mirror of https://github.com/xemu-project/xemu.git
linux-user/mips: fix abort on integer overflow
linux-user/sh4: Fix crashes on signal delivery linux-user/loongarch: Enable LSX/LASX in HWCAP linux-user: Fixes for zero_bss linux-user: Propagate failure in mmap_reserve_or_unmap back to target_munmap linux-user: Detect and report host crashes linux-user: Remap guest SIGABRT -----BEGIN PGP SIGNATURE----- iQFRBAABCgA7FiEEekgeeIaLTbaoWgXAZN846K9+IV8FAmUwapYdHHJpY2hhcmQu aGVuZGVyc29uQGxpbmFyby5vcmcACgkQZN846K9+IV92UAf/RSsFWwCBAqt1WKIK 7/7F8AF7WW1Hhjy3bHLjNnzgsDeWYfdIVxMGfF9IYKrYMeEqFeBeQ+vcOe9LTAvW fEZkA//V+LosiYCwtVGBXyCbeXYxoONMp/taRv6lVHoqVU7aSlbXsYqwePcUtPWq r/V+Ru5vssqMueBdE9+E53JPewGPVw8xQE+xGgd1TZIeHWgegZHBzKWVap/3noey dKjTig3yxXXg1gQJLCRw+a6bl8oCl4vEluGsLzh5P8aV1imjvFPXkR2w1vQOC3ws 8DmyMcPEcsY4D2WLeTAGMheURLRzs5141nT0fQCOB4yzO/I8zYFIG12xCxgWoQkg kW9XZw== =5oFh -----END PGP SIGNATURE----- Merge tag 'pull-lu-20231018' of https://gitlab.com/rth7680/qemu into staging linux-user/mips: fix abort on integer overflow linux-user/sh4: Fix crashes on signal delivery linux-user/loongarch: Enable LSX/LASX in HWCAP linux-user: Fixes for zero_bss linux-user: Propagate failure in mmap_reserve_or_unmap back to target_munmap linux-user: Detect and report host crashes linux-user: Remap guest SIGABRT # -----BEGIN PGP SIGNATURE----- # # iQFRBAABCgA7FiEEekgeeIaLTbaoWgXAZN846K9+IV8FAmUwapYdHHJpY2hhcmQu # aGVuZGVyc29uQGxpbmFyby5vcmcACgkQZN846K9+IV92UAf/RSsFWwCBAqt1WKIK # 7/7F8AF7WW1Hhjy3bHLjNnzgsDeWYfdIVxMGfF9IYKrYMeEqFeBeQ+vcOe9LTAvW # fEZkA//V+LosiYCwtVGBXyCbeXYxoONMp/taRv6lVHoqVU7aSlbXsYqwePcUtPWq # r/V+Ru5vssqMueBdE9+E53JPewGPVw8xQE+xGgd1TZIeHWgegZHBzKWVap/3noey # dKjTig3yxXXg1gQJLCRw+a6bl8oCl4vEluGsLzh5P8aV1imjvFPXkR2w1vQOC3ws # 8DmyMcPEcsY4D2WLeTAGMheURLRzs5141nT0fQCOB4yzO/I8zYFIG12xCxgWoQkg # kW9XZw== # =5oFh # -----END PGP SIGNATURE----- # gpg: Signature made Wed 18 Oct 2023 16:30:30 PDT # gpg: using RSA key 7A481E78868B4DB6A85A05C064DF38E8AF7E215F # gpg: issuer "richard.henderson@linaro.org" # gpg: Good signature from "Richard Henderson <richard.henderson@linaro.org>" [full] # Primary key fingerprint: 7A48 1E78 868B 4DB6 A85A 05C0 64DF 38E8 AF7E 215F * tag 'pull-lu-20231018' of https://gitlab.com/rth7680/qemu: linux-user: Remap guest SIGABRT linux-user: Detect and report host SIGILL, SIGFPE, SIGTRAP linux-user: Split out host_sig{segv,bus}_handler linux-user: Simplify signal_init linux-user: Map unsupported signals to an out-of-bounds value linux-user: Only register handlers for core_dump_signal by default linux-user: Detect and report host crashes linux-user: Exit not abort in die_with_backtrace linux-user: Split out die_with_signal linux-user: Propagate failure in mmap_reserve_or_unmap back to target_munmap linux-user/elfload: Enable LSX/LASX in HWCAP for LoongArch linux-user/sh4: Fix crashes on signal delivery linux-user/mips: fix abort on integer overflow linux-user: Fixes for zero_bss Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
This commit is contained in:
commit
0d239e513e
|
@ -1237,6 +1237,14 @@ static uint32_t get_elf_hwcap(void)
|
||||||
hwcaps |= HWCAP_LOONGARCH_LAM;
|
hwcaps |= HWCAP_LOONGARCH_LAM;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LSX)) {
|
||||||
|
hwcaps |= HWCAP_LOONGARCH_LSX;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LASX)) {
|
||||||
|
hwcaps |= HWCAP_LOONGARCH_LASX;
|
||||||
|
}
|
||||||
|
|
||||||
return hwcaps;
|
return hwcaps;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -2362,31 +2370,58 @@ static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
|
||||||
* Map and zero the bss. We need to explicitly zero any fractional pages
|
* Map and zero the bss. We need to explicitly zero any fractional pages
|
||||||
* after the data section (i.e. bss). Return false on mapping failure.
|
* after the data section (i.e. bss). Return false on mapping failure.
|
||||||
*/
|
*/
|
||||||
static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss, int prot)
|
static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss,
|
||||||
|
int prot, Error **errp)
|
||||||
{
|
{
|
||||||
abi_ulong align_bss;
|
abi_ulong align_bss;
|
||||||
|
|
||||||
|
/* We only expect writable bss; the code segment shouldn't need this. */
|
||||||
|
if (!(prot & PROT_WRITE)) {
|
||||||
|
error_setg(errp, "PT_LOAD with non-writable bss");
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
align_bss = TARGET_PAGE_ALIGN(start_bss);
|
align_bss = TARGET_PAGE_ALIGN(start_bss);
|
||||||
end_bss = TARGET_PAGE_ALIGN(end_bss);
|
end_bss = TARGET_PAGE_ALIGN(end_bss);
|
||||||
|
|
||||||
if (start_bss < align_bss) {
|
if (start_bss < align_bss) {
|
||||||
int flags = page_get_flags(start_bss);
|
int flags = page_get_flags(start_bss);
|
||||||
|
|
||||||
if (!(flags & PAGE_VALID)) {
|
if (!(flags & PAGE_BITS)) {
|
||||||
/* Map the start of the bss. */
|
/*
|
||||||
|
* The whole address space of the executable was reserved
|
||||||
|
* at the start, therefore all pages will be VALID.
|
||||||
|
* But assuming there are no PROT_NONE PT_LOAD segments,
|
||||||
|
* a PROT_NONE page means no data all bss, and we can
|
||||||
|
* simply extend the new anon mapping back to the start
|
||||||
|
* of the page of bss.
|
||||||
|
*/
|
||||||
align_bss -= TARGET_PAGE_SIZE;
|
align_bss -= TARGET_PAGE_SIZE;
|
||||||
} else if (flags & PAGE_WRITE) {
|
|
||||||
/* The page is already mapped writable. */
|
|
||||||
memset(g2h_untagged(start_bss), 0, align_bss - start_bss);
|
|
||||||
} else {
|
} else {
|
||||||
/* Read-only zeros? */
|
/*
|
||||||
g_assert_not_reached();
|
* The start of the bss shares a page with something.
|
||||||
|
* The only thing that we expect is the data section,
|
||||||
|
* which would already be marked writable.
|
||||||
|
* Overlapping the RX code segment seems malformed.
|
||||||
|
*/
|
||||||
|
if (!(flags & PAGE_WRITE)) {
|
||||||
|
error_setg(errp, "PT_LOAD with bss overlapping "
|
||||||
|
"non-writable page");
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* The page is already mapped and writable. */
|
||||||
|
memset(g2h_untagged(start_bss), 0, align_bss - start_bss);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
return align_bss >= end_bss ||
|
if (align_bss < end_bss &&
|
||||||
target_mmap(align_bss, end_bss - align_bss, prot,
|
target_mmap(align_bss, end_bss - align_bss, prot,
|
||||||
MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) != -1;
|
MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == -1) {
|
||||||
|
error_setg_errno(errp, errno, "Error mapping bss");
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
#if defined(TARGET_ARM)
|
#if defined(TARGET_ARM)
|
||||||
|
@ -3410,8 +3445,8 @@ static void load_elf_image(const char *image_name, int image_fd,
|
||||||
|
|
||||||
/* If the load segment requests extra zeros (e.g. bss), map it. */
|
/* If the load segment requests extra zeros (e.g. bss), map it. */
|
||||||
if (vaddr_ef < vaddr_em &&
|
if (vaddr_ef < vaddr_em &&
|
||||||
!zero_bss(vaddr_ef, vaddr_em, elf_prot)) {
|
!zero_bss(vaddr_ef, vaddr_em, elf_prot, &err)) {
|
||||||
goto exit_mmap;
|
goto exit_errmsg;
|
||||||
}
|
}
|
||||||
|
|
||||||
/* Find the full program boundaries. */
|
/* Find the full program boundaries. */
|
||||||
|
|
|
@ -180,7 +180,9 @@ done_syscall:
|
||||||
}
|
}
|
||||||
force_sig_fault(TARGET_SIGFPE, si_code, env->active_tc.PC);
|
force_sig_fault(TARGET_SIGFPE, si_code, env->active_tc.PC);
|
||||||
break;
|
break;
|
||||||
|
case EXCP_OVERFLOW:
|
||||||
|
force_sig_fault(TARGET_SIGFPE, TARGET_FPE_INTOVF, env->active_tc.PC);
|
||||||
|
break;
|
||||||
/* The code below was inspired by the MIPS Linux kernel trap
|
/* The code below was inspired by the MIPS Linux kernel trap
|
||||||
* handling code in arch/mips/kernel/traps.c.
|
* handling code in arch/mips/kernel/traps.c.
|
||||||
*/
|
*/
|
||||||
|
|
|
@ -778,7 +778,7 @@ fail:
|
||||||
return -1;
|
return -1;
|
||||||
}
|
}
|
||||||
|
|
||||||
static void mmap_reserve_or_unmap(abi_ulong start, abi_ulong len)
|
static int mmap_reserve_or_unmap(abi_ulong start, abi_ulong len)
|
||||||
{
|
{
|
||||||
abi_ulong real_start;
|
abi_ulong real_start;
|
||||||
abi_ulong real_last;
|
abi_ulong real_last;
|
||||||
|
@ -807,7 +807,7 @@ static void mmap_reserve_or_unmap(abi_ulong start, abi_ulong len)
|
||||||
prot |= page_get_flags(a + 1);
|
prot |= page_get_flags(a + 1);
|
||||||
}
|
}
|
||||||
if (prot != 0) {
|
if (prot != 0) {
|
||||||
return;
|
return 0;
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
for (prot = 0, a = real_start; a < start; a += TARGET_PAGE_SIZE) {
|
for (prot = 0, a = real_start; a < start; a += TARGET_PAGE_SIZE) {
|
||||||
|
@ -825,7 +825,7 @@ static void mmap_reserve_or_unmap(abi_ulong start, abi_ulong len)
|
||||||
}
|
}
|
||||||
|
|
||||||
if (real_last < real_start) {
|
if (real_last < real_start) {
|
||||||
return;
|
return 0;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -836,32 +836,36 @@ static void mmap_reserve_or_unmap(abi_ulong start, abi_ulong len)
|
||||||
void *ptr = mmap(host_start, real_len, PROT_NONE,
|
void *ptr = mmap(host_start, real_len, PROT_NONE,
|
||||||
MAP_FIXED | MAP_ANONYMOUS
|
MAP_FIXED | MAP_ANONYMOUS
|
||||||
| MAP_PRIVATE | MAP_NORESERVE, -1, 0);
|
| MAP_PRIVATE | MAP_NORESERVE, -1, 0);
|
||||||
assert(ptr == host_start);
|
return ptr == host_start ? 0 : -1;
|
||||||
} else {
|
|
||||||
int ret = munmap(host_start, real_len);
|
|
||||||
assert(ret == 0);
|
|
||||||
}
|
}
|
||||||
|
return munmap(host_start, real_len);
|
||||||
}
|
}
|
||||||
|
|
||||||
int target_munmap(abi_ulong start, abi_ulong len)
|
int target_munmap(abi_ulong start, abi_ulong len)
|
||||||
{
|
{
|
||||||
|
int ret;
|
||||||
|
|
||||||
trace_target_munmap(start, len);
|
trace_target_munmap(start, len);
|
||||||
|
|
||||||
if (start & ~TARGET_PAGE_MASK) {
|
if (start & ~TARGET_PAGE_MASK) {
|
||||||
return -TARGET_EINVAL;
|
errno = EINVAL;
|
||||||
|
return -1;
|
||||||
}
|
}
|
||||||
len = TARGET_PAGE_ALIGN(len);
|
len = TARGET_PAGE_ALIGN(len);
|
||||||
if (len == 0 || !guest_range_valid_untagged(start, len)) {
|
if (len == 0 || !guest_range_valid_untagged(start, len)) {
|
||||||
return -TARGET_EINVAL;
|
errno = EINVAL;
|
||||||
|
return -1;
|
||||||
}
|
}
|
||||||
|
|
||||||
mmap_lock();
|
mmap_lock();
|
||||||
mmap_reserve_or_unmap(start, len);
|
ret = mmap_reserve_or_unmap(start, len);
|
||||||
page_set_flags(start, start + len - 1, 0);
|
if (likely(ret == 0)) {
|
||||||
shm_region_rm_complete(start, start + len - 1);
|
page_set_flags(start, start + len - 1, 0);
|
||||||
|
shm_region_rm_complete(start, start + len - 1);
|
||||||
|
}
|
||||||
mmap_unlock();
|
mmap_unlock();
|
||||||
|
|
||||||
return 0;
|
return ret;
|
||||||
}
|
}
|
||||||
|
|
||||||
abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
|
abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
|
||||||
|
|
|
@ -104,6 +104,14 @@ static void unwind_gusa(CPUSH4State *regs)
|
||||||
|
|
||||||
/* Reset the SP to the saved version in R1. */
|
/* Reset the SP to the saved version in R1. */
|
||||||
regs->gregs[15] = regs->gregs[1];
|
regs->gregs[15] = regs->gregs[1];
|
||||||
|
} else if (regs->gregs[15] >= -128u && regs->pc == regs->gregs[0]) {
|
||||||
|
/* If we are on the last instruction of a gUSA region, we must reset
|
||||||
|
the SP, otherwise we would be pushing the signal context to
|
||||||
|
invalid memory. */
|
||||||
|
regs->gregs[15] = regs->gregs[1];
|
||||||
|
} else if (regs->flags & TB_FLAG_DELAY_SLOT) {
|
||||||
|
/* If we are in a delay slot, push the previous instruction. */
|
||||||
|
regs->pc -= 2;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -32,6 +32,7 @@
|
||||||
#include "signal-common.h"
|
#include "signal-common.h"
|
||||||
#include "host-signal.h"
|
#include "host-signal.h"
|
||||||
#include "user/safe-syscall.h"
|
#include "user/safe-syscall.h"
|
||||||
|
#include "tcg/tcg.h"
|
||||||
|
|
||||||
static struct target_sigaction sigact_table[TARGET_NSIG];
|
static struct target_sigaction sigact_table[TARGET_NSIG];
|
||||||
|
|
||||||
|
@ -43,9 +44,8 @@ abi_ulong default_sigreturn;
|
||||||
abi_ulong default_rt_sigreturn;
|
abi_ulong default_rt_sigreturn;
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* System includes define _NSIG as SIGRTMAX + 1,
|
* System includes define _NSIG as SIGRTMAX + 1, but qemu (like the kernel)
|
||||||
* but qemu (like the kernel) defines TARGET_NSIG as TARGET_SIGRTMAX
|
* defines TARGET_NSIG as TARGET_SIGRTMAX and the first signal is 1.
|
||||||
* and the first signal is SIGHUP defined as 1
|
|
||||||
* Signal number 0 is reserved for use as kill(pid, 0), to test whether
|
* Signal number 0 is reserved for use as kill(pid, 0), to test whether
|
||||||
* a process exists without sending it a signal.
|
* a process exists without sending it a signal.
|
||||||
*/
|
*/
|
||||||
|
@ -56,7 +56,6 @@ static uint8_t host_to_target_signal_table[_NSIG] = {
|
||||||
#define MAKE_SIG_ENTRY(sig) [sig] = TARGET_##sig,
|
#define MAKE_SIG_ENTRY(sig) [sig] = TARGET_##sig,
|
||||||
MAKE_SIGNAL_LIST
|
MAKE_SIGNAL_LIST
|
||||||
#undef MAKE_SIG_ENTRY
|
#undef MAKE_SIG_ENTRY
|
||||||
/* next signals stay the same */
|
|
||||||
};
|
};
|
||||||
|
|
||||||
static uint8_t target_to_host_signal_table[TARGET_NSIG + 1];
|
static uint8_t target_to_host_signal_table[TARGET_NSIG + 1];
|
||||||
|
@ -64,18 +63,24 @@ static uint8_t target_to_host_signal_table[TARGET_NSIG + 1];
|
||||||
/* valid sig is between 1 and _NSIG - 1 */
|
/* valid sig is between 1 and _NSIG - 1 */
|
||||||
int host_to_target_signal(int sig)
|
int host_to_target_signal(int sig)
|
||||||
{
|
{
|
||||||
if (sig < 1 || sig >= _NSIG) {
|
if (sig < 1) {
|
||||||
return sig;
|
return sig;
|
||||||
}
|
}
|
||||||
|
if (sig >= _NSIG) {
|
||||||
|
return TARGET_NSIG + 1;
|
||||||
|
}
|
||||||
return host_to_target_signal_table[sig];
|
return host_to_target_signal_table[sig];
|
||||||
}
|
}
|
||||||
|
|
||||||
/* valid sig is between 1 and TARGET_NSIG */
|
/* valid sig is between 1 and TARGET_NSIG */
|
||||||
int target_to_host_signal(int sig)
|
int target_to_host_signal(int sig)
|
||||||
{
|
{
|
||||||
if (sig < 1 || sig > TARGET_NSIG) {
|
if (sig < 1) {
|
||||||
return sig;
|
return sig;
|
||||||
}
|
}
|
||||||
|
if (sig > TARGET_NSIG) {
|
||||||
|
return _NSIG;
|
||||||
|
}
|
||||||
return target_to_host_signal_table[sig];
|
return target_to_host_signal_table[sig];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -487,26 +492,6 @@ void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo)
|
||||||
info->si_value.sival_ptr = (void *)(long)sival_ptr;
|
info->si_value.sival_ptr = (void *)(long)sival_ptr;
|
||||||
}
|
}
|
||||||
|
|
||||||
static int fatal_signal (int sig)
|
|
||||||
{
|
|
||||||
switch (sig) {
|
|
||||||
case TARGET_SIGCHLD:
|
|
||||||
case TARGET_SIGURG:
|
|
||||||
case TARGET_SIGWINCH:
|
|
||||||
/* Ignored by default. */
|
|
||||||
return 0;
|
|
||||||
case TARGET_SIGCONT:
|
|
||||||
case TARGET_SIGSTOP:
|
|
||||||
case TARGET_SIGTSTP:
|
|
||||||
case TARGET_SIGTTIN:
|
|
||||||
case TARGET_SIGTTOU:
|
|
||||||
/* Job control signals. */
|
|
||||||
return 0;
|
|
||||||
default:
|
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/* returns 1 if given signal should dump core if not handled */
|
/* returns 1 if given signal should dump core if not handled */
|
||||||
static int core_dump_signal(int sig)
|
static int core_dump_signal(int sig)
|
||||||
{
|
{
|
||||||
|
@ -526,57 +511,69 @@ static int core_dump_signal(int sig)
|
||||||
|
|
||||||
static void signal_table_init(void)
|
static void signal_table_init(void)
|
||||||
{
|
{
|
||||||
int host_sig, target_sig, count;
|
int hsig, tsig, count;
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Signals are supported starting from TARGET_SIGRTMIN and going up
|
* Signals are supported starting from TARGET_SIGRTMIN and going up
|
||||||
* until we run out of host realtime signals.
|
* until we run out of host realtime signals. Glibc uses the lower 2
|
||||||
* glibc at least uses only the lower 2 rt signals and probably
|
* RT signals and (hopefully) nobody uses the upper ones.
|
||||||
* nobody's using the upper ones.
|
* This is why SIGRTMIN (34) is generally greater than __SIGRTMIN (32).
|
||||||
* it's why SIGRTMIN (34) is generally greater than __SIGRTMIN (32)
|
* To fix this properly we would need to do manual signal delivery
|
||||||
* To fix this properly we need to do manual signal delivery multiplexed
|
* multiplexed over a single host signal.
|
||||||
* over a single host signal.
|
|
||||||
* Attempts for configure "missing" signals via sigaction will be
|
* Attempts for configure "missing" signals via sigaction will be
|
||||||
* silently ignored.
|
* silently ignored.
|
||||||
|
*
|
||||||
|
* Remap the target SIGABRT, so that we can distinguish host abort
|
||||||
|
* from guest abort. When the guest registers a signal handler or
|
||||||
|
* calls raise(SIGABRT), the host will raise SIG_RTn. If the guest
|
||||||
|
* arrives at dump_core_and_abort(), we will map back to host SIGABRT
|
||||||
|
* so that the parent (native or emulated) sees the correct signal.
|
||||||
|
* Finally, also map host to guest SIGABRT so that the emulated
|
||||||
|
* parent sees the correct mapping from wait status.
|
||||||
*/
|
*/
|
||||||
for (host_sig = SIGRTMIN; host_sig <= SIGRTMAX; host_sig++) {
|
|
||||||
target_sig = host_sig - SIGRTMIN + TARGET_SIGRTMIN;
|
hsig = SIGRTMIN;
|
||||||
if (target_sig <= TARGET_NSIG) {
|
host_to_target_signal_table[SIGABRT] = 0;
|
||||||
host_to_target_signal_table[host_sig] = target_sig;
|
host_to_target_signal_table[hsig++] = TARGET_SIGABRT;
|
||||||
|
|
||||||
|
for (; hsig <= SIGRTMAX; hsig++) {
|
||||||
|
tsig = hsig - SIGRTMIN + TARGET_SIGRTMIN;
|
||||||
|
if (tsig <= TARGET_NSIG) {
|
||||||
|
host_to_target_signal_table[hsig] = tsig;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/* generate signal conversion tables */
|
/* Invert the mapping that has already been assigned. */
|
||||||
for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) {
|
for (hsig = 1; hsig < _NSIG; hsig++) {
|
||||||
target_to_host_signal_table[target_sig] = _NSIG; /* poison */
|
tsig = host_to_target_signal_table[hsig];
|
||||||
}
|
if (tsig) {
|
||||||
for (host_sig = 1; host_sig < _NSIG; host_sig++) {
|
assert(target_to_host_signal_table[tsig] == 0);
|
||||||
if (host_to_target_signal_table[host_sig] == 0) {
|
target_to_host_signal_table[tsig] = hsig;
|
||||||
host_to_target_signal_table[host_sig] = host_sig;
|
|
||||||
}
|
|
||||||
target_sig = host_to_target_signal_table[host_sig];
|
|
||||||
if (target_sig <= TARGET_NSIG) {
|
|
||||||
target_to_host_signal_table[target_sig] = host_sig;
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (trace_event_get_state_backends(TRACE_SIGNAL_TABLE_INIT)) {
|
host_to_target_signal_table[SIGABRT] = TARGET_SIGABRT;
|
||||||
for (target_sig = 1, count = 0; target_sig <= TARGET_NSIG; target_sig++) {
|
|
||||||
if (target_to_host_signal_table[target_sig] == _NSIG) {
|
/* Map everything else out-of-bounds. */
|
||||||
count++;
|
for (hsig = 1; hsig < _NSIG; hsig++) {
|
||||||
}
|
if (host_to_target_signal_table[hsig] == 0) {
|
||||||
|
host_to_target_signal_table[hsig] = TARGET_NSIG + 1;
|
||||||
}
|
}
|
||||||
trace_signal_table_init(count);
|
|
||||||
}
|
}
|
||||||
|
for (count = 0, tsig = 1; tsig <= TARGET_NSIG; tsig++) {
|
||||||
|
if (target_to_host_signal_table[tsig] == 0) {
|
||||||
|
target_to_host_signal_table[tsig] = _NSIG;
|
||||||
|
count++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
trace_signal_table_init(count);
|
||||||
}
|
}
|
||||||
|
|
||||||
void signal_init(void)
|
void signal_init(void)
|
||||||
{
|
{
|
||||||
TaskState *ts = (TaskState *)thread_cpu->opaque;
|
TaskState *ts = (TaskState *)thread_cpu->opaque;
|
||||||
struct sigaction act;
|
struct sigaction act, oact;
|
||||||
struct sigaction oact;
|
|
||||||
int i;
|
|
||||||
int host_sig;
|
|
||||||
|
|
||||||
/* initialize signal conversion tables */
|
/* initialize signal conversion tables */
|
||||||
signal_table_init();
|
signal_table_init();
|
||||||
|
@ -587,22 +584,36 @@ void signal_init(void)
|
||||||
sigfillset(&act.sa_mask);
|
sigfillset(&act.sa_mask);
|
||||||
act.sa_flags = SA_SIGINFO;
|
act.sa_flags = SA_SIGINFO;
|
||||||
act.sa_sigaction = host_signal_handler;
|
act.sa_sigaction = host_signal_handler;
|
||||||
for(i = 1; i <= TARGET_NSIG; i++) {
|
|
||||||
host_sig = target_to_host_signal(i);
|
/*
|
||||||
sigaction(host_sig, NULL, &oact);
|
* A parent process may configure ignored signals, but all other
|
||||||
if (oact.sa_sigaction == (void *)SIG_IGN) {
|
* signals are default. For any target signals that have no host
|
||||||
sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN;
|
* mapping, set to ignore. For all core_dump_signal, install our
|
||||||
} else if (oact.sa_sigaction == (void *)SIG_DFL) {
|
* host signal handler so that we may invoke dump_core_and_abort.
|
||||||
sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL;
|
* This includes SIGSEGV and SIGBUS, which are also need our signal
|
||||||
|
* handler for paging and exceptions.
|
||||||
|
*/
|
||||||
|
for (int tsig = 1; tsig <= TARGET_NSIG; tsig++) {
|
||||||
|
int hsig = target_to_host_signal(tsig);
|
||||||
|
abi_ptr thand = TARGET_SIG_IGN;
|
||||||
|
|
||||||
|
if (hsig >= _NSIG) {
|
||||||
|
continue;
|
||||||
}
|
}
|
||||||
/* If there's already a handler installed then something has
|
|
||||||
gone horribly wrong, so don't even try to handle that case. */
|
/* As we force remap SIGABRT, cannot probe and install in one step. */
|
||||||
/* Install some handlers for our own use. We need at least
|
if (tsig == TARGET_SIGABRT) {
|
||||||
SIGSEGV and SIGBUS, to detect exceptions. We can not just
|
sigaction(SIGABRT, NULL, &oact);
|
||||||
trap all signals because it affects syscall interrupt
|
sigaction(hsig, &act, NULL);
|
||||||
behavior. But do trap all default-fatal signals. */
|
} else {
|
||||||
if (fatal_signal (i))
|
struct sigaction *iact = core_dump_signal(tsig) ? &act : NULL;
|
||||||
sigaction(host_sig, &act, NULL);
|
sigaction(hsig, iact, &oact);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (oact.sa_sigaction != (void *)SIG_IGN) {
|
||||||
|
thand = TARGET_SIG_DFL;
|
||||||
|
}
|
||||||
|
sigact_table[tsig - 1]._sa_handler = thand;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -689,15 +700,46 @@ void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
|
||||||
}
|
}
|
||||||
|
|
||||||
/* abort execution with signal */
|
/* abort execution with signal */
|
||||||
|
static G_NORETURN
|
||||||
|
void die_with_signal(int host_sig)
|
||||||
|
{
|
||||||
|
struct sigaction act = {
|
||||||
|
.sa_handler = SIG_DFL,
|
||||||
|
};
|
||||||
|
|
||||||
|
/*
|
||||||
|
* The proper exit code for dying from an uncaught signal is -<signal>.
|
||||||
|
* The kernel doesn't allow exit() or _exit() to pass a negative value.
|
||||||
|
* To get the proper exit code we need to actually die from an uncaught
|
||||||
|
* signal. Here the default signal handler is installed, we send
|
||||||
|
* the signal and we wait for it to arrive.
|
||||||
|
*/
|
||||||
|
sigfillset(&act.sa_mask);
|
||||||
|
sigaction(host_sig, &act, NULL);
|
||||||
|
|
||||||
|
kill(getpid(), host_sig);
|
||||||
|
|
||||||
|
/* Make sure the signal isn't masked (reusing the mask inside of act). */
|
||||||
|
sigdelset(&act.sa_mask, host_sig);
|
||||||
|
sigsuspend(&act.sa_mask);
|
||||||
|
|
||||||
|
/* unreachable */
|
||||||
|
_exit(EXIT_FAILURE);
|
||||||
|
}
|
||||||
|
|
||||||
static G_NORETURN
|
static G_NORETURN
|
||||||
void dump_core_and_abort(CPUArchState *env, int target_sig)
|
void dump_core_and_abort(CPUArchState *env, int target_sig)
|
||||||
{
|
{
|
||||||
CPUState *cpu = env_cpu(env);
|
CPUState *cpu = env_cpu(env);
|
||||||
TaskState *ts = (TaskState *)cpu->opaque;
|
TaskState *ts = (TaskState *)cpu->opaque;
|
||||||
int host_sig, core_dumped = 0;
|
int host_sig, core_dumped = 0;
|
||||||
struct sigaction act;
|
|
||||||
|
|
||||||
host_sig = target_to_host_signal(target_sig);
|
/* On exit, undo the remapping of SIGABRT. */
|
||||||
|
if (target_sig == TARGET_SIGABRT) {
|
||||||
|
host_sig = SIGABRT;
|
||||||
|
} else {
|
||||||
|
host_sig = target_to_host_signal(target_sig);
|
||||||
|
}
|
||||||
trace_user_dump_core_and_abort(env, target_sig, host_sig);
|
trace_user_dump_core_and_abort(env, target_sig, host_sig);
|
||||||
gdb_signalled(env, target_sig);
|
gdb_signalled(env, target_sig);
|
||||||
|
|
||||||
|
@ -719,29 +761,7 @@ void dump_core_and_abort(CPUArchState *env, int target_sig)
|
||||||
}
|
}
|
||||||
|
|
||||||
preexit_cleanup(env, 128 + target_sig);
|
preexit_cleanup(env, 128 + target_sig);
|
||||||
|
die_with_signal(host_sig);
|
||||||
/* The proper exit code for dying from an uncaught signal is
|
|
||||||
* -<signal>. The kernel doesn't allow exit() or _exit() to pass
|
|
||||||
* a negative value. To get the proper exit code we need to
|
|
||||||
* actually die from an uncaught signal. Here the default signal
|
|
||||||
* handler is installed, we send ourself a signal and we wait for
|
|
||||||
* it to arrive. */
|
|
||||||
sigfillset(&act.sa_mask);
|
|
||||||
act.sa_handler = SIG_DFL;
|
|
||||||
act.sa_flags = 0;
|
|
||||||
sigaction(host_sig, &act, NULL);
|
|
||||||
|
|
||||||
/* For some reason raise(host_sig) doesn't send the signal when
|
|
||||||
* statically linked on x86-64. */
|
|
||||||
kill(getpid(), host_sig);
|
|
||||||
|
|
||||||
/* Make sure the signal isn't masked (just reuse the mask inside
|
|
||||||
of act) */
|
|
||||||
sigdelset(&act.sa_mask, host_sig);
|
|
||||||
sigsuspend(&act.sa_mask);
|
|
||||||
|
|
||||||
/* unreachable */
|
|
||||||
abort();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/* queue a signal so that it will be send to the virtual CPU as soon
|
/* queue a signal so that it will be send to the virtual CPU as soon
|
||||||
|
@ -775,6 +795,161 @@ static inline void rewind_if_in_safe_syscall(void *puc)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static G_NORETURN
|
||||||
|
void die_from_signal(siginfo_t *info)
|
||||||
|
{
|
||||||
|
char sigbuf[4], codebuf[12];
|
||||||
|
const char *sig, *code = NULL;
|
||||||
|
|
||||||
|
switch (info->si_signo) {
|
||||||
|
case SIGSEGV:
|
||||||
|
sig = "SEGV";
|
||||||
|
switch (info->si_code) {
|
||||||
|
case SEGV_MAPERR:
|
||||||
|
code = "MAPERR";
|
||||||
|
break;
|
||||||
|
case SEGV_ACCERR:
|
||||||
|
code = "ACCERR";
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
case SIGBUS:
|
||||||
|
sig = "BUS";
|
||||||
|
switch (info->si_code) {
|
||||||
|
case BUS_ADRALN:
|
||||||
|
code = "ADRALN";
|
||||||
|
break;
|
||||||
|
case BUS_ADRERR:
|
||||||
|
code = "ADRERR";
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
case SIGILL:
|
||||||
|
sig = "ILL";
|
||||||
|
switch (info->si_code) {
|
||||||
|
case ILL_ILLOPC:
|
||||||
|
code = "ILLOPC";
|
||||||
|
break;
|
||||||
|
case ILL_ILLOPN:
|
||||||
|
code = "ILLOPN";
|
||||||
|
break;
|
||||||
|
case ILL_ILLADR:
|
||||||
|
code = "ILLADR";
|
||||||
|
break;
|
||||||
|
case ILL_PRVOPC:
|
||||||
|
code = "PRVOPC";
|
||||||
|
break;
|
||||||
|
case ILL_PRVREG:
|
||||||
|
code = "PRVREG";
|
||||||
|
break;
|
||||||
|
case ILL_COPROC:
|
||||||
|
code = "COPROC";
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
case SIGFPE:
|
||||||
|
sig = "FPE";
|
||||||
|
switch (info->si_code) {
|
||||||
|
case FPE_INTDIV:
|
||||||
|
code = "INTDIV";
|
||||||
|
break;
|
||||||
|
case FPE_INTOVF:
|
||||||
|
code = "INTOVF";
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
case SIGTRAP:
|
||||||
|
sig = "TRAP";
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
snprintf(sigbuf, sizeof(sigbuf), "%d", info->si_signo);
|
||||||
|
sig = sigbuf;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
if (code == NULL) {
|
||||||
|
snprintf(codebuf, sizeof(sigbuf), "%d", info->si_code);
|
||||||
|
code = codebuf;
|
||||||
|
}
|
||||||
|
|
||||||
|
error_report("QEMU internal SIG%s {code=%s, addr=%p}",
|
||||||
|
sig, code, info->si_addr);
|
||||||
|
die_with_signal(info->si_signo);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void host_sigsegv_handler(CPUState *cpu, siginfo_t *info,
|
||||||
|
host_sigcontext *uc)
|
||||||
|
{
|
||||||
|
uintptr_t host_addr = (uintptr_t)info->si_addr;
|
||||||
|
/*
|
||||||
|
* Convert forcefully to guest address space: addresses outside
|
||||||
|
* reserved_va are still valid to report via SEGV_MAPERR.
|
||||||
|
*/
|
||||||
|
bool is_valid = h2g_valid(host_addr);
|
||||||
|
abi_ptr guest_addr = h2g_nocheck(host_addr);
|
||||||
|
uintptr_t pc = host_signal_pc(uc);
|
||||||
|
bool is_write = host_signal_write(info, uc);
|
||||||
|
MMUAccessType access_type = adjust_signal_pc(&pc, is_write);
|
||||||
|
bool maperr;
|
||||||
|
|
||||||
|
/* If this was a write to a TB protected page, restart. */
|
||||||
|
if (is_write
|
||||||
|
&& is_valid
|
||||||
|
&& info->si_code == SEGV_ACCERR
|
||||||
|
&& handle_sigsegv_accerr_write(cpu, host_signal_mask(uc),
|
||||||
|
pc, guest_addr)) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* If the access was not on behalf of the guest, within the executable
|
||||||
|
* mapping of the generated code buffer, then it is a host bug.
|
||||||
|
*/
|
||||||
|
if (access_type != MMU_INST_FETCH
|
||||||
|
&& !in_code_gen_buffer((void *)(pc - tcg_splitwx_diff))) {
|
||||||
|
die_from_signal(info);
|
||||||
|
}
|
||||||
|
|
||||||
|
maperr = true;
|
||||||
|
if (is_valid && info->si_code == SEGV_ACCERR) {
|
||||||
|
/*
|
||||||
|
* With reserved_va, the whole address space is PROT_NONE,
|
||||||
|
* which means that we may get ACCERR when we want MAPERR.
|
||||||
|
*/
|
||||||
|
if (page_get_flags(guest_addr) & PAGE_VALID) {
|
||||||
|
maperr = false;
|
||||||
|
} else {
|
||||||
|
info->si_code = SEGV_MAPERR;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
sigprocmask(SIG_SETMASK, host_signal_mask(uc), NULL);
|
||||||
|
cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void host_sigbus_handler(CPUState *cpu, siginfo_t *info,
|
||||||
|
host_sigcontext *uc)
|
||||||
|
{
|
||||||
|
uintptr_t pc = host_signal_pc(uc);
|
||||||
|
bool is_write = host_signal_write(info, uc);
|
||||||
|
MMUAccessType access_type = adjust_signal_pc(&pc, is_write);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* If the access was not on behalf of the guest, within the executable
|
||||||
|
* mapping of the generated code buffer, then it is a host bug.
|
||||||
|
*/
|
||||||
|
if (!in_code_gen_buffer((void *)(pc - tcg_splitwx_diff))) {
|
||||||
|
die_from_signal(info);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (info->si_code == BUS_ADRALN) {
|
||||||
|
uintptr_t host_addr = (uintptr_t)info->si_addr;
|
||||||
|
abi_ptr guest_addr = h2g_nocheck(host_addr);
|
||||||
|
|
||||||
|
sigprocmask(SIG_SETMASK, host_signal_mask(uc), NULL);
|
||||||
|
cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
|
static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
|
||||||
{
|
{
|
||||||
CPUState *cpu = thread_cpu;
|
CPUState *cpu = thread_cpu;
|
||||||
|
@ -786,61 +961,28 @@ static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
|
||||||
int guest_sig;
|
int guest_sig;
|
||||||
uintptr_t pc = 0;
|
uintptr_t pc = 0;
|
||||||
bool sync_sig = false;
|
bool sync_sig = false;
|
||||||
void *sigmask = host_signal_mask(uc);
|
void *sigmask;
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
|
* Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
|
||||||
* handling wrt signal blocking and unwinding.
|
* handling wrt signal blocking and unwinding. Non-spoofed SIGILL,
|
||||||
|
* SIGFPE, SIGTRAP are always host bugs.
|
||||||
*/
|
*/
|
||||||
if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) {
|
if (info->si_code > 0) {
|
||||||
MMUAccessType access_type;
|
switch (host_sig) {
|
||||||
uintptr_t host_addr;
|
case SIGSEGV:
|
||||||
abi_ptr guest_addr;
|
/* Only returns on handle_sigsegv_accerr_write success. */
|
||||||
bool is_write;
|
host_sigsegv_handler(cpu, info, uc);
|
||||||
|
return;
|
||||||
host_addr = (uintptr_t)info->si_addr;
|
case SIGBUS:
|
||||||
|
host_sigbus_handler(cpu, info, uc);
|
||||||
/*
|
sync_sig = true;
|
||||||
* Convert forcefully to guest address space: addresses outside
|
break;
|
||||||
* reserved_va are still valid to report via SEGV_MAPERR.
|
case SIGILL:
|
||||||
*/
|
case SIGFPE:
|
||||||
guest_addr = h2g_nocheck(host_addr);
|
case SIGTRAP:
|
||||||
|
die_from_signal(info);
|
||||||
pc = host_signal_pc(uc);
|
|
||||||
is_write = host_signal_write(info, uc);
|
|
||||||
access_type = adjust_signal_pc(&pc, is_write);
|
|
||||||
|
|
||||||
if (host_sig == SIGSEGV) {
|
|
||||||
bool maperr = true;
|
|
||||||
|
|
||||||
if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) {
|
|
||||||
/* If this was a write to a TB protected page, restart. */
|
|
||||||
if (is_write &&
|
|
||||||
handle_sigsegv_accerr_write(cpu, sigmask, pc, guest_addr)) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
* With reserved_va, the whole address space is PROT_NONE,
|
|
||||||
* which means that we may get ACCERR when we want MAPERR.
|
|
||||||
*/
|
|
||||||
if (page_get_flags(guest_addr) & PAGE_VALID) {
|
|
||||||
maperr = false;
|
|
||||||
} else {
|
|
||||||
info->si_code = SEGV_MAPERR;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
sigprocmask(SIG_SETMASK, sigmask, NULL);
|
|
||||||
cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
|
|
||||||
} else {
|
|
||||||
sigprocmask(SIG_SETMASK, sigmask, NULL);
|
|
||||||
if (info->si_code == BUS_ADRALN) {
|
|
||||||
cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
sync_sig = true;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/* get target signal number */
|
/* get target signal number */
|
||||||
|
@ -881,6 +1023,7 @@ static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
|
||||||
* would write 0xff bytes off the end of the structure and trash
|
* would write 0xff bytes off the end of the structure and trash
|
||||||
* data on the struct.
|
* data on the struct.
|
||||||
*/
|
*/
|
||||||
|
sigmask = host_signal_mask(uc);
|
||||||
memset(sigmask, 0xff, SIGSET_T_SIZE);
|
memset(sigmask, 0xff, SIGSET_T_SIZE);
|
||||||
sigdelset(sigmask, SIGSEGV);
|
sigdelset(sigmask, SIGSEGV);
|
||||||
sigdelset(sigmask, SIGBUS);
|
sigdelset(sigmask, SIGBUS);
|
||||||
|
@ -936,7 +1079,6 @@ int do_sigaction(int sig, const struct target_sigaction *act,
|
||||||
struct target_sigaction *oact, abi_ulong ka_restorer)
|
struct target_sigaction *oact, abi_ulong ka_restorer)
|
||||||
{
|
{
|
||||||
struct target_sigaction *k;
|
struct target_sigaction *k;
|
||||||
struct sigaction act1;
|
|
||||||
int host_sig;
|
int host_sig;
|
||||||
int ret = 0;
|
int ret = 0;
|
||||||
|
|
||||||
|
@ -996,22 +1138,27 @@ int do_sigaction(int sig, const struct target_sigaction *act,
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
if (host_sig != SIGSEGV && host_sig != SIGBUS) {
|
if (host_sig != SIGSEGV && host_sig != SIGBUS) {
|
||||||
|
struct sigaction act1;
|
||||||
|
|
||||||
sigfillset(&act1.sa_mask);
|
sigfillset(&act1.sa_mask);
|
||||||
act1.sa_flags = SA_SIGINFO;
|
act1.sa_flags = SA_SIGINFO;
|
||||||
if (k->sa_flags & TARGET_SA_RESTART)
|
|
||||||
act1.sa_flags |= SA_RESTART;
|
|
||||||
/* NOTE: it is important to update the host kernel signal
|
|
||||||
ignore state to avoid getting unexpected interrupted
|
|
||||||
syscalls */
|
|
||||||
if (k->_sa_handler == TARGET_SIG_IGN) {
|
if (k->_sa_handler == TARGET_SIG_IGN) {
|
||||||
|
/*
|
||||||
|
* It is important to update the host kernel signal ignore
|
||||||
|
* state to avoid getting unexpected interrupted syscalls.
|
||||||
|
*/
|
||||||
act1.sa_sigaction = (void *)SIG_IGN;
|
act1.sa_sigaction = (void *)SIG_IGN;
|
||||||
} else if (k->_sa_handler == TARGET_SIG_DFL) {
|
} else if (k->_sa_handler == TARGET_SIG_DFL) {
|
||||||
if (fatal_signal (sig))
|
if (core_dump_signal(sig)) {
|
||||||
act1.sa_sigaction = host_signal_handler;
|
act1.sa_sigaction = host_signal_handler;
|
||||||
else
|
} else {
|
||||||
act1.sa_sigaction = (void *)SIG_DFL;
|
act1.sa_sigaction = (void *)SIG_DFL;
|
||||||
|
}
|
||||||
} else {
|
} else {
|
||||||
act1.sa_sigaction = host_signal_handler;
|
act1.sa_sigaction = host_signal_handler;
|
||||||
|
if (k->sa_flags & TARGET_SA_RESTART) {
|
||||||
|
act1.sa_flags |= SA_RESTART;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
ret = sigaction(host_sig, &act1, NULL);
|
ret = sigaction(host_sig, &act1, NULL);
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue