mirror of https://github.com/xemu-project/xemu.git
Demacrofy the SoftMMU
- the demacro itself - refactor TLB_RECHECK and fix bug - move unaligned handler out -----BEGIN PGP SIGNATURE----- iQEzBAABCgAdFiEEZoWumedRZ7yvyN81+9DbCVqeKkQFAlzV0jYACgkQ+9DbCVqe KkRgIwf/bxPve7fyfQESPL4l2vzOhrNW0GDM+ZiEv+gg9LBIm3CYmBVDDdd8DKE5 JEUQlF4QbqOzvFrZTMqnHphMrbalaEe+3z9h2QxnW5PlHIJmagxqLWx5Epu3HxkU PhvYrUXg81ENAZP0LbUE1YHj43MGg/L2ADFqMSjmSjHGcrnl95dCiKShYOfpNC1U Ck7spt1672+RKFMnQYe/J4z9Vq/iE+G0XK00M2m8pYgH3RJnEM0iblfA6mKIuCb2 et0McPICZ2rbapsZ1Mh3HuW7VXYVUvtgIozmI3DJwWIw0gUoPL5uQTgC+DeBZ3zP T/XKDeU1b0qTtJyvnHfuunzu9IlHcQ== =2rr+ -----END PGP SIGNATURE----- Merge remote-tracking branch 'remotes/stsquad/tags/pull-demacro-softmmu-100519-1' into staging Demacrofy the SoftMMU - the demacro itself - refactor TLB_RECHECK and fix bug - move unaligned handler out # gpg: Signature made Fri 10 May 2019 20:34:14 BST # gpg: using RSA key 6685AE99E75167BCAFC8DF35FBD0DB095A9E2A44 # gpg: Good signature from "Alex Bennée (Master Work Key) <alex.bennee@linaro.org>" [full] # Primary key fingerprint: 6685 AE99 E751 67BC AFC8 DF35 FBD0 DB09 5A9E 2A44 * remotes/stsquad/tags/pull-demacro-softmmu-100519-1: cputlb: Do unaligned store recursion to outermost function cputlb: Do unaligned load recursion to outermost function cputlb: Drop attribute flatten cputlb: Move TLB_RECHECK handling into load/store_helper accel/tcg: demacro cputlb Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
commit
04d6556c5c
|
@ -856,9 +856,8 @@ static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
|
|||
}
|
||||
|
||||
static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
|
||||
int mmu_idx,
|
||||
target_ulong addr, uintptr_t retaddr,
|
||||
bool recheck, MMUAccessType access_type, int size)
|
||||
int mmu_idx, target_ulong addr, uintptr_t retaddr,
|
||||
MMUAccessType access_type, int size)
|
||||
{
|
||||
CPUState *cpu = ENV_GET_CPU(env);
|
||||
hwaddr mr_offset;
|
||||
|
@ -868,30 +867,6 @@ static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
|
|||
bool locked = false;
|
||||
MemTxResult r;
|
||||
|
||||
if (recheck) {
|
||||
/*
|
||||
* This is a TLB_RECHECK access, where the MMU protection
|
||||
* covers a smaller range than a target page, and we must
|
||||
* repeat the MMU check here. This tlb_fill() call might
|
||||
* longjump out if this access should cause a guest exception.
|
||||
*/
|
||||
CPUTLBEntry *entry;
|
||||
target_ulong tlb_addr;
|
||||
|
||||
tlb_fill(cpu, addr, size, access_type, mmu_idx, retaddr);
|
||||
|
||||
entry = tlb_entry(env, mmu_idx, addr);
|
||||
tlb_addr = (access_type == MMU_DATA_LOAD ?
|
||||
entry->addr_read : entry->addr_code);
|
||||
if (!(tlb_addr & ~(TARGET_PAGE_MASK | TLB_RECHECK))) {
|
||||
/* RAM access */
|
||||
uintptr_t haddr = addr + entry->addend;
|
||||
|
||||
return ldn_p((void *)haddr, size);
|
||||
}
|
||||
/* Fall through for handling IO accesses */
|
||||
}
|
||||
|
||||
section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
|
||||
mr = section->mr;
|
||||
mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
|
||||
|
@ -925,9 +900,8 @@ static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
|
|||
}
|
||||
|
||||
static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
|
||||
int mmu_idx,
|
||||
uint64_t val, target_ulong addr,
|
||||
uintptr_t retaddr, bool recheck, int size)
|
||||
int mmu_idx, uint64_t val, target_ulong addr,
|
||||
uintptr_t retaddr, int size)
|
||||
{
|
||||
CPUState *cpu = ENV_GET_CPU(env);
|
||||
hwaddr mr_offset;
|
||||
|
@ -936,30 +910,6 @@ static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
|
|||
bool locked = false;
|
||||
MemTxResult r;
|
||||
|
||||
if (recheck) {
|
||||
/*
|
||||
* This is a TLB_RECHECK access, where the MMU protection
|
||||
* covers a smaller range than a target page, and we must
|
||||
* repeat the MMU check here. This tlb_fill() call might
|
||||
* longjump out if this access should cause a guest exception.
|
||||
*/
|
||||
CPUTLBEntry *entry;
|
||||
target_ulong tlb_addr;
|
||||
|
||||
tlb_fill(cpu, addr, size, MMU_DATA_STORE, mmu_idx, retaddr);
|
||||
|
||||
entry = tlb_entry(env, mmu_idx, addr);
|
||||
tlb_addr = tlb_addr_write(entry);
|
||||
if (!(tlb_addr & ~(TARGET_PAGE_MASK | TLB_RECHECK))) {
|
||||
/* RAM access */
|
||||
uintptr_t haddr = addr + entry->addend;
|
||||
|
||||
stn_p((void *)haddr, size, val);
|
||||
return;
|
||||
}
|
||||
/* Fall through for handling IO accesses */
|
||||
}
|
||||
|
||||
section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
|
||||
mr = section->mr;
|
||||
mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
|
||||
|
@ -1168,26 +1118,481 @@ static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
|
|||
}
|
||||
|
||||
#ifdef TARGET_WORDS_BIGENDIAN
|
||||
# define TGT_BE(X) (X)
|
||||
# define TGT_LE(X) BSWAP(X)
|
||||
#define NEED_BE_BSWAP 0
|
||||
#define NEED_LE_BSWAP 1
|
||||
#else
|
||||
# define TGT_BE(X) BSWAP(X)
|
||||
# define TGT_LE(X) (X)
|
||||
#define NEED_BE_BSWAP 1
|
||||
#define NEED_LE_BSWAP 0
|
||||
#endif
|
||||
|
||||
#define MMUSUFFIX _mmu
|
||||
/*
|
||||
* Byte Swap Helper
|
||||
*
|
||||
* This should all dead code away depending on the build host and
|
||||
* access type.
|
||||
*/
|
||||
|
||||
#define DATA_SIZE 1
|
||||
#include "softmmu_template.h"
|
||||
static inline uint64_t handle_bswap(uint64_t val, int size, bool big_endian)
|
||||
{
|
||||
if ((big_endian && NEED_BE_BSWAP) || (!big_endian && NEED_LE_BSWAP)) {
|
||||
switch (size) {
|
||||
case 1: return val;
|
||||
case 2: return bswap16(val);
|
||||
case 4: return bswap32(val);
|
||||
case 8: return bswap64(val);
|
||||
default:
|
||||
g_assert_not_reached();
|
||||
}
|
||||
} else {
|
||||
return val;
|
||||
}
|
||||
}
|
||||
|
||||
#define DATA_SIZE 2
|
||||
#include "softmmu_template.h"
|
||||
/*
|
||||
* Load Helpers
|
||||
*
|
||||
* We support two different access types. SOFTMMU_CODE_ACCESS is
|
||||
* specifically for reading instructions from system memory. It is
|
||||
* called by the translation loop and in some helpers where the code
|
||||
* is disassembled. It shouldn't be called directly by guest code.
|
||||
*/
|
||||
|
||||
#define DATA_SIZE 4
|
||||
#include "softmmu_template.h"
|
||||
typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr);
|
||||
|
||||
#define DATA_SIZE 8
|
||||
#include "softmmu_template.h"
|
||||
static inline uint64_t __attribute__((always_inline))
|
||||
load_helper(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi,
|
||||
uintptr_t retaddr, size_t size, bool big_endian, bool code_read,
|
||||
FullLoadHelper *full_load)
|
||||
{
|
||||
uintptr_t mmu_idx = get_mmuidx(oi);
|
||||
uintptr_t index = tlb_index(env, mmu_idx, addr);
|
||||
CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
|
||||
target_ulong tlb_addr = code_read ? entry->addr_code : entry->addr_read;
|
||||
const size_t tlb_off = code_read ?
|
||||
offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read);
|
||||
const MMUAccessType access_type =
|
||||
code_read ? MMU_INST_FETCH : MMU_DATA_LOAD;
|
||||
unsigned a_bits = get_alignment_bits(get_memop(oi));
|
||||
void *haddr;
|
||||
uint64_t res;
|
||||
|
||||
/* Handle CPU specific unaligned behaviour */
|
||||
if (addr & ((1 << a_bits) - 1)) {
|
||||
cpu_unaligned_access(ENV_GET_CPU(env), addr, access_type,
|
||||
mmu_idx, retaddr);
|
||||
}
|
||||
|
||||
/* If the TLB entry is for a different page, reload and try again. */
|
||||
if (!tlb_hit(tlb_addr, addr)) {
|
||||
if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
|
||||
addr & TARGET_PAGE_MASK)) {
|
||||
tlb_fill(ENV_GET_CPU(env), addr, size,
|
||||
access_type, mmu_idx, retaddr);
|
||||
index = tlb_index(env, mmu_idx, addr);
|
||||
entry = tlb_entry(env, mmu_idx, addr);
|
||||
}
|
||||
tlb_addr = code_read ? entry->addr_code : entry->addr_read;
|
||||
}
|
||||
|
||||
/* Handle an IO access. */
|
||||
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
|
||||
if ((addr & (size - 1)) != 0) {
|
||||
goto do_unaligned_access;
|
||||
}
|
||||
|
||||
if (tlb_addr & TLB_RECHECK) {
|
||||
/*
|
||||
* This is a TLB_RECHECK access, where the MMU protection
|
||||
* covers a smaller range than a target page, and we must
|
||||
* repeat the MMU check here. This tlb_fill() call might
|
||||
* longjump out if this access should cause a guest exception.
|
||||
*/
|
||||
tlb_fill(ENV_GET_CPU(env), addr, size,
|
||||
access_type, mmu_idx, retaddr);
|
||||
index = tlb_index(env, mmu_idx, addr);
|
||||
entry = tlb_entry(env, mmu_idx, addr);
|
||||
|
||||
tlb_addr = code_read ? entry->addr_code : entry->addr_read;
|
||||
tlb_addr &= ~TLB_RECHECK;
|
||||
if (!(tlb_addr & ~TARGET_PAGE_MASK)) {
|
||||
/* RAM access */
|
||||
goto do_aligned_access;
|
||||
}
|
||||
}
|
||||
|
||||
res = io_readx(env, &env->iotlb[mmu_idx][index], mmu_idx, addr,
|
||||
retaddr, access_type, size);
|
||||
return handle_bswap(res, size, big_endian);
|
||||
}
|
||||
|
||||
/* Handle slow unaligned access (it spans two pages or IO). */
|
||||
if (size > 1
|
||||
&& unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
|
||||
>= TARGET_PAGE_SIZE)) {
|
||||
target_ulong addr1, addr2;
|
||||
tcg_target_ulong r1, r2;
|
||||
unsigned shift;
|
||||
do_unaligned_access:
|
||||
addr1 = addr & ~(size - 1);
|
||||
addr2 = addr1 + size;
|
||||
r1 = full_load(env, addr1, oi, retaddr);
|
||||
r2 = full_load(env, addr2, oi, retaddr);
|
||||
shift = (addr & (size - 1)) * 8;
|
||||
|
||||
if (big_endian) {
|
||||
/* Big-endian combine. */
|
||||
res = (r1 << shift) | (r2 >> ((size * 8) - shift));
|
||||
} else {
|
||||
/* Little-endian combine. */
|
||||
res = (r1 >> shift) | (r2 << ((size * 8) - shift));
|
||||
}
|
||||
return res & MAKE_64BIT_MASK(0, size * 8);
|
||||
}
|
||||
|
||||
do_aligned_access:
|
||||
haddr = (void *)((uintptr_t)addr + entry->addend);
|
||||
switch (size) {
|
||||
case 1:
|
||||
res = ldub_p(haddr);
|
||||
break;
|
||||
case 2:
|
||||
if (big_endian) {
|
||||
res = lduw_be_p(haddr);
|
||||
} else {
|
||||
res = lduw_le_p(haddr);
|
||||
}
|
||||
break;
|
||||
case 4:
|
||||
if (big_endian) {
|
||||
res = (uint32_t)ldl_be_p(haddr);
|
||||
} else {
|
||||
res = (uint32_t)ldl_le_p(haddr);
|
||||
}
|
||||
break;
|
||||
case 8:
|
||||
if (big_endian) {
|
||||
res = ldq_be_p(haddr);
|
||||
} else {
|
||||
res = ldq_le_p(haddr);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
g_assert_not_reached();
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
/*
|
||||
* For the benefit of TCG generated code, we want to avoid the
|
||||
* complication of ABI-specific return type promotion and always
|
||||
* return a value extended to the register size of the host. This is
|
||||
* tcg_target_long, except in the case of a 32-bit host and 64-bit
|
||||
* data, and for that we always have uint64_t.
|
||||
*
|
||||
* We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
|
||||
*/
|
||||
|
||||
static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
return load_helper(env, addr, oi, retaddr, 1, false, false,
|
||||
full_ldub_mmu);
|
||||
}
|
||||
|
||||
tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
return full_ldub_mmu(env, addr, oi, retaddr);
|
||||
}
|
||||
|
||||
static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
return load_helper(env, addr, oi, retaddr, 2, false, false,
|
||||
full_le_lduw_mmu);
|
||||
}
|
||||
|
||||
tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
return full_le_lduw_mmu(env, addr, oi, retaddr);
|
||||
}
|
||||
|
||||
static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
return load_helper(env, addr, oi, retaddr, 2, true, false,
|
||||
full_be_lduw_mmu);
|
||||
}
|
||||
|
||||
tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
return full_be_lduw_mmu(env, addr, oi, retaddr);
|
||||
}
|
||||
|
||||
static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
return load_helper(env, addr, oi, retaddr, 4, false, false,
|
||||
full_le_ldul_mmu);
|
||||
}
|
||||
|
||||
tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
return full_le_ldul_mmu(env, addr, oi, retaddr);
|
||||
}
|
||||
|
||||
static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
return load_helper(env, addr, oi, retaddr, 4, true, false,
|
||||
full_be_ldul_mmu);
|
||||
}
|
||||
|
||||
tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
return full_be_ldul_mmu(env, addr, oi, retaddr);
|
||||
}
|
||||
|
||||
uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
return load_helper(env, addr, oi, retaddr, 8, false, false,
|
||||
helper_le_ldq_mmu);
|
||||
}
|
||||
|
||||
uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
return load_helper(env, addr, oi, retaddr, 8, true, false,
|
||||
helper_be_ldq_mmu);
|
||||
}
|
||||
|
||||
/*
|
||||
* Provide signed versions of the load routines as well. We can of course
|
||||
* avoid this for 64-bit data, or for 32-bit data on 32-bit host.
|
||||
*/
|
||||
|
||||
|
||||
tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr);
|
||||
}
|
||||
|
||||
tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr);
|
||||
}
|
||||
|
||||
tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr);
|
||||
}
|
||||
|
||||
tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr);
|
||||
}
|
||||
|
||||
tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr);
|
||||
}
|
||||
|
||||
/*
|
||||
* Store Helpers
|
||||
*/
|
||||
|
||||
static inline void __attribute__((always_inline))
|
||||
store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr, size_t size, bool big_endian)
|
||||
{
|
||||
uintptr_t mmu_idx = get_mmuidx(oi);
|
||||
uintptr_t index = tlb_index(env, mmu_idx, addr);
|
||||
CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
|
||||
target_ulong tlb_addr = tlb_addr_write(entry);
|
||||
const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
|
||||
unsigned a_bits = get_alignment_bits(get_memop(oi));
|
||||
void *haddr;
|
||||
|
||||
/* Handle CPU specific unaligned behaviour */
|
||||
if (addr & ((1 << a_bits) - 1)) {
|
||||
cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
|
||||
mmu_idx, retaddr);
|
||||
}
|
||||
|
||||
/* If the TLB entry is for a different page, reload and try again. */
|
||||
if (!tlb_hit(tlb_addr, addr)) {
|
||||
if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
|
||||
addr & TARGET_PAGE_MASK)) {
|
||||
tlb_fill(ENV_GET_CPU(env), addr, size, MMU_DATA_STORE,
|
||||
mmu_idx, retaddr);
|
||||
index = tlb_index(env, mmu_idx, addr);
|
||||
entry = tlb_entry(env, mmu_idx, addr);
|
||||
}
|
||||
tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK;
|
||||
}
|
||||
|
||||
/* Handle an IO access. */
|
||||
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
|
||||
if ((addr & (size - 1)) != 0) {
|
||||
goto do_unaligned_access;
|
||||
}
|
||||
|
||||
if (tlb_addr & TLB_RECHECK) {
|
||||
/*
|
||||
* This is a TLB_RECHECK access, where the MMU protection
|
||||
* covers a smaller range than a target page, and we must
|
||||
* repeat the MMU check here. This tlb_fill() call might
|
||||
* longjump out if this access should cause a guest exception.
|
||||
*/
|
||||
tlb_fill(ENV_GET_CPU(env), addr, size, MMU_DATA_STORE,
|
||||
mmu_idx, retaddr);
|
||||
index = tlb_index(env, mmu_idx, addr);
|
||||
entry = tlb_entry(env, mmu_idx, addr);
|
||||
|
||||
tlb_addr = tlb_addr_write(entry);
|
||||
tlb_addr &= ~TLB_RECHECK;
|
||||
if (!(tlb_addr & ~TARGET_PAGE_MASK)) {
|
||||
/* RAM access */
|
||||
goto do_aligned_access;
|
||||
}
|
||||
}
|
||||
|
||||
io_writex(env, &env->iotlb[mmu_idx][index], mmu_idx,
|
||||
handle_bswap(val, size, big_endian),
|
||||
addr, retaddr, size);
|
||||
return;
|
||||
}
|
||||
|
||||
/* Handle slow unaligned access (it spans two pages or IO). */
|
||||
if (size > 1
|
||||
&& unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
|
||||
>= TARGET_PAGE_SIZE)) {
|
||||
int i;
|
||||
uintptr_t index2;
|
||||
CPUTLBEntry *entry2;
|
||||
target_ulong page2, tlb_addr2;
|
||||
do_unaligned_access:
|
||||
/*
|
||||
* Ensure the second page is in the TLB. Note that the first page
|
||||
* is already guaranteed to be filled, and that the second page
|
||||
* cannot evict the first.
|
||||
*/
|
||||
page2 = (addr + size) & TARGET_PAGE_MASK;
|
||||
index2 = tlb_index(env, mmu_idx, page2);
|
||||
entry2 = tlb_entry(env, mmu_idx, page2);
|
||||
tlb_addr2 = tlb_addr_write(entry2);
|
||||
if (!tlb_hit_page(tlb_addr2, page2)
|
||||
&& !victim_tlb_hit(env, mmu_idx, index2, tlb_off,
|
||||
page2 & TARGET_PAGE_MASK)) {
|
||||
tlb_fill(ENV_GET_CPU(env), page2, size, MMU_DATA_STORE,
|
||||
mmu_idx, retaddr);
|
||||
}
|
||||
|
||||
/*
|
||||
* XXX: not efficient, but simple.
|
||||
* This loop must go in the forward direction to avoid issues
|
||||
* with self-modifying code in Windows 64-bit.
|
||||
*/
|
||||
for (i = 0; i < size; ++i) {
|
||||
uint8_t val8;
|
||||
if (big_endian) {
|
||||
/* Big-endian extract. */
|
||||
val8 = val >> (((size - 1) * 8) - (i * 8));
|
||||
} else {
|
||||
/* Little-endian extract. */
|
||||
val8 = val >> (i * 8);
|
||||
}
|
||||
helper_ret_stb_mmu(env, addr + i, val8, oi, retaddr);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
do_aligned_access:
|
||||
haddr = (void *)((uintptr_t)addr + entry->addend);
|
||||
switch (size) {
|
||||
case 1:
|
||||
stb_p(haddr, val);
|
||||
break;
|
||||
case 2:
|
||||
if (big_endian) {
|
||||
stw_be_p(haddr, val);
|
||||
} else {
|
||||
stw_le_p(haddr, val);
|
||||
}
|
||||
break;
|
||||
case 4:
|
||||
if (big_endian) {
|
||||
stl_be_p(haddr, val);
|
||||
} else {
|
||||
stl_le_p(haddr, val);
|
||||
}
|
||||
break;
|
||||
case 8:
|
||||
if (big_endian) {
|
||||
stq_be_p(haddr, val);
|
||||
} else {
|
||||
stq_le_p(haddr, val);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
g_assert_not_reached();
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
store_helper(env, addr, val, oi, retaddr, 1, false);
|
||||
}
|
||||
|
||||
void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
store_helper(env, addr, val, oi, retaddr, 2, false);
|
||||
}
|
||||
|
||||
void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
store_helper(env, addr, val, oi, retaddr, 2, true);
|
||||
}
|
||||
|
||||
void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
store_helper(env, addr, val, oi, retaddr, 4, false);
|
||||
}
|
||||
|
||||
void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
store_helper(env, addr, val, oi, retaddr, 4, true);
|
||||
}
|
||||
|
||||
void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
store_helper(env, addr, val, oi, retaddr, 8, false);
|
||||
}
|
||||
|
||||
void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
store_helper(env, addr, val, oi, retaddr, 8, true);
|
||||
}
|
||||
|
||||
/* First set of helpers allows passing in of OI and RETADDR. This makes
|
||||
them callable from other helpers. */
|
||||
|
@ -1248,20 +1653,81 @@ static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
|
|||
|
||||
/* Code access functions. */
|
||||
|
||||
#undef MMUSUFFIX
|
||||
#define MMUSUFFIX _cmmu
|
||||
#undef GETPC
|
||||
#define GETPC() ((uintptr_t)0)
|
||||
#define SOFTMMU_CODE_ACCESS
|
||||
static uint64_t full_ldub_cmmu(CPUArchState *env, target_ulong addr,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
return load_helper(env, addr, oi, retaddr, 1, false, true,
|
||||
full_ldub_cmmu);
|
||||
}
|
||||
|
||||
#define DATA_SIZE 1
|
||||
#include "softmmu_template.h"
|
||||
uint8_t helper_ret_ldb_cmmu(CPUArchState *env, target_ulong addr,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
return full_ldub_cmmu(env, addr, oi, retaddr);
|
||||
}
|
||||
|
||||
#define DATA_SIZE 2
|
||||
#include "softmmu_template.h"
|
||||
static uint64_t full_le_lduw_cmmu(CPUArchState *env, target_ulong addr,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
return load_helper(env, addr, oi, retaddr, 2, false, true,
|
||||
full_le_lduw_cmmu);
|
||||
}
|
||||
|
||||
#define DATA_SIZE 4
|
||||
#include "softmmu_template.h"
|
||||
uint16_t helper_le_ldw_cmmu(CPUArchState *env, target_ulong addr,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
return full_le_lduw_cmmu(env, addr, oi, retaddr);
|
||||
}
|
||||
|
||||
#define DATA_SIZE 8
|
||||
#include "softmmu_template.h"
|
||||
static uint64_t full_be_lduw_cmmu(CPUArchState *env, target_ulong addr,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
return load_helper(env, addr, oi, retaddr, 2, true, true,
|
||||
full_be_lduw_cmmu);
|
||||
}
|
||||
|
||||
uint16_t helper_be_ldw_cmmu(CPUArchState *env, target_ulong addr,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
return full_be_lduw_cmmu(env, addr, oi, retaddr);
|
||||
}
|
||||
|
||||
static uint64_t full_le_ldul_cmmu(CPUArchState *env, target_ulong addr,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
return load_helper(env, addr, oi, retaddr, 4, false, true,
|
||||
full_le_ldul_cmmu);
|
||||
}
|
||||
|
||||
uint32_t helper_le_ldl_cmmu(CPUArchState *env, target_ulong addr,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
return full_le_ldul_cmmu(env, addr, oi, retaddr);
|
||||
}
|
||||
|
||||
static uint64_t full_be_ldul_cmmu(CPUArchState *env, target_ulong addr,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
return load_helper(env, addr, oi, retaddr, 4, true, true,
|
||||
full_be_ldul_cmmu);
|
||||
}
|
||||
|
||||
uint32_t helper_be_ldl_cmmu(CPUArchState *env, target_ulong addr,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
return full_be_ldul_cmmu(env, addr, oi, retaddr);
|
||||
}
|
||||
|
||||
uint64_t helper_le_ldq_cmmu(CPUArchState *env, target_ulong addr,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
return load_helper(env, addr, oi, retaddr, 8, false, true,
|
||||
helper_le_ldq_cmmu);
|
||||
}
|
||||
|
||||
uint64_t helper_be_ldq_cmmu(CPUArchState *env, target_ulong addr,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
return load_helper(env, addr, oi, retaddr, 8, true, true,
|
||||
helper_be_ldq_cmmu);
|
||||
}
|
||||
|
|
|
@ -1,454 +0,0 @@
|
|||
/*
|
||||
* Software MMU support
|
||||
*
|
||||
* Generate helpers used by TCG for qemu_ld/st ops and code load
|
||||
* functions.
|
||||
*
|
||||
* Included from target op helpers and exec.c.
|
||||
*
|
||||
* Copyright (c) 2003 Fabrice Bellard
|
||||
*
|
||||
* This library is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Lesser General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2.1 of the License, or (at your option) any later version.
|
||||
*
|
||||
* This library is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public
|
||||
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#if DATA_SIZE == 8
|
||||
#define SUFFIX q
|
||||
#define LSUFFIX q
|
||||
#define SDATA_TYPE int64_t
|
||||
#define DATA_TYPE uint64_t
|
||||
#elif DATA_SIZE == 4
|
||||
#define SUFFIX l
|
||||
#define LSUFFIX l
|
||||
#define SDATA_TYPE int32_t
|
||||
#define DATA_TYPE uint32_t
|
||||
#elif DATA_SIZE == 2
|
||||
#define SUFFIX w
|
||||
#define LSUFFIX uw
|
||||
#define SDATA_TYPE int16_t
|
||||
#define DATA_TYPE uint16_t
|
||||
#elif DATA_SIZE == 1
|
||||
#define SUFFIX b
|
||||
#define LSUFFIX ub
|
||||
#define SDATA_TYPE int8_t
|
||||
#define DATA_TYPE uint8_t
|
||||
#else
|
||||
#error unsupported data size
|
||||
#endif
|
||||
|
||||
|
||||
/* For the benefit of TCG generated code, we want to avoid the complication
|
||||
of ABI-specific return type promotion and always return a value extended
|
||||
to the register size of the host. This is tcg_target_long, except in the
|
||||
case of a 32-bit host and 64-bit data, and for that we always have
|
||||
uint64_t. Don't bother with this widened value for SOFTMMU_CODE_ACCESS. */
|
||||
#if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8
|
||||
# define WORD_TYPE DATA_TYPE
|
||||
# define USUFFIX SUFFIX
|
||||
#else
|
||||
# define WORD_TYPE tcg_target_ulong
|
||||
# define USUFFIX glue(u, SUFFIX)
|
||||
# define SSUFFIX glue(s, SUFFIX)
|
||||
#endif
|
||||
|
||||
#ifdef SOFTMMU_CODE_ACCESS
|
||||
#define READ_ACCESS_TYPE MMU_INST_FETCH
|
||||
#define ADDR_READ addr_code
|
||||
#else
|
||||
#define READ_ACCESS_TYPE MMU_DATA_LOAD
|
||||
#define ADDR_READ addr_read
|
||||
#endif
|
||||
|
||||
#if DATA_SIZE == 8
|
||||
# define BSWAP(X) bswap64(X)
|
||||
#elif DATA_SIZE == 4
|
||||
# define BSWAP(X) bswap32(X)
|
||||
#elif DATA_SIZE == 2
|
||||
# define BSWAP(X) bswap16(X)
|
||||
#else
|
||||
# define BSWAP(X) (X)
|
||||
#endif
|
||||
|
||||
#if DATA_SIZE == 1
|
||||
# define helper_le_ld_name glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX)
|
||||
# define helper_be_ld_name helper_le_ld_name
|
||||
# define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX)
|
||||
# define helper_be_lds_name helper_le_lds_name
|
||||
# define helper_le_st_name glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX)
|
||||
# define helper_be_st_name helper_le_st_name
|
||||
#else
|
||||
# define helper_le_ld_name glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX)
|
||||
# define helper_be_ld_name glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX)
|
||||
# define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX)
|
||||
# define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX)
|
||||
# define helper_le_st_name glue(glue(helper_le_st, SUFFIX), MMUSUFFIX)
|
||||
# define helper_be_st_name glue(glue(helper_be_st, SUFFIX), MMUSUFFIX)
|
||||
#endif
|
||||
|
||||
#ifndef SOFTMMU_CODE_ACCESS
|
||||
static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env,
|
||||
size_t mmu_idx, size_t index,
|
||||
target_ulong addr,
|
||||
uintptr_t retaddr,
|
||||
bool recheck,
|
||||
MMUAccessType access_type)
|
||||
{
|
||||
CPUIOTLBEntry *iotlbentry = &env->iotlb[mmu_idx][index];
|
||||
return io_readx(env, iotlbentry, mmu_idx, addr, retaddr, recheck,
|
||||
access_type, DATA_SIZE);
|
||||
}
|
||||
#endif
|
||||
|
||||
WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
uintptr_t mmu_idx = get_mmuidx(oi);
|
||||
uintptr_t index = tlb_index(env, mmu_idx, addr);
|
||||
CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
|
||||
target_ulong tlb_addr = entry->ADDR_READ;
|
||||
unsigned a_bits = get_alignment_bits(get_memop(oi));
|
||||
uintptr_t haddr;
|
||||
DATA_TYPE res;
|
||||
|
||||
if (addr & ((1 << a_bits) - 1)) {
|
||||
cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
|
||||
mmu_idx, retaddr);
|
||||
}
|
||||
|
||||
/* If the TLB entry is for a different page, reload and try again. */
|
||||
if (!tlb_hit(tlb_addr, addr)) {
|
||||
if (!VICTIM_TLB_HIT(ADDR_READ, addr)) {
|
||||
tlb_fill(ENV_GET_CPU(env), addr, DATA_SIZE, READ_ACCESS_TYPE,
|
||||
mmu_idx, retaddr);
|
||||
index = tlb_index(env, mmu_idx, addr);
|
||||
entry = tlb_entry(env, mmu_idx, addr);
|
||||
}
|
||||
tlb_addr = entry->ADDR_READ;
|
||||
}
|
||||
|
||||
/* Handle an IO access. */
|
||||
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
|
||||
if ((addr & (DATA_SIZE - 1)) != 0) {
|
||||
goto do_unaligned_access;
|
||||
}
|
||||
|
||||
/* ??? Note that the io helpers always read data in the target
|
||||
byte ordering. We should push the LE/BE request down into io. */
|
||||
res = glue(io_read, SUFFIX)(env, mmu_idx, index, addr, retaddr,
|
||||
tlb_addr & TLB_RECHECK,
|
||||
READ_ACCESS_TYPE);
|
||||
res = TGT_LE(res);
|
||||
return res;
|
||||
}
|
||||
|
||||
/* Handle slow unaligned access (it spans two pages or IO). */
|
||||
if (DATA_SIZE > 1
|
||||
&& unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
|
||||
>= TARGET_PAGE_SIZE)) {
|
||||
target_ulong addr1, addr2;
|
||||
DATA_TYPE res1, res2;
|
||||
unsigned shift;
|
||||
do_unaligned_access:
|
||||
addr1 = addr & ~(DATA_SIZE - 1);
|
||||
addr2 = addr1 + DATA_SIZE;
|
||||
res1 = helper_le_ld_name(env, addr1, oi, retaddr);
|
||||
res2 = helper_le_ld_name(env, addr2, oi, retaddr);
|
||||
shift = (addr & (DATA_SIZE - 1)) * 8;
|
||||
|
||||
/* Little-endian combine. */
|
||||
res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift));
|
||||
return res;
|
||||
}
|
||||
|
||||
haddr = addr + entry->addend;
|
||||
#if DATA_SIZE == 1
|
||||
res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr);
|
||||
#else
|
||||
res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr);
|
||||
#endif
|
||||
return res;
|
||||
}
|
||||
|
||||
#if DATA_SIZE > 1
|
||||
WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
uintptr_t mmu_idx = get_mmuidx(oi);
|
||||
uintptr_t index = tlb_index(env, mmu_idx, addr);
|
||||
CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
|
||||
target_ulong tlb_addr = entry->ADDR_READ;
|
||||
unsigned a_bits = get_alignment_bits(get_memop(oi));
|
||||
uintptr_t haddr;
|
||||
DATA_TYPE res;
|
||||
|
||||
if (addr & ((1 << a_bits) - 1)) {
|
||||
cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
|
||||
mmu_idx, retaddr);
|
||||
}
|
||||
|
||||
/* If the TLB entry is for a different page, reload and try again. */
|
||||
if (!tlb_hit(tlb_addr, addr)) {
|
||||
if (!VICTIM_TLB_HIT(ADDR_READ, addr)) {
|
||||
tlb_fill(ENV_GET_CPU(env), addr, DATA_SIZE, READ_ACCESS_TYPE,
|
||||
mmu_idx, retaddr);
|
||||
index = tlb_index(env, mmu_idx, addr);
|
||||
entry = tlb_entry(env, mmu_idx, addr);
|
||||
}
|
||||
tlb_addr = entry->ADDR_READ;
|
||||
}
|
||||
|
||||
/* Handle an IO access. */
|
||||
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
|
||||
if ((addr & (DATA_SIZE - 1)) != 0) {
|
||||
goto do_unaligned_access;
|
||||
}
|
||||
|
||||
/* ??? Note that the io helpers always read data in the target
|
||||
byte ordering. We should push the LE/BE request down into io. */
|
||||
res = glue(io_read, SUFFIX)(env, mmu_idx, index, addr, retaddr,
|
||||
tlb_addr & TLB_RECHECK,
|
||||
READ_ACCESS_TYPE);
|
||||
res = TGT_BE(res);
|
||||
return res;
|
||||
}
|
||||
|
||||
/* Handle slow unaligned access (it spans two pages or IO). */
|
||||
if (DATA_SIZE > 1
|
||||
&& unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
|
||||
>= TARGET_PAGE_SIZE)) {
|
||||
target_ulong addr1, addr2;
|
||||
DATA_TYPE res1, res2;
|
||||
unsigned shift;
|
||||
do_unaligned_access:
|
||||
addr1 = addr & ~(DATA_SIZE - 1);
|
||||
addr2 = addr1 + DATA_SIZE;
|
||||
res1 = helper_be_ld_name(env, addr1, oi, retaddr);
|
||||
res2 = helper_be_ld_name(env, addr2, oi, retaddr);
|
||||
shift = (addr & (DATA_SIZE - 1)) * 8;
|
||||
|
||||
/* Big-endian combine. */
|
||||
res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift));
|
||||
return res;
|
||||
}
|
||||
|
||||
haddr = addr + entry->addend;
|
||||
res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr);
|
||||
return res;
|
||||
}
|
||||
#endif /* DATA_SIZE > 1 */
|
||||
|
||||
#ifndef SOFTMMU_CODE_ACCESS
|
||||
|
||||
/* Provide signed versions of the load routines as well. We can of course
|
||||
avoid this for 64-bit data, or for 32-bit data on 32-bit host. */
|
||||
#if DATA_SIZE * 8 < TCG_TARGET_REG_BITS
|
||||
WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
return (SDATA_TYPE)helper_le_ld_name(env, addr, oi, retaddr);
|
||||
}
|
||||
|
||||
# if DATA_SIZE > 1
|
||||
WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
return (SDATA_TYPE)helper_be_ld_name(env, addr, oi, retaddr);
|
||||
}
|
||||
# endif
|
||||
#endif
|
||||
|
||||
static inline void glue(io_write, SUFFIX)(CPUArchState *env,
|
||||
size_t mmu_idx, size_t index,
|
||||
DATA_TYPE val,
|
||||
target_ulong addr,
|
||||
uintptr_t retaddr,
|
||||
bool recheck)
|
||||
{
|
||||
CPUIOTLBEntry *iotlbentry = &env->iotlb[mmu_idx][index];
|
||||
return io_writex(env, iotlbentry, mmu_idx, val, addr, retaddr,
|
||||
recheck, DATA_SIZE);
|
||||
}
|
||||
|
||||
void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
uintptr_t mmu_idx = get_mmuidx(oi);
|
||||
uintptr_t index = tlb_index(env, mmu_idx, addr);
|
||||
CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
|
||||
target_ulong tlb_addr = tlb_addr_write(entry);
|
||||
unsigned a_bits = get_alignment_bits(get_memop(oi));
|
||||
uintptr_t haddr;
|
||||
|
||||
if (addr & ((1 << a_bits) - 1)) {
|
||||
cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
|
||||
mmu_idx, retaddr);
|
||||
}
|
||||
|
||||
/* If the TLB entry is for a different page, reload and try again. */
|
||||
if (!tlb_hit(tlb_addr, addr)) {
|
||||
if (!VICTIM_TLB_HIT(addr_write, addr)) {
|
||||
tlb_fill(ENV_GET_CPU(env), addr, DATA_SIZE, MMU_DATA_STORE,
|
||||
mmu_idx, retaddr);
|
||||
index = tlb_index(env, mmu_idx, addr);
|
||||
entry = tlb_entry(env, mmu_idx, addr);
|
||||
}
|
||||
tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK;
|
||||
}
|
||||
|
||||
/* Handle an IO access. */
|
||||
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
|
||||
if ((addr & (DATA_SIZE - 1)) != 0) {
|
||||
goto do_unaligned_access;
|
||||
}
|
||||
|
||||
/* ??? Note that the io helpers always read data in the target
|
||||
byte ordering. We should push the LE/BE request down into io. */
|
||||
val = TGT_LE(val);
|
||||
glue(io_write, SUFFIX)(env, mmu_idx, index, val, addr,
|
||||
retaddr, tlb_addr & TLB_RECHECK);
|
||||
return;
|
||||
}
|
||||
|
||||
/* Handle slow unaligned access (it spans two pages or IO). */
|
||||
if (DATA_SIZE > 1
|
||||
&& unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
|
||||
>= TARGET_PAGE_SIZE)) {
|
||||
int i;
|
||||
target_ulong page2;
|
||||
CPUTLBEntry *entry2;
|
||||
do_unaligned_access:
|
||||
/* Ensure the second page is in the TLB. Note that the first page
|
||||
is already guaranteed to be filled, and that the second page
|
||||
cannot evict the first. */
|
||||
page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK;
|
||||
entry2 = tlb_entry(env, mmu_idx, page2);
|
||||
if (!tlb_hit_page(tlb_addr_write(entry2), page2)
|
||||
&& !VICTIM_TLB_HIT(addr_write, page2)) {
|
||||
tlb_fill(ENV_GET_CPU(env), page2, DATA_SIZE, MMU_DATA_STORE,
|
||||
mmu_idx, retaddr);
|
||||
}
|
||||
|
||||
/* XXX: not efficient, but simple. */
|
||||
/* This loop must go in the forward direction to avoid issues
|
||||
with self-modifying code in Windows 64-bit. */
|
||||
for (i = 0; i < DATA_SIZE; ++i) {
|
||||
/* Little-endian extract. */
|
||||
uint8_t val8 = val >> (i * 8);
|
||||
glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
|
||||
oi, retaddr);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
haddr = addr + entry->addend;
|
||||
#if DATA_SIZE == 1
|
||||
glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val);
|
||||
#else
|
||||
glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val);
|
||||
#endif
|
||||
}
|
||||
|
||||
#if DATA_SIZE > 1
|
||||
void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
|
||||
TCGMemOpIdx oi, uintptr_t retaddr)
|
||||
{
|
||||
uintptr_t mmu_idx = get_mmuidx(oi);
|
||||
uintptr_t index = tlb_index(env, mmu_idx, addr);
|
||||
CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
|
||||
target_ulong tlb_addr = tlb_addr_write(entry);
|
||||
unsigned a_bits = get_alignment_bits(get_memop(oi));
|
||||
uintptr_t haddr;
|
||||
|
||||
if (addr & ((1 << a_bits) - 1)) {
|
||||
cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
|
||||
mmu_idx, retaddr);
|
||||
}
|
||||
|
||||
/* If the TLB entry is for a different page, reload and try again. */
|
||||
if (!tlb_hit(tlb_addr, addr)) {
|
||||
if (!VICTIM_TLB_HIT(addr_write, addr)) {
|
||||
tlb_fill(ENV_GET_CPU(env), addr, DATA_SIZE, MMU_DATA_STORE,
|
||||
mmu_idx, retaddr);
|
||||
index = tlb_index(env, mmu_idx, addr);
|
||||
entry = tlb_entry(env, mmu_idx, addr);
|
||||
}
|
||||
tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK;
|
||||
}
|
||||
|
||||
/* Handle an IO access. */
|
||||
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
|
||||
if ((addr & (DATA_SIZE - 1)) != 0) {
|
||||
goto do_unaligned_access;
|
||||
}
|
||||
|
||||
/* ??? Note that the io helpers always read data in the target
|
||||
byte ordering. We should push the LE/BE request down into io. */
|
||||
val = TGT_BE(val);
|
||||
glue(io_write, SUFFIX)(env, mmu_idx, index, val, addr, retaddr,
|
||||
tlb_addr & TLB_RECHECK);
|
||||
return;
|
||||
}
|
||||
|
||||
/* Handle slow unaligned access (it spans two pages or IO). */
|
||||
if (DATA_SIZE > 1
|
||||
&& unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
|
||||
>= TARGET_PAGE_SIZE)) {
|
||||
int i;
|
||||
target_ulong page2;
|
||||
CPUTLBEntry *entry2;
|
||||
do_unaligned_access:
|
||||
/* Ensure the second page is in the TLB. Note that the first page
|
||||
is already guaranteed to be filled, and that the second page
|
||||
cannot evict the first. */
|
||||
page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK;
|
||||
entry2 = tlb_entry(env, mmu_idx, page2);
|
||||
if (!tlb_hit_page(tlb_addr_write(entry2), page2)
|
||||
&& !VICTIM_TLB_HIT(addr_write, page2)) {
|
||||
tlb_fill(ENV_GET_CPU(env), page2, DATA_SIZE, MMU_DATA_STORE,
|
||||
mmu_idx, retaddr);
|
||||
}
|
||||
|
||||
/* XXX: not efficient, but simple */
|
||||
/* This loop must go in the forward direction to avoid issues
|
||||
with self-modifying code. */
|
||||
for (i = 0; i < DATA_SIZE; ++i) {
|
||||
/* Big-endian extract. */
|
||||
uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8));
|
||||
glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
|
||||
oi, retaddr);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
haddr = addr + entry->addend;
|
||||
glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val);
|
||||
}
|
||||
#endif /* DATA_SIZE > 1 */
|
||||
#endif /* !defined(SOFTMMU_CODE_ACCESS) */
|
||||
|
||||
#undef READ_ACCESS_TYPE
|
||||
#undef DATA_TYPE
|
||||
#undef SUFFIX
|
||||
#undef LSUFFIX
|
||||
#undef DATA_SIZE
|
||||
#undef ADDR_READ
|
||||
#undef WORD_TYPE
|
||||
#undef SDATA_TYPE
|
||||
#undef USUFFIX
|
||||
#undef SSUFFIX
|
||||
#undef BSWAP
|
||||
#undef helper_le_ld_name
|
||||
#undef helper_be_ld_name
|
||||
#undef helper_le_lds_name
|
||||
#undef helper_be_lds_name
|
||||
#undef helper_le_st_name
|
||||
#undef helper_be_st_name
|
Loading…
Reference in New Issue