ulong ka_restorer)
{ {
struct target_sigaction *k; struct target_sigaction *k;
struct sigaction act1;
int host_sig; int host_sig;
int ret = 0; int ret = 0;
@ -996,22 +1138,27 @@ int do_sigaction(int sig, const struct target_sigaction *act,
return 0; return 0;
} }
if (host_sig != SIGSEGV && host_sig != SIGBUS) { if (host_sig != SIGSEGV && host_sig != SIGBUS) {
struct sigaction act1;
sigfillset(&act1.sa_mask); sigfillset(&act1.sa_mask);
act1.sa_flags = SA_SIGINFO; act1.sa_flags = SA_SIGINFO;
if (k->sa_flags & TARGET_SA_RESTART)
act1.sa_flags |= SA_RESTART;
/* NOTE: it is important to update the host kernel signal
ignore state to avoid getting unexpected interrupted
syscalls */
if (k->_sa_handler == TARGET_SIG_IGN) { if (k->_sa_handler == TARGET_SIG_IGN) {
/*
* It is important to update the host kernel signal ignore
* state to avoid getting unexpected interrupted syscalls.
*/
act1.sa_sigaction = (void *)SIG_IGN; act1.sa_sigaction = (void *)SIG_IGN;
} else if (k->_sa_handler == TARGET_SIG_DFL) { } else if (k->_sa_handler == TARGET_SIG_DFL) {
if (fatal_signal (sig)) if (core_dump_signal(sig)) {
act1.sa_sigaction = host_signal_handler; act1.sa_sigaction = host_signal_handler;
else } else {
act1.sa_sigaction = (void *)SIG_DFL; act1.sa_sigaction = (void *)SIG_DFL;
}
} else { } else {
act1.sa_sigaction = host_signal_handler; act1.sa_sigaction = host_signal_handler;
if (k->sa_flags & TARGET_SA_RESTART) {
act1.sa_flags |= SA_RESTART;
}
} }
ret = sigaction(host_sig, &act1, NULL); ret = sigaction(host_sig, &act1, NULL);
} }