mirror of https://github.com/xemu-project/xemu.git
added arm nwfpe support (initial patch by Ulrich Hecht)
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@609 c046a42c-6fe2-441c-8c8c-71466251a162
This commit is contained in:
parent
69de927c6c
commit
00406dff19
|
@ -0,0 +1,120 @@
|
|||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
The macro `BITS64' can be defined to indicate that 64-bit integer types are
|
||||
supported by the compiler.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#define BITS64
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Each of the following `typedef's defines the most convenient type that holds
|
||||
integers of at least as many bits as specified. For example, `uint8' should
|
||||
be the most convenient type that can hold unsigned integers of as many as
|
||||
8 bits. The `flag' type must be able to hold either a 0 or 1. For most
|
||||
implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
|
||||
to the same as `int'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
typedef char flag;
|
||||
typedef unsigned char uint8;
|
||||
typedef signed char int8;
|
||||
typedef int uint16;
|
||||
typedef int int16;
|
||||
typedef unsigned int uint32;
|
||||
typedef signed int int32;
|
||||
#ifdef BITS64
|
||||
typedef unsigned long long int bits64;
|
||||
typedef signed long long int sbits64;
|
||||
#endif
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Each of the following `typedef's defines a type that holds integers
|
||||
of _exactly_ the number of bits specified. For instance, for most
|
||||
implementation of C, `bits16' and `sbits16' should be `typedef'ed to
|
||||
`unsigned short int' and `signed short int' (or `short int'), respectively.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
typedef unsigned char bits8;
|
||||
typedef signed char sbits8;
|
||||
typedef unsigned short int bits16;
|
||||
typedef signed short int sbits16;
|
||||
typedef unsigned int bits32;
|
||||
typedef signed int sbits32;
|
||||
#ifdef BITS64
|
||||
typedef unsigned long long int uint64;
|
||||
typedef signed long long int int64;
|
||||
#endif
|
||||
|
||||
#ifdef BITS64
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
The `LIT64' macro takes as its argument a textual integer literal and if
|
||||
necessary ``marks'' the literal as having a 64-bit integer type. For
|
||||
example, the Gnu C Compiler (`gcc') requires that 64-bit literals be
|
||||
appended with the letters `LL' standing for `long long', which is `gcc's
|
||||
name for the 64-bit integer type. Some compilers may allow `LIT64' to be
|
||||
defined as the identity macro: `#define LIT64( a ) a'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#define LIT64( a ) a##LL
|
||||
#endif
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
The macro `INLINE' can be used before functions that should be inlined. If
|
||||
a compiler does not support explicit inlining, this macro should be defined
|
||||
to be `static'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#define INLINE extern __inline__
|
||||
|
||||
|
||||
/* For use as a GCC soft-float library we need some special function names. */
|
||||
|
||||
#ifdef __LIBFLOAT__
|
||||
|
||||
/* Some 32-bit ops can be mapped straight across by just changing the name. */
|
||||
#define float32_add __addsf3
|
||||
#define float32_sub __subsf3
|
||||
#define float32_mul __mulsf3
|
||||
#define float32_div __divsf3
|
||||
#define int32_to_float32 __floatsisf
|
||||
#define float32_to_int32_round_to_zero __fixsfsi
|
||||
#define float32_to_uint32_round_to_zero __fixunssfsi
|
||||
|
||||
/* These ones go through the glue code. To avoid namespace pollution
|
||||
we rename the internal functions too. */
|
||||
#define float32_eq ___float32_eq
|
||||
#define float32_le ___float32_le
|
||||
#define float32_lt ___float32_lt
|
||||
|
||||
/* All the 64-bit ops have to go through the glue, so we pull the same
|
||||
trick. */
|
||||
#define float64_add ___float64_add
|
||||
#define float64_sub ___float64_sub
|
||||
#define float64_mul ___float64_mul
|
||||
#define float64_div ___float64_div
|
||||
#define int32_to_float64 ___int32_to_float64
|
||||
#define float64_to_int32_round_to_zero ___float64_to_int32_round_to_zero
|
||||
#define float64_to_uint32_round_to_zero ___float64_to_uint32_round_to_zero
|
||||
#define float64_to_float32 ___float64_to_float32
|
||||
#define float32_to_float64 ___float32_to_float64
|
||||
#define float64_eq ___float64_eq
|
||||
#define float64_le ___float64_le
|
||||
#define float64_lt ___float64_lt
|
||||
|
||||
#if 0
|
||||
#define float64_add __adddf3
|
||||
#define float64_sub __subdf3
|
||||
#define float64_mul __muldf3
|
||||
#define float64_div __divdf3
|
||||
#define int32_to_float64 __floatsidf
|
||||
#define float64_to_int32_round_to_zero __fixdfsi
|
||||
#define float64_to_uint32_round_to_zero __fixunsdfsi
|
||||
#define float64_to_float32 __truncdfsf2
|
||||
#define float32_to_float64 __extendsfdf2
|
||||
#endif
|
||||
|
||||
#endif
|
|
@ -0,0 +1,288 @@
|
|||
/*
|
||||
NetWinder Floating Point Emulator
|
||||
(c) Rebel.COM, 1998,1999
|
||||
|
||||
Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||||
*/
|
||||
|
||||
#include "fpa11.h"
|
||||
#include "softfloat.h"
|
||||
#include "fpopcode.h"
|
||||
|
||||
float64 float64_exp(float64 Fm);
|
||||
float64 float64_ln(float64 Fm);
|
||||
float64 float64_sin(float64 rFm);
|
||||
float64 float64_cos(float64 rFm);
|
||||
float64 float64_arcsin(float64 rFm);
|
||||
float64 float64_arctan(float64 rFm);
|
||||
float64 float64_log(float64 rFm);
|
||||
float64 float64_tan(float64 rFm);
|
||||
float64 float64_arccos(float64 rFm);
|
||||
float64 float64_pow(float64 rFn,float64 rFm);
|
||||
float64 float64_pol(float64 rFn,float64 rFm);
|
||||
|
||||
unsigned int DoubleCPDO(const unsigned int opcode)
|
||||
{
|
||||
FPA11 *fpa11 = GET_FPA11();
|
||||
float64 rFm, rFn;
|
||||
unsigned int Fd, Fm, Fn, nRc = 1;
|
||||
|
||||
//printk("DoubleCPDO(0x%08x)\n",opcode);
|
||||
|
||||
Fm = getFm(opcode);
|
||||
if (CONSTANT_FM(opcode))
|
||||
{
|
||||
rFm = getDoubleConstant(Fm);
|
||||
}
|
||||
else
|
||||
{
|
||||
switch (fpa11->fType[Fm])
|
||||
{
|
||||
case typeSingle:
|
||||
rFm = float32_to_float64(fpa11->fpreg[Fm].fSingle);
|
||||
break;
|
||||
|
||||
case typeDouble:
|
||||
rFm = fpa11->fpreg[Fm].fDouble;
|
||||
break;
|
||||
|
||||
case typeExtended:
|
||||
// !! patb
|
||||
//printk("not implemented! why not?\n");
|
||||
//!! ScottB
|
||||
// should never get here, if extended involved
|
||||
// then other operand should be promoted then
|
||||
// ExtendedCPDO called.
|
||||
break;
|
||||
|
||||
default: return 0;
|
||||
}
|
||||
}
|
||||
|
||||
if (!MONADIC_INSTRUCTION(opcode))
|
||||
{
|
||||
Fn = getFn(opcode);
|
||||
switch (fpa11->fType[Fn])
|
||||
{
|
||||
case typeSingle:
|
||||
rFn = float32_to_float64(fpa11->fpreg[Fn].fSingle);
|
||||
break;
|
||||
|
||||
case typeDouble:
|
||||
rFn = fpa11->fpreg[Fn].fDouble;
|
||||
break;
|
||||
|
||||
default: return 0;
|
||||
}
|
||||
}
|
||||
|
||||
Fd = getFd(opcode);
|
||||
/* !! this switch isn't optimized; better (opcode & MASK_ARITHMETIC_OPCODE)>>24, sort of */
|
||||
switch (opcode & MASK_ARITHMETIC_OPCODE)
|
||||
{
|
||||
/* dyadic opcodes */
|
||||
case ADF_CODE:
|
||||
fpa11->fpreg[Fd].fDouble = float64_add(rFn,rFm);
|
||||
break;
|
||||
|
||||
case MUF_CODE:
|
||||
case FML_CODE:
|
||||
fpa11->fpreg[Fd].fDouble = float64_mul(rFn,rFm);
|
||||
break;
|
||||
|
||||
case SUF_CODE:
|
||||
fpa11->fpreg[Fd].fDouble = float64_sub(rFn,rFm);
|
||||
break;
|
||||
|
||||
case RSF_CODE:
|
||||
fpa11->fpreg[Fd].fDouble = float64_sub(rFm,rFn);
|
||||
break;
|
||||
|
||||
case DVF_CODE:
|
||||
case FDV_CODE:
|
||||
fpa11->fpreg[Fd].fDouble = float64_div(rFn,rFm);
|
||||
break;
|
||||
|
||||
case RDF_CODE:
|
||||
case FRD_CODE:
|
||||
fpa11->fpreg[Fd].fDouble = float64_div(rFm,rFn);
|
||||
break;
|
||||
|
||||
#if 0
|
||||
case POW_CODE:
|
||||
fpa11->fpreg[Fd].fDouble = float64_pow(rFn,rFm);
|
||||
break;
|
||||
|
||||
case RPW_CODE:
|
||||
fpa11->fpreg[Fd].fDouble = float64_pow(rFm,rFn);
|
||||
break;
|
||||
#endif
|
||||
|
||||
case RMF_CODE:
|
||||
fpa11->fpreg[Fd].fDouble = float64_rem(rFn,rFm);
|
||||
break;
|
||||
|
||||
#if 0
|
||||
case POL_CODE:
|
||||
fpa11->fpreg[Fd].fDouble = float64_pol(rFn,rFm);
|
||||
break;
|
||||
#endif
|
||||
|
||||
/* monadic opcodes */
|
||||
case MVF_CODE:
|
||||
fpa11->fpreg[Fd].fDouble = rFm;
|
||||
break;
|
||||
|
||||
case MNF_CODE:
|
||||
{
|
||||
unsigned int *p = (unsigned int*)&rFm;
|
||||
p[1] ^= 0x80000000;
|
||||
fpa11->fpreg[Fd].fDouble = rFm;
|
||||
}
|
||||
break;
|
||||
|
||||
case ABS_CODE:
|
||||
{
|
||||
unsigned int *p = (unsigned int*)&rFm;
|
||||
p[1] &= 0x7fffffff;
|
||||
fpa11->fpreg[Fd].fDouble = rFm;
|
||||
}
|
||||
break;
|
||||
|
||||
case RND_CODE:
|
||||
case URD_CODE:
|
||||
fpa11->fpreg[Fd].fDouble = float64_round_to_int(rFm);
|
||||
break;
|
||||
|
||||
case SQT_CODE:
|
||||
fpa11->fpreg[Fd].fDouble = float64_sqrt(rFm);
|
||||
break;
|
||||
|
||||
#if 0
|
||||
case LOG_CODE:
|
||||
fpa11->fpreg[Fd].fDouble = float64_log(rFm);
|
||||
break;
|
||||
|
||||
case LGN_CODE:
|
||||
fpa11->fpreg[Fd].fDouble = float64_ln(rFm);
|
||||
break;
|
||||
|
||||
case EXP_CODE:
|
||||
fpa11->fpreg[Fd].fDouble = float64_exp(rFm);
|
||||
break;
|
||||
|
||||
case SIN_CODE:
|
||||
fpa11->fpreg[Fd].fDouble = float64_sin(rFm);
|
||||
break;
|
||||
|
||||
case COS_CODE:
|
||||
fpa11->fpreg[Fd].fDouble = float64_cos(rFm);
|
||||
break;
|
||||
|
||||
case TAN_CODE:
|
||||
fpa11->fpreg[Fd].fDouble = float64_tan(rFm);
|
||||
break;
|
||||
|
||||
case ASN_CODE:
|
||||
fpa11->fpreg[Fd].fDouble = float64_arcsin(rFm);
|
||||
break;
|
||||
|
||||
case ACS_CODE:
|
||||
fpa11->fpreg[Fd].fDouble = float64_arccos(rFm);
|
||||
break;
|
||||
|
||||
case ATN_CODE:
|
||||
fpa11->fpreg[Fd].fDouble = float64_arctan(rFm);
|
||||
break;
|
||||
#endif
|
||||
|
||||
case NRM_CODE:
|
||||
break;
|
||||
|
||||
default:
|
||||
{
|
||||
nRc = 0;
|
||||
}
|
||||
}
|
||||
|
||||
if (0 != nRc) fpa11->fType[Fd] = typeDouble;
|
||||
return nRc;
|
||||
}
|
||||
|
||||
#if 0
|
||||
float64 float64_exp(float64 rFm)
|
||||
{
|
||||
return rFm;
|
||||
//series
|
||||
}
|
||||
|
||||
float64 float64_ln(float64 rFm)
|
||||
{
|
||||
return rFm;
|
||||
//series
|
||||
}
|
||||
|
||||
float64 float64_sin(float64 rFm)
|
||||
{
|
||||
return rFm;
|
||||
//series
|
||||
}
|
||||
|
||||
float64 float64_cos(float64 rFm)
|
||||
{
|
||||
return rFm;
|
||||
//series
|
||||
}
|
||||
|
||||
#if 0
|
||||
float64 float64_arcsin(float64 rFm)
|
||||
{
|
||||
//series
|
||||
}
|
||||
|
||||
float64 float64_arctan(float64 rFm)
|
||||
{
|
||||
//series
|
||||
}
|
||||
#endif
|
||||
|
||||
float64 float64_log(float64 rFm)
|
||||
{
|
||||
return float64_div(float64_ln(rFm),getDoubleConstant(7));
|
||||
}
|
||||
|
||||
float64 float64_tan(float64 rFm)
|
||||
{
|
||||
return float64_div(float64_sin(rFm),float64_cos(rFm));
|
||||
}
|
||||
|
||||
float64 float64_arccos(float64 rFm)
|
||||
{
|
||||
return rFm;
|
||||
//return float64_sub(halfPi,float64_arcsin(rFm));
|
||||
}
|
||||
|
||||
float64 float64_pow(float64 rFn,float64 rFm)
|
||||
{
|
||||
return float64_exp(float64_mul(rFm,float64_ln(rFn)));
|
||||
}
|
||||
|
||||
float64 float64_pol(float64 rFn,float64 rFm)
|
||||
{
|
||||
return float64_arctan(float64_div(rFn,rFm));
|
||||
}
|
||||
#endif
|
|
@ -0,0 +1,273 @@
|
|||
/*
|
||||
NetWinder Floating Point Emulator
|
||||
(c) Rebel.COM, 1998,1999
|
||||
|
||||
Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||||
*/
|
||||
|
||||
#include "fpa11.h"
|
||||
#include "softfloat.h"
|
||||
#include "fpopcode.h"
|
||||
|
||||
floatx80 floatx80_exp(floatx80 Fm);
|
||||
floatx80 floatx80_ln(floatx80 Fm);
|
||||
floatx80 floatx80_sin(floatx80 rFm);
|
||||
floatx80 floatx80_cos(floatx80 rFm);
|
||||
floatx80 floatx80_arcsin(floatx80 rFm);
|
||||
floatx80 floatx80_arctan(floatx80 rFm);
|
||||
floatx80 floatx80_log(floatx80 rFm);
|
||||
floatx80 floatx80_tan(floatx80 rFm);
|
||||
floatx80 floatx80_arccos(floatx80 rFm);
|
||||
floatx80 floatx80_pow(floatx80 rFn,floatx80 rFm);
|
||||
floatx80 floatx80_pol(floatx80 rFn,floatx80 rFm);
|
||||
|
||||
unsigned int ExtendedCPDO(const unsigned int opcode)
|
||||
{
|
||||
FPA11 *fpa11 = GET_FPA11();
|
||||
floatx80 rFm, rFn;
|
||||
unsigned int Fd, Fm, Fn, nRc = 1;
|
||||
|
||||
//printk("ExtendedCPDO(0x%08x)\n",opcode);
|
||||
|
||||
Fm = getFm(opcode);
|
||||
if (CONSTANT_FM(opcode))
|
||||
{
|
||||
rFm = getExtendedConstant(Fm);
|
||||
}
|
||||
else
|
||||
{
|
||||
switch (fpa11->fType[Fm])
|
||||
{
|
||||
case typeSingle:
|
||||
rFm = float32_to_floatx80(fpa11->fpreg[Fm].fSingle);
|
||||
break;
|
||||
|
||||
case typeDouble:
|
||||
rFm = float64_to_floatx80(fpa11->fpreg[Fm].fDouble);
|
||||
break;
|
||||
|
||||
case typeExtended:
|
||||
rFm = fpa11->fpreg[Fm].fExtended;
|
||||
break;
|
||||
|
||||
default: return 0;
|
||||
}
|
||||
}
|
||||
|
||||
if (!MONADIC_INSTRUCTION(opcode))
|
||||
{
|
||||
Fn = getFn(opcode);
|
||||
switch (fpa11->fType[Fn])
|
||||
{
|
||||
case typeSingle:
|
||||
rFn = float32_to_floatx80(fpa11->fpreg[Fn].fSingle);
|
||||
break;
|
||||
|
||||
case typeDouble:
|
||||
rFn = float64_to_floatx80(fpa11->fpreg[Fn].fDouble);
|
||||
break;
|
||||
|
||||
case typeExtended:
|
||||
rFn = fpa11->fpreg[Fn].fExtended;
|
||||
break;
|
||||
|
||||
default: return 0;
|
||||
}
|
||||
}
|
||||
|
||||
Fd = getFd(opcode);
|
||||
switch (opcode & MASK_ARITHMETIC_OPCODE)
|
||||
{
|
||||
/* dyadic opcodes */
|
||||
case ADF_CODE:
|
||||
fpa11->fpreg[Fd].fExtended = floatx80_add(rFn,rFm);
|
||||
break;
|
||||
|
||||
case MUF_CODE:
|
||||
case FML_CODE:
|
||||
fpa11->fpreg[Fd].fExtended = floatx80_mul(rFn,rFm);
|
||||
break;
|
||||
|
||||
case SUF_CODE:
|
||||
fpa11->fpreg[Fd].fExtended = floatx80_sub(rFn,rFm);
|
||||
break;
|
||||
|
||||
case RSF_CODE:
|
||||
fpa11->fpreg[Fd].fExtended = floatx80_sub(rFm,rFn);
|
||||
break;
|
||||
|
||||
case DVF_CODE:
|
||||
case FDV_CODE:
|
||||
fpa11->fpreg[Fd].fExtended = floatx80_div(rFn,rFm);
|
||||
break;
|
||||
|
||||
case RDF_CODE:
|
||||
case FRD_CODE:
|
||||
fpa11->fpreg[Fd].fExtended = floatx80_div(rFm,rFn);
|
||||
break;
|
||||
|
||||
#if 0
|
||||
case POW_CODE:
|
||||
fpa11->fpreg[Fd].fExtended = floatx80_pow(rFn,rFm);
|
||||
break;
|
||||
|
||||
case RPW_CODE:
|
||||
fpa11->fpreg[Fd].fExtended = floatx80_pow(rFm,rFn);
|
||||
break;
|
||||
#endif
|
||||
|
||||
case RMF_CODE:
|
||||
fpa11->fpreg[Fd].fExtended = floatx80_rem(rFn,rFm);
|
||||
break;
|
||||
|
||||
#if 0
|
||||
case POL_CODE:
|
||||
fpa11->fpreg[Fd].fExtended = floatx80_pol(rFn,rFm);
|
||||
break;
|
||||
#endif
|
||||
|
||||
/* monadic opcodes */
|
||||
case MVF_CODE:
|
||||
fpa11->fpreg[Fd].fExtended = rFm;
|
||||
break;
|
||||
|
||||
case MNF_CODE:
|
||||
rFm.high ^= 0x8000;
|
||||
fpa11->fpreg[Fd].fExtended = rFm;
|
||||
break;
|
||||
|
||||
case ABS_CODE:
|
||||
rFm.high &= 0x7fff;
|
||||
fpa11->fpreg[Fd].fExtended = rFm;
|
||||
break;
|
||||
|
||||
case RND_CODE:
|
||||
case URD_CODE:
|
||||
fpa11->fpreg[Fd].fExtended = floatx80_round_to_int(rFm);
|
||||
break;
|
||||
|
||||
case SQT_CODE:
|
||||
fpa11->fpreg[Fd].fExtended = floatx80_sqrt(rFm);
|
||||
break;
|
||||
|
||||
#if 0
|
||||
case LOG_CODE:
|
||||
fpa11->fpreg[Fd].fExtended = floatx80_log(rFm);
|
||||
break;
|
||||
|
||||
case LGN_CODE:
|
||||
fpa11->fpreg[Fd].fExtended = floatx80_ln(rFm);
|
||||
break;
|
||||
|
||||
case EXP_CODE:
|
||||
fpa11->fpreg[Fd].fExtended = floatx80_exp(rFm);
|
||||
break;
|
||||
|
||||
case SIN_CODE:
|
||||
fpa11->fpreg[Fd].fExtended = floatx80_sin(rFm);
|
||||
break;
|
||||
|
||||
case COS_CODE:
|
||||
fpa11->fpreg[Fd].fExtended = floatx80_cos(rFm);
|
||||
break;
|
||||
|
||||
case TAN_CODE:
|
||||
fpa11->fpreg[Fd].fExtended = floatx80_tan(rFm);
|
||||
break;
|
||||
|
||||
case ASN_CODE:
|
||||
fpa11->fpreg[Fd].fExtended = floatx80_arcsin(rFm);
|
||||
break;
|
||||
|
||||
case ACS_CODE:
|
||||
fpa11->fpreg[Fd].fExtended = floatx80_arccos(rFm);
|
||||
break;
|
||||
|
||||
case ATN_CODE:
|
||||
fpa11->fpreg[Fd].fExtended = floatx80_arctan(rFm);
|
||||
break;
|
||||
#endif
|
||||
|
||||
case NRM_CODE:
|
||||
break;
|
||||
|
||||
default:
|
||||
{
|
||||
nRc = 0;
|
||||
}
|
||||
}
|
||||
|
||||
if (0 != nRc) fpa11->fType[Fd] = typeExtended;
|
||||
return nRc;
|
||||
}
|
||||
|
||||
#if 0
|
||||
floatx80 floatx80_exp(floatx80 Fm)
|
||||
{
|
||||
//series
|
||||
}
|
||||
|
||||
floatx80 floatx80_ln(floatx80 Fm)
|
||||
{
|
||||
//series
|
||||
}
|
||||
|
||||
floatx80 floatx80_sin(floatx80 rFm)
|
||||
{
|
||||
//series
|
||||
}
|
||||
|
||||
floatx80 floatx80_cos(floatx80 rFm)
|
||||
{
|
||||
//series
|
||||
}
|
||||
|
||||
floatx80 floatx80_arcsin(floatx80 rFm)
|
||||
{
|
||||
//series
|
||||
}
|
||||
|
||||
floatx80 floatx80_arctan(floatx80 rFm)
|
||||
{
|
||||
//series
|
||||
}
|
||||
|
||||
floatx80 floatx80_log(floatx80 rFm)
|
||||
{
|
||||
return floatx80_div(floatx80_ln(rFm),getExtendedConstant(7));
|
||||
}
|
||||
|
||||
floatx80 floatx80_tan(floatx80 rFm)
|
||||
{
|
||||
return floatx80_div(floatx80_sin(rFm),floatx80_cos(rFm));
|
||||
}
|
||||
|
||||
floatx80 floatx80_arccos(floatx80 rFm)
|
||||
{
|
||||
//return floatx80_sub(halfPi,floatx80_arcsin(rFm));
|
||||
}
|
||||
|
||||
floatx80 floatx80_pow(floatx80 rFn,floatx80 rFm)
|
||||
{
|
||||
return floatx80_exp(floatx80_mul(rFm,floatx80_ln(rFn)));
|
||||
}
|
||||
|
||||
floatx80 floatx80_pol(floatx80 rFn,floatx80 rFm)
|
||||
{
|
||||
return floatx80_arctan(floatx80_div(rFn,rFm));
|
||||
}
|
||||
#endif
|
|
@ -0,0 +1,231 @@
|
|||
/*
|
||||
NetWinder Floating Point Emulator
|
||||
(c) Rebel.COM, 1998,1999
|
||||
|
||||
Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||||
*/
|
||||
|
||||
#include "fpa11.h"
|
||||
|
||||
#include "fpopcode.h"
|
||||
|
||||
//#include "fpmodule.h"
|
||||
//#include "fpmodule.inl"
|
||||
|
||||
//#include <asm/system.h>
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
/* forward declarations */
|
||||
unsigned int EmulateCPDO(const unsigned int);
|
||||
unsigned int EmulateCPDT(const unsigned int);
|
||||
unsigned int EmulateCPRT(const unsigned int);
|
||||
|
||||
FPA11* qemufpa=0;
|
||||
unsigned int* user_registers=0;
|
||||
|
||||
/* Reset the FPA11 chip. Called to initialize and reset the emulator. */
|
||||
void resetFPA11(void)
|
||||
{
|
||||
int i;
|
||||
FPA11 *fpa11 = GET_FPA11();
|
||||
|
||||
/* initialize the register type array */
|
||||
for (i=0;i<=7;i++)
|
||||
{
|
||||
fpa11->fType[i] = typeNone;
|
||||
}
|
||||
|
||||
/* FPSR: set system id to FP_EMULATOR, set AC, clear all other bits */
|
||||
fpa11->fpsr = FP_EMULATOR | BIT_AC;
|
||||
|
||||
/* FPCR: set SB, AB and DA bits, clear all others */
|
||||
#if MAINTAIN_FPCR
|
||||
fpa11->fpcr = MASK_RESET;
|
||||
#endif
|
||||
}
|
||||
|
||||
void SetRoundingMode(const unsigned int opcode)
|
||||
{
|
||||
#if MAINTAIN_FPCR
|
||||
FPA11 *fpa11 = GET_FPA11();
|
||||
fpa11->fpcr &= ~MASK_ROUNDING_MODE;
|
||||
#endif
|
||||
switch (opcode & MASK_ROUNDING_MODE)
|
||||
{
|
||||
default:
|
||||
case ROUND_TO_NEAREST:
|
||||
float_rounding_mode = float_round_nearest_even;
|
||||
#if MAINTAIN_FPCR
|
||||
fpa11->fpcr |= ROUND_TO_NEAREST;
|
||||
#endif
|
||||
break;
|
||||
|
||||
case ROUND_TO_PLUS_INFINITY:
|
||||
float_rounding_mode = float_round_up;
|
||||
#if MAINTAIN_FPCR
|
||||
fpa11->fpcr |= ROUND_TO_PLUS_INFINITY;
|
||||
#endif
|
||||
break;
|
||||
|
||||
case ROUND_TO_MINUS_INFINITY:
|
||||
float_rounding_mode = float_round_down;
|
||||
#if MAINTAIN_FPCR
|
||||
fpa11->fpcr |= ROUND_TO_MINUS_INFINITY;
|
||||
#endif
|
||||
break;
|
||||
|
||||
case ROUND_TO_ZERO:
|
||||
float_rounding_mode = float_round_to_zero;
|
||||
#if MAINTAIN_FPCR
|
||||
fpa11->fpcr |= ROUND_TO_ZERO;
|
||||
#endif
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void SetRoundingPrecision(const unsigned int opcode)
|
||||
{
|
||||
#if MAINTAIN_FPCR
|
||||
FPA11 *fpa11 = GET_FPA11();
|
||||
fpa11->fpcr &= ~MASK_ROUNDING_PRECISION;
|
||||
#endif
|
||||
switch (opcode & MASK_ROUNDING_PRECISION)
|
||||
{
|
||||
case ROUND_SINGLE:
|
||||
floatx80_rounding_precision = 32;
|
||||
#if MAINTAIN_FPCR
|
||||
fpa11->fpcr |= ROUND_SINGLE;
|
||||
#endif
|
||||
break;
|
||||
|
||||
case ROUND_DOUBLE:
|
||||
floatx80_rounding_precision = 64;
|
||||
#if MAINTAIN_FPCR
|
||||
fpa11->fpcr |= ROUND_DOUBLE;
|
||||
#endif
|
||||
break;
|
||||
|
||||
case ROUND_EXTENDED:
|
||||
floatx80_rounding_precision = 80;
|
||||
#if MAINTAIN_FPCR
|
||||
fpa11->fpcr |= ROUND_EXTENDED;
|
||||
#endif
|
||||
break;
|
||||
|
||||
default: floatx80_rounding_precision = 80;
|
||||
}
|
||||
}
|
||||
|
||||
/* Emulate the instruction in the opcode. */
|
||||
unsigned int EmulateAll(unsigned int opcode, FPA11* qfpa, unsigned int* qregs)
|
||||
{
|
||||
unsigned int nRc = 0;
|
||||
// unsigned long flags;
|
||||
FPA11 *fpa11;
|
||||
// save_flags(flags); sti();
|
||||
|
||||
qemufpa=qfpa;
|
||||
user_registers=qregs;
|
||||
|
||||
#if 0
|
||||
fprintf(stderr,"emulating FP insn 0x%08x, PC=0x%08x\n",
|
||||
opcode, qregs[REG_PC]);
|
||||
#endif
|
||||
fpa11 = GET_FPA11();
|
||||
|
||||
if (fpa11->initflag == 0) /* good place for __builtin_expect */
|
||||
{
|
||||
resetFPA11();
|
||||
SetRoundingMode(ROUND_TO_NEAREST);
|
||||
SetRoundingPrecision(ROUND_EXTENDED);
|
||||
fpa11->initflag = 1;
|
||||
}
|
||||
|
||||
if (TEST_OPCODE(opcode,MASK_CPRT))
|
||||
{
|
||||
//fprintf(stderr,"emulating CPRT\n");
|
||||
/* Emulate conversion opcodes. */
|
||||
/* Emulate register transfer opcodes. */
|
||||
/* Emulate comparison opcodes. */
|
||||
nRc = EmulateCPRT(opcode);
|
||||
}
|
||||
else if (TEST_OPCODE(opcode,MASK_CPDO))
|
||||
{
|
||||
//fprintf(stderr,"emulating CPDO\n");
|
||||
/* Emulate monadic arithmetic opcodes. */
|
||||
/* Emulate dyadic arithmetic opcodes. */
|
||||
nRc = EmulateCPDO(opcode);
|
||||
}
|
||||
else if (TEST_OPCODE(opcode,MASK_CPDT))
|
||||
{
|
||||
//fprintf(stderr,"emulating CPDT\n");
|
||||
/* Emulate load/store opcodes. */
|
||||
/* Emulate load/store multiple opcodes. */
|
||||
nRc = EmulateCPDT(opcode);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Invalid instruction detected. Return FALSE. */
|
||||
nRc = 0;
|
||||
}
|
||||
|
||||
// restore_flags(flags);
|
||||
|
||||
//printf("returning %d\n",nRc);
|
||||
return(nRc);
|
||||
}
|
||||
|
||||
#if 0
|
||||
unsigned int EmulateAll1(unsigned int opcode)
|
||||
{
|
||||
switch ((opcode >> 24) & 0xf)
|
||||
{
|
||||
case 0xc:
|
||||
case 0xd:
|
||||
if ((opcode >> 20) & 0x1)
|
||||
{
|
||||
switch ((opcode >> 8) & 0xf)
|
||||
{
|
||||
case 0x1: return PerformLDF(opcode); break;
|
||||
case 0x2: return PerformLFM(opcode); break;
|
||||
default: return 0;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
switch ((opcode >> 8) & 0xf)
|
||||
{
|
||||
case 0x1: return PerformSTF(opcode); break;
|
||||
case 0x2: return PerformSFM(opcode); break;
|
||||
default: return 0;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case 0xe:
|
||||
if (opcode & 0x10)
|
||||
return EmulateCPDO(opcode);
|
||||
else
|
||||
return EmulateCPRT(opcode);
|
||||
break;
|
||||
|
||||
default: return 0;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
|
@ -0,0 +1,131 @@
|
|||
/*
|
||||
NetWinder Floating Point Emulator
|
||||
(c) Rebel.com, 1998-1999
|
||||
|
||||
Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||||
*/
|
||||
|
||||
#ifndef __FPA11_H__
|
||||
#define __FPA11_H__
|
||||
|
||||
#define GET_FPA11() (qemufpa)
|
||||
|
||||
/*
|
||||
* The processes registers are always at the very top of the 8K
|
||||
* stack+task struct. Use the same method as 'current' uses to
|
||||
* reach them.
|
||||
*/
|
||||
extern unsigned int *user_registers;
|
||||
|
||||
#define GET_USERREG() (user_registers)
|
||||
|
||||
/* Need task_struct */
|
||||
//#include <linux/sched.h>
|
||||
|
||||
/* includes */
|
||||
#include "fpsr.h" /* FP control and status register definitions */
|
||||
#include "softfloat.h"
|
||||
|
||||
#define typeNone 0x00
|
||||
#define typeSingle 0x01
|
||||
#define typeDouble 0x02
|
||||
#define typeExtended 0x03
|
||||
|
||||
/*
|
||||
* This must be no more and no less than 12 bytes.
|
||||
*/
|
||||
typedef union tagFPREG {
|
||||
floatx80 fExtended;
|
||||
float64 fDouble;
|
||||
float32 fSingle;
|
||||
} FPREG;
|
||||
|
||||
/*
|
||||
* FPA11 device model.
|
||||
*
|
||||
* This structure is exported to user space. Do not re-order.
|
||||
* Only add new stuff to the end, and do not change the size of
|
||||
* any element. Elements of this structure are used by user
|
||||
* space, and must match struct user_fp in include/asm-arm/user.h.
|
||||
* We include the byte offsets below for documentation purposes.
|
||||
*
|
||||
* The size of this structure and FPREG are checked by fpmodule.c
|
||||
* on initialisation. If the rules have been broken, NWFPE will
|
||||
* not initialise.
|
||||
*/
|
||||
typedef struct tagFPA11 {
|
||||
/* 0 */ FPREG fpreg[8]; /* 8 floating point registers */
|
||||
/* 96 */ FPSR fpsr; /* floating point status register */
|
||||
/* 100 */ FPCR fpcr; /* floating point control register */
|
||||
/* 104 */ unsigned char fType[8]; /* type of floating point value held in
|
||||
floating point registers. One of none
|
||||
single, double or extended. */
|
||||
/* 112 */ int initflag; /* this is special. The kernel guarantees
|
||||
to set it to 0 when a thread is launched,
|
||||
so we can use it to detect whether this
|
||||
instance of the emulator needs to be
|
||||
initialised. */
|
||||
} FPA11;
|
||||
|
||||
extern FPA11* qemufpa;
|
||||
|
||||
extern void resetFPA11(void);
|
||||
extern void SetRoundingMode(const unsigned int);
|
||||
extern void SetRoundingPrecision(const unsigned int);
|
||||
|
||||
#define get_user(x,y) ((x)=*(y))
|
||||
#define put_user(x,y) (*(y)=(x))
|
||||
static inline unsigned int readRegister(unsigned int reg)
|
||||
{
|
||||
return (user_registers[(reg)]);
|
||||
}
|
||||
|
||||
static inline void writeRegister(unsigned int x, unsigned int y)
|
||||
{
|
||||
#if 0
|
||||
printf("writing %d to r%d\n",y,x);
|
||||
#endif
|
||||
user_registers[(x)]=(y);
|
||||
}
|
||||
|
||||
static inline void writeConditionCodes(unsigned int x)
|
||||
{
|
||||
#if 0
|
||||
unsigned int y;
|
||||
unsigned int ZF;
|
||||
printf("setting flags to %x from %x\n",x,user_registers[16]);
|
||||
#endif
|
||||
user_registers[16]=(x); // cpsr
|
||||
user_registers[17]=(x>>29)&1; // cf
|
||||
user_registers[18]=(x<<3)&(1<<31); // vf
|
||||
user_registers[19]=x&(1<<31); // nzf
|
||||
if(!(x&(1<<30))) user_registers[19]++; // nzf must be non-zero for zf to be cleared
|
||||
|
||||
#if 0
|
||||
ZF = (user_registers[19] == 0);
|
||||
y=user_registers[16] | (user_registers[19] & 0x80000000) | (ZF << 30) |
|
||||
(user_registers[17] << 29) | ((user_registers[18] & 0x80000000) >> 3);
|
||||
if(y != x)
|
||||
printf("GODDAM SHIIIIIIIIIIIIIIIIT! %x %x nzf %x zf %x\n",x,y,user_registers[19],ZF);
|
||||
#endif
|
||||
}
|
||||
|
||||
#define REG_PC 15
|
||||
|
||||
unsigned int EmulateAll(unsigned int opcode, FPA11* qfpa, unsigned int* qregs);
|
||||
|
||||
#endif
|
|
@ -0,0 +1,51 @@
|
|||
/*
|
||||
NetWinder Floating Point Emulator
|
||||
(c) Rebel.COM, 1998,1999
|
||||
|
||||
Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||||
*/
|
||||
|
||||
#include "fpa11.h"
|
||||
|
||||
/* Read and write floating point status register */
|
||||
extern __inline__ unsigned int readFPSR(void)
|
||||
{
|
||||
FPA11 *fpa11 = GET_FPA11();
|
||||
return(fpa11->fpsr);
|
||||
}
|
||||
|
||||
extern __inline__ void writeFPSR(FPSR reg)
|
||||
{
|
||||
FPA11 *fpa11 = GET_FPA11();
|
||||
/* the sysid byte in the status register is readonly */
|
||||
fpa11->fpsr = (fpa11->fpsr & MASK_SYSID) | (reg & ~MASK_SYSID);
|
||||
}
|
||||
|
||||
/* Read and write floating point control register */
|
||||
extern __inline__ FPCR readFPCR(void)
|
||||
{
|
||||
FPA11 *fpa11 = GET_FPA11();
|
||||
/* clear SB, AB and DA bits before returning FPCR */
|
||||
return(fpa11->fpcr & ~MASK_RFC);
|
||||
}
|
||||
|
||||
extern __inline__ void writeFPCR(FPCR reg)
|
||||
{
|
||||
FPA11 *fpa11 = GET_FPA11();
|
||||
fpa11->fpcr &= ~MASK_WFC; /* clear SB, AB and DA bits */
|
||||
fpa11->fpcr |= (reg & MASK_WFC); /* write SB, AB and DA bits */
|
||||
}
|
|
@ -0,0 +1,117 @@
|
|||
/*
|
||||
NetWinder Floating Point Emulator
|
||||
(c) Rebel.COM, 1998,1999
|
||||
|
||||
Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||||
*/
|
||||
|
||||
#include "fpa11.h"
|
||||
#include "fpopcode.h"
|
||||
|
||||
unsigned int SingleCPDO(const unsigned int opcode);
|
||||
unsigned int DoubleCPDO(const unsigned int opcode);
|
||||
unsigned int ExtendedCPDO(const unsigned int opcode);
|
||||
|
||||
unsigned int EmulateCPDO(const unsigned int opcode)
|
||||
{
|
||||
FPA11 *fpa11 = GET_FPA11();
|
||||
unsigned int Fd, nType, nDest, nRc = 1;
|
||||
|
||||
//printk("EmulateCPDO(0x%08x)\n",opcode);
|
||||
|
||||
/* Get the destination size. If not valid let Linux perform
|
||||
an invalid instruction trap. */
|
||||
nDest = getDestinationSize(opcode);
|
||||
if (typeNone == nDest) return 0;
|
||||
|
||||
SetRoundingMode(opcode);
|
||||
|
||||
/* Compare the size of the operands in Fn and Fm.
|
||||
Choose the largest size and perform operations in that size,
|
||||
in order to make use of all the precision of the operands.
|
||||
If Fm is a constant, we just grab a constant of a size
|
||||
matching the size of the operand in Fn. */
|
||||
if (MONADIC_INSTRUCTION(opcode))
|
||||
nType = nDest;
|
||||
else
|
||||
nType = fpa11->fType[getFn(opcode)];
|
||||
|
||||
if (!CONSTANT_FM(opcode))
|
||||
{
|
||||
register unsigned int Fm = getFm(opcode);
|
||||
if (nType < fpa11->fType[Fm])
|
||||
{
|
||||
nType = fpa11->fType[Fm];
|
||||
}
|
||||
}
|
||||
|
||||
switch (nType)
|
||||
{
|
||||
case typeSingle : nRc = SingleCPDO(opcode); break;
|
||||
case typeDouble : nRc = DoubleCPDO(opcode); break;
|
||||
case typeExtended : nRc = ExtendedCPDO(opcode); break;
|
||||
default : nRc = 0;
|
||||
}
|
||||
|
||||
/* If the operation succeeded, check to see if the result in the
|
||||
destination register is the correct size. If not force it
|
||||
to be. */
|
||||
Fd = getFd(opcode);
|
||||
nType = fpa11->fType[Fd];
|
||||
if ((0 != nRc) && (nDest != nType))
|
||||
{
|
||||
switch (nDest)
|
||||
{
|
||||
case typeSingle:
|
||||
{
|
||||
if (typeDouble == nType)
|
||||
fpa11->fpreg[Fd].fSingle =
|
||||
float64_to_float32(fpa11->fpreg[Fd].fDouble);
|
||||
else
|
||||
fpa11->fpreg[Fd].fSingle =
|
||||
floatx80_to_float32(fpa11->fpreg[Fd].fExtended);
|
||||
}
|
||||
break;
|
||||
|
||||
case typeDouble:
|
||||
{
|
||||
if (typeSingle == nType)
|
||||
fpa11->fpreg[Fd].fDouble =
|
||||
float32_to_float64(fpa11->fpreg[Fd].fSingle);
|
||||
else
|
||||
fpa11->fpreg[Fd].fDouble =
|
||||
floatx80_to_float64(fpa11->fpreg[Fd].fExtended);
|
||||
}
|
||||
break;
|
||||
|
||||
case typeExtended:
|
||||
{
|
||||
if (typeSingle == nType)
|
||||
fpa11->fpreg[Fd].fExtended =
|
||||
float32_to_floatx80(fpa11->fpreg[Fd].fSingle);
|
||||
else
|
||||
fpa11->fpreg[Fd].fExtended =
|
||||
float64_to_floatx80(fpa11->fpreg[Fd].fDouble);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
fpa11->fType[Fd] = nDest;
|
||||
}
|
||||
|
||||
return nRc;
|
||||
}
|
|
@ -0,0 +1,358 @@
|
|||
/*
|
||||
NetWinder Floating Point Emulator
|
||||
(c) Rebel.com, 1998-1999
|
||||
(c) Philip Blundell, 1998
|
||||
|
||||
Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||||
*/
|
||||
|
||||
#include "fpa11.h"
|
||||
#include "softfloat.h"
|
||||
#include "fpopcode.h"
|
||||
//#include "fpmodule.h"
|
||||
//#include "fpmodule.inl"
|
||||
|
||||
//#include <asm/uaccess.h>
|
||||
|
||||
static inline
|
||||
void loadSingle(const unsigned int Fn,const unsigned int *pMem)
|
||||
{
|
||||
FPA11 *fpa11 = GET_FPA11();
|
||||
fpa11->fType[Fn] = typeSingle;
|
||||
get_user(fpa11->fpreg[Fn].fSingle, pMem);
|
||||
}
|
||||
|
||||
static inline
|
||||
void loadDouble(const unsigned int Fn,const unsigned int *pMem)
|
||||
{
|
||||
FPA11 *fpa11 = GET_FPA11();
|
||||
unsigned int *p;
|
||||
p = (unsigned int*)&fpa11->fpreg[Fn].fDouble;
|
||||
fpa11->fType[Fn] = typeDouble;
|
||||
get_user(p[0], &pMem[1]);
|
||||
get_user(p[1], &pMem[0]); /* sign & exponent */
|
||||
}
|
||||
|
||||
static inline
|
||||
void loadExtended(const unsigned int Fn,const unsigned int *pMem)
|
||||
{
|
||||
FPA11 *fpa11 = GET_FPA11();
|
||||
unsigned int *p;
|
||||
p = (unsigned int*)&fpa11->fpreg[Fn].fExtended;
|
||||
fpa11->fType[Fn] = typeExtended;
|
||||
get_user(p[0], &pMem[0]); /* sign & exponent */
|
||||
get_user(p[1], &pMem[2]); /* ls bits */
|
||||
get_user(p[2], &pMem[1]); /* ms bits */
|
||||
}
|
||||
|
||||
static inline
|
||||
void loadMultiple(const unsigned int Fn,const unsigned int *pMem)
|
||||
{
|
||||
FPA11 *fpa11 = GET_FPA11();
|
||||
register unsigned int *p;
|
||||
unsigned long x;
|
||||
|
||||
p = (unsigned int*)&(fpa11->fpreg[Fn]);
|
||||
get_user(x, &pMem[0]);
|
||||
fpa11->fType[Fn] = (x >> 14) & 0x00000003;
|
||||
|
||||
switch (fpa11->fType[Fn])
|
||||
{
|
||||
case typeSingle:
|
||||
case typeDouble:
|
||||
{
|
||||
get_user(p[0], &pMem[2]); /* Single */
|
||||
get_user(p[1], &pMem[1]); /* double msw */
|
||||
p[2] = 0; /* empty */
|
||||
}
|
||||
break;
|
||||
|
||||
case typeExtended:
|
||||
{
|
||||
get_user(p[1], &pMem[2]);
|
||||
get_user(p[2], &pMem[1]); /* msw */
|
||||
p[0] = (x & 0x80003fff);
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
static inline
|
||||
void storeSingle(const unsigned int Fn,unsigned int *pMem)
|
||||
{
|
||||
FPA11 *fpa11 = GET_FPA11();
|
||||
float32 val;
|
||||
register unsigned int *p = (unsigned int*)&val;
|
||||
|
||||
switch (fpa11->fType[Fn])
|
||||
{
|
||||
case typeDouble:
|
||||
val = float64_to_float32(fpa11->fpreg[Fn].fDouble);
|
||||
break;
|
||||
|
||||
case typeExtended:
|
||||
val = floatx80_to_float32(fpa11->fpreg[Fn].fExtended);
|
||||
break;
|
||||
|
||||
default: val = fpa11->fpreg[Fn].fSingle;
|
||||
}
|
||||
|
||||
put_user(p[0], pMem);
|
||||
}
|
||||
|
||||
static inline
|
||||
void storeDouble(const unsigned int Fn,unsigned int *pMem)
|
||||
{
|
||||
FPA11 *fpa11 = GET_FPA11();
|
||||
float64 val;
|
||||
register unsigned int *p = (unsigned int*)&val;
|
||||
|
||||
switch (fpa11->fType[Fn])
|
||||
{
|
||||
case typeSingle:
|
||||
val = float32_to_float64(fpa11->fpreg[Fn].fSingle);
|
||||
break;
|
||||
|
||||
case typeExtended:
|
||||
val = floatx80_to_float64(fpa11->fpreg[Fn].fExtended);
|
||||
break;
|
||||
|
||||
default: val = fpa11->fpreg[Fn].fDouble;
|
||||
}
|
||||
put_user(p[1], &pMem[0]); /* msw */
|
||||
put_user(p[0], &pMem[1]); /* lsw */
|
||||
}
|
||||
|
||||
static inline
|
||||
void storeExtended(const unsigned int Fn,unsigned int *pMem)
|
||||
{
|
||||
FPA11 *fpa11 = GET_FPA11();
|
||||
floatx80 val;
|
||||
register unsigned int *p = (unsigned int*)&val;
|
||||
|
||||
switch (fpa11->fType[Fn])
|
||||
{
|
||||
case typeSingle:
|
||||
val = float32_to_floatx80(fpa11->fpreg[Fn].fSingle);
|
||||
break;
|
||||
|
||||
case typeDouble:
|
||||
val = float64_to_floatx80(fpa11->fpreg[Fn].fDouble);
|
||||
break;
|
||||
|
||||
default: val = fpa11->fpreg[Fn].fExtended;
|
||||
}
|
||||
|
||||
put_user(p[0], &pMem[0]); /* sign & exp */
|
||||
put_user(p[1], &pMem[2]);
|
||||
put_user(p[2], &pMem[1]); /* msw */
|
||||
}
|
||||
|
||||
static inline
|
||||
void storeMultiple(const unsigned int Fn,unsigned int *pMem)
|
||||
{
|
||||
FPA11 *fpa11 = GET_FPA11();
|
||||
register unsigned int nType, *p;
|
||||
|
||||
p = (unsigned int*)&(fpa11->fpreg[Fn]);
|
||||
nType = fpa11->fType[Fn];
|
||||
|
||||
switch (nType)
|
||||
{
|
||||
case typeSingle:
|
||||
case typeDouble:
|
||||
{
|
||||
put_user(p[0], &pMem[2]); /* single */
|
||||
put_user(p[1], &pMem[1]); /* double msw */
|
||||
put_user(nType << 14, &pMem[0]);
|
||||
}
|
||||
break;
|
||||
|
||||
case typeExtended:
|
||||
{
|
||||
put_user(p[2], &pMem[1]); /* msw */
|
||||
put_user(p[1], &pMem[2]);
|
||||
put_user((p[0] & 0x80003fff) | (nType << 14), &pMem[0]);
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
unsigned int PerformLDF(const unsigned int opcode)
|
||||
{
|
||||
unsigned int *pBase, *pAddress, *pFinal, nRc = 1,
|
||||
write_back = WRITE_BACK(opcode);
|
||||
|
||||
//printk("PerformLDF(0x%08x), Fd = 0x%08x\n",opcode,getFd(opcode));
|
||||
|
||||
pBase = (unsigned int*)readRegister(getRn(opcode));
|
||||
if (REG_PC == getRn(opcode))
|
||||
{
|
||||
pBase += 2;
|
||||
write_back = 0;
|
||||
}
|
||||
|
||||
pFinal = pBase;
|
||||
if (BIT_UP_SET(opcode))
|
||||
pFinal += getOffset(opcode);
|
||||
else
|
||||
pFinal -= getOffset(opcode);
|
||||
|
||||
if (PREINDEXED(opcode)) pAddress = pFinal; else pAddress = pBase;
|
||||
|
||||
switch (opcode & MASK_TRANSFER_LENGTH)
|
||||
{
|
||||
case TRANSFER_SINGLE : loadSingle(getFd(opcode),pAddress); break;
|
||||
case TRANSFER_DOUBLE : loadDouble(getFd(opcode),pAddress); break;
|
||||
case TRANSFER_EXTENDED: loadExtended(getFd(opcode),pAddress); break;
|
||||
default: nRc = 0;
|
||||
}
|
||||
|
||||
if (write_back) writeRegister(getRn(opcode),(unsigned int)pFinal);
|
||||
return nRc;
|
||||
}
|
||||
|
||||
unsigned int PerformSTF(const unsigned int opcode)
|
||||
{
|
||||
unsigned int *pBase, *pAddress, *pFinal, nRc = 1,
|
||||
write_back = WRITE_BACK(opcode);
|
||||
|
||||
//printk("PerformSTF(0x%08x), Fd = 0x%08x\n",opcode,getFd(opcode));
|
||||
SetRoundingMode(ROUND_TO_NEAREST);
|
||||
|
||||
pBase = (unsigned int*)readRegister(getRn(opcode));
|
||||
if (REG_PC == getRn(opcode))
|
||||
{
|
||||
pBase += 2;
|
||||
write_back = 0;
|
||||
}
|
||||
|
||||
pFinal = pBase;
|
||||
if (BIT_UP_SET(opcode))
|
||||
pFinal += getOffset(opcode);
|
||||
else
|
||||
pFinal -= getOffset(opcode);
|
||||
|
||||
if (PREINDEXED(opcode)) pAddress = pFinal; else pAddress = pBase;
|
||||
|
||||
switch (opcode & MASK_TRANSFER_LENGTH)
|
||||
{
|
||||
case TRANSFER_SINGLE : storeSingle(getFd(opcode),pAddress); break;
|
||||
case TRANSFER_DOUBLE : storeDouble(getFd(opcode),pAddress); break;
|
||||
case TRANSFER_EXTENDED: storeExtended(getFd(opcode),pAddress); break;
|
||||
default: nRc = 0;
|
||||
}
|
||||
|
||||
if (write_back) writeRegister(getRn(opcode),(unsigned int)pFinal);
|
||||
return nRc;
|
||||
}
|
||||
|
||||
unsigned int PerformLFM(const unsigned int opcode)
|
||||
{
|
||||
unsigned int i, Fd, *pBase, *pAddress, *pFinal,
|
||||
write_back = WRITE_BACK(opcode);
|
||||
|
||||
pBase = (unsigned int*)readRegister(getRn(opcode));
|
||||
if (REG_PC == getRn(opcode))
|
||||
{
|
||||
pBase += 2;
|
||||
write_back = 0;
|
||||
}
|
||||
|
||||
pFinal = pBase;
|
||||
if (BIT_UP_SET(opcode))
|
||||
pFinal += getOffset(opcode);
|
||||
else
|
||||
pFinal -= getOffset(opcode);
|
||||
|
||||
if (PREINDEXED(opcode)) pAddress = pFinal; else pAddress = pBase;
|
||||
|
||||
Fd = getFd(opcode);
|
||||
for (i=getRegisterCount(opcode);i>0;i--)
|
||||
{
|
||||
loadMultiple(Fd,pAddress);
|
||||
pAddress += 3; Fd++;
|
||||
if (Fd == 8) Fd = 0;
|
||||
}
|
||||
|
||||
if (write_back) writeRegister(getRn(opcode),(unsigned int)pFinal);
|
||||
return 1;
|
||||
}
|
||||
|
||||
unsigned int PerformSFM(const unsigned int opcode)
|
||||
{
|
||||
unsigned int i, Fd, *pBase, *pAddress, *pFinal,
|
||||
write_back = WRITE_BACK(opcode);
|
||||
|
||||
pBase = (unsigned int*)readRegister(getRn(opcode));
|
||||
if (REG_PC == getRn(opcode))
|
||||
{
|
||||
pBase += 2;
|
||||
write_back = 0;
|
||||
}
|
||||
|
||||
pFinal = pBase;
|
||||
if (BIT_UP_SET(opcode))
|
||||
pFinal += getOffset(opcode);
|
||||
else
|
||||
pFinal -= getOffset(opcode);
|
||||
|
||||
if (PREINDEXED(opcode)) pAddress = pFinal; else pAddress = pBase;
|
||||
|
||||
Fd = getFd(opcode);
|
||||
for (i=getRegisterCount(opcode);i>0;i--)
|
||||
{
|
||||
storeMultiple(Fd,pAddress);
|
||||
pAddress += 3; Fd++;
|
||||
if (Fd == 8) Fd = 0;
|
||||
}
|
||||
|
||||
if (write_back) writeRegister(getRn(opcode),(unsigned int)pFinal);
|
||||
return 1;
|
||||
}
|
||||
|
||||
#if 1
|
||||
unsigned int EmulateCPDT(const unsigned int opcode)
|
||||
{
|
||||
unsigned int nRc = 0;
|
||||
|
||||
//printk("EmulateCPDT(0x%08x)\n",opcode);
|
||||
|
||||
if (LDF_OP(opcode))
|
||||
{
|
||||
nRc = PerformLDF(opcode);
|
||||
}
|
||||
else if (LFM_OP(opcode))
|
||||
{
|
||||
nRc = PerformLFM(opcode);
|
||||
}
|
||||
else if (STF_OP(opcode))
|
||||
{
|
||||
nRc = PerformSTF(opcode);
|
||||
}
|
||||
else if (SFM_OP(opcode))
|
||||
{
|
||||
nRc = PerformSFM(opcode);
|
||||
}
|
||||
else
|
||||
{
|
||||
nRc = 0;
|
||||
}
|
||||
|
||||
return nRc;
|
||||
}
|
||||
#endif
|
|
@ -0,0 +1,290 @@
|
|||
/*
|
||||
NetWinder Floating Point Emulator
|
||||
(c) Rebel.COM, 1998,1999
|
||||
(c) Philip Blundell, 1999
|
||||
|
||||
Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||||
*/
|
||||
|
||||
#include "fpa11.h"
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
#include "fpopcode.h"
|
||||
#include "fpa11.inl"
|
||||
//#include "fpmodule.h"
|
||||
//#include "fpmodule.inl"
|
||||
|
||||
extern flag floatx80_is_nan(floatx80);
|
||||
extern flag float64_is_nan( float64);
|
||||
extern flag float32_is_nan( float32);
|
||||
|
||||
void SetRoundingMode(const unsigned int opcode);
|
||||
|
||||
unsigned int PerformFLT(const unsigned int opcode);
|
||||
unsigned int PerformFIX(const unsigned int opcode);
|
||||
|
||||
static unsigned int
|
||||
PerformComparison(const unsigned int opcode);
|
||||
|
||||
unsigned int EmulateCPRT(const unsigned int opcode)
|
||||
{
|
||||
unsigned int nRc = 1;
|
||||
|
||||
//printk("EmulateCPRT(0x%08x)\n",opcode);
|
||||
|
||||
if (opcode & 0x800000)
|
||||
{
|
||||
/* This is some variant of a comparison (PerformComparison will
|
||||
sort out which one). Since most of the other CPRT
|
||||
instructions are oddball cases of some sort or other it makes
|
||||
sense to pull this out into a fast path. */
|
||||
return PerformComparison(opcode);
|
||||
}
|
||||
|
||||
/* Hint to GCC that we'd like a jump table rather than a load of CMPs */
|
||||
switch ((opcode & 0x700000) >> 20)
|
||||
{
|
||||
case FLT_CODE >> 20: nRc = PerformFLT(opcode); break;
|
||||
case FIX_CODE >> 20: nRc = PerformFIX(opcode); break;
|
||||
|
||||
case WFS_CODE >> 20: writeFPSR(readRegister(getRd(opcode))); break;
|
||||
case RFS_CODE >> 20: writeRegister(getRd(opcode),readFPSR()); break;
|
||||
|
||||
#if 0 /* We currently have no use for the FPCR, so there's no point
|
||||
in emulating it. */
|
||||
case WFC_CODE >> 20: writeFPCR(readRegister(getRd(opcode)));
|
||||
case RFC_CODE >> 20: writeRegister(getRd(opcode),readFPCR()); break;
|
||||
#endif
|
||||
|
||||
default: nRc = 0;
|
||||
}
|
||||
|
||||
return nRc;
|
||||
}
|
||||
|
||||
unsigned int PerformFLT(const unsigned int opcode)
|
||||
{
|
||||
FPA11 *fpa11 = GET_FPA11();
|
||||
|
||||
unsigned int nRc = 1;
|
||||
SetRoundingMode(opcode);
|
||||
|
||||
switch (opcode & MASK_ROUNDING_PRECISION)
|
||||
{
|
||||
case ROUND_SINGLE:
|
||||
{
|
||||
fpa11->fType[getFn(opcode)] = typeSingle;
|
||||
fpa11->fpreg[getFn(opcode)].fSingle =
|
||||
int32_to_float32(readRegister(getRd(opcode)));
|
||||
}
|
||||
break;
|
||||
|
||||
case ROUND_DOUBLE:
|
||||
{
|
||||
fpa11->fType[getFn(opcode)] = typeDouble;
|
||||
fpa11->fpreg[getFn(opcode)].fDouble =
|
||||
int32_to_float64(readRegister(getRd(opcode)));
|
||||
}
|
||||
break;
|
||||
|
||||
case ROUND_EXTENDED:
|
||||
{
|
||||
fpa11->fType[getFn(opcode)] = typeExtended;
|
||||
fpa11->fpreg[getFn(opcode)].fExtended =
|
||||
int32_to_floatx80(readRegister(getRd(opcode)));
|
||||
}
|
||||
break;
|
||||
|
||||
default: nRc = 0;
|
||||
}
|
||||
|
||||
return nRc;
|
||||
}
|
||||
|
||||
unsigned int PerformFIX(const unsigned int opcode)
|
||||
{
|
||||
FPA11 *fpa11 = GET_FPA11();
|
||||
unsigned int nRc = 1;
|
||||
unsigned int Fn = getFm(opcode);
|
||||
|
||||
SetRoundingMode(opcode);
|
||||
|
||||
switch (fpa11->fType[Fn])
|
||||
{
|
||||
case typeSingle:
|
||||
{
|
||||
writeRegister(getRd(opcode),
|
||||
float32_to_int32(fpa11->fpreg[Fn].fSingle));
|
||||
}
|
||||
break;
|
||||
|
||||
case typeDouble:
|
||||
{
|
||||
//printf("F%d is 0x%llx\n",Fn,fpa11->fpreg[Fn].fDouble);
|
||||
writeRegister(getRd(opcode),
|
||||
float64_to_int32(fpa11->fpreg[Fn].fDouble));
|
||||
}
|
||||
break;
|
||||
|
||||
case typeExtended:
|
||||
{
|
||||
writeRegister(getRd(opcode),
|
||||
floatx80_to_int32(fpa11->fpreg[Fn].fExtended));
|
||||
}
|
||||
break;
|
||||
|
||||
default: nRc = 0;
|
||||
}
|
||||
|
||||
return nRc;
|
||||
}
|
||||
|
||||
|
||||
static unsigned int __inline__
|
||||
PerformComparisonOperation(floatx80 Fn, floatx80 Fm)
|
||||
{
|
||||
unsigned int flags = 0;
|
||||
|
||||
/* test for less than condition */
|
||||
if (floatx80_lt(Fn,Fm))
|
||||
{
|
||||
flags |= CC_NEGATIVE;
|
||||
}
|
||||
|
||||
/* test for equal condition */
|
||||
if (floatx80_eq(Fn,Fm))
|
||||
{
|
||||
flags |= CC_ZERO;
|
||||
}
|
||||
|
||||
/* test for greater than or equal condition */
|
||||
if (floatx80_lt(Fm,Fn))
|
||||
{
|
||||
flags |= CC_CARRY;
|
||||
}
|
||||
|
||||
writeConditionCodes(flags);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* This instruction sets the flags N, Z, C, V in the FPSR. */
|
||||
|
||||
static unsigned int PerformComparison(const unsigned int opcode)
|
||||
{
|
||||
FPA11 *fpa11 = GET_FPA11();
|
||||
unsigned int Fn, Fm;
|
||||
floatx80 rFn, rFm;
|
||||
int e_flag = opcode & 0x400000; /* 1 if CxFE */
|
||||
int n_flag = opcode & 0x200000; /* 1 if CNxx */
|
||||
unsigned int flags = 0;
|
||||
|
||||
//printk("PerformComparison(0x%08x)\n",opcode);
|
||||
|
||||
Fn = getFn(opcode);
|
||||
Fm = getFm(opcode);
|
||||
|
||||
/* Check for unordered condition and convert all operands to 80-bit
|
||||
format.
|
||||
?? Might be some mileage in avoiding this conversion if possible.
|
||||
Eg, if both operands are 32-bit, detect this and do a 32-bit
|
||||
comparison (cheaper than an 80-bit one). */
|
||||
switch (fpa11->fType[Fn])
|
||||
{
|
||||
case typeSingle:
|
||||
//printk("single.\n");
|
||||
if (float32_is_nan(fpa11->fpreg[Fn].fSingle))
|
||||
goto unordered;
|
||||
rFn = float32_to_floatx80(fpa11->fpreg[Fn].fSingle);
|
||||
break;
|
||||
|
||||
case typeDouble:
|
||||
//printk("double.\n");
|
||||
if (float64_is_nan(fpa11->fpreg[Fn].fDouble))
|
||||
goto unordered;
|
||||
rFn = float64_to_floatx80(fpa11->fpreg[Fn].fDouble);
|
||||
break;
|
||||
|
||||
case typeExtended:
|
||||
//printk("extended.\n");
|
||||
if (floatx80_is_nan(fpa11->fpreg[Fn].fExtended))
|
||||
goto unordered;
|
||||
rFn = fpa11->fpreg[Fn].fExtended;
|
||||
break;
|
||||
|
||||
default: return 0;
|
||||
}
|
||||
|
||||
if (CONSTANT_FM(opcode))
|
||||
{
|
||||
//printk("Fm is a constant: #%d.\n",Fm);
|
||||
rFm = getExtendedConstant(Fm);
|
||||
if (floatx80_is_nan(rFm))
|
||||
goto unordered;
|
||||
}
|
||||
else
|
||||
{
|
||||
//printk("Fm = r%d which contains a ",Fm);
|
||||
switch (fpa11->fType[Fm])
|
||||
{
|
||||
case typeSingle:
|
||||
//printk("single.\n");
|
||||
if (float32_is_nan(fpa11->fpreg[Fm].fSingle))
|
||||
goto unordered;
|
||||
rFm = float32_to_floatx80(fpa11->fpreg[Fm].fSingle);
|
||||
break;
|
||||
|
||||
case typeDouble:
|
||||
//printk("double.\n");
|
||||
if (float64_is_nan(fpa11->fpreg[Fm].fDouble))
|
||||
goto unordered;
|
||||
rFm = float64_to_floatx80(fpa11->fpreg[Fm].fDouble);
|
||||
break;
|
||||
|
||||
case typeExtended:
|
||||
//printk("extended.\n");
|
||||
if (floatx80_is_nan(fpa11->fpreg[Fm].fExtended))
|
||||
goto unordered;
|
||||
rFm = fpa11->fpreg[Fm].fExtended;
|
||||
break;
|
||||
|
||||
default: return 0;
|
||||
}
|
||||
}
|
||||
|
||||
if (n_flag)
|
||||
{
|
||||
rFm.high ^= 0x8000;
|
||||
}
|
||||
|
||||
return PerformComparisonOperation(rFn,rFm);
|
||||
|
||||
unordered:
|
||||
/* ?? The FPA data sheet is pretty vague about this, in particular
|
||||
about whether the non-E comparisons can ever raise exceptions.
|
||||
This implementation is based on a combination of what it says in
|
||||
the data sheet, observation of how the Acorn emulator actually
|
||||
behaves (and how programs expect it to) and guesswork. */
|
||||
flags |= CC_OVERFLOW;
|
||||
flags &= ~(CC_ZERO | CC_NEGATIVE);
|
||||
|
||||
if (BIT_AC & readFPSR()) flags |= CC_CARRY;
|
||||
|
||||
if (e_flag) float_raise(float_flag_invalid);
|
||||
|
||||
writeConditionCodes(flags);
|
||||
return 1;
|
||||
}
|
|
@ -0,0 +1,148 @@
|
|||
/*
|
||||
NetWinder Floating Point Emulator
|
||||
(c) Rebel.COM, 1998,1999
|
||||
|
||||
Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||||
*/
|
||||
|
||||
#include "fpa11.h"
|
||||
#include "softfloat.h"
|
||||
#include "fpopcode.h"
|
||||
#include "fpsr.h"
|
||||
//#include "fpmodule.h"
|
||||
//#include "fpmodule.inl"
|
||||
|
||||
const floatx80 floatx80Constant[] = {
|
||||
{ 0x0000, 0x0000000000000000ULL}, /* extended 0.0 */
|
||||
{ 0x3fff, 0x8000000000000000ULL}, /* extended 1.0 */
|
||||
{ 0x4000, 0x8000000000000000ULL}, /* extended 2.0 */
|
||||
{ 0x4000, 0xc000000000000000ULL}, /* extended 3.0 */
|
||||
{ 0x4001, 0x8000000000000000ULL}, /* extended 4.0 */
|
||||
{ 0x4001, 0xa000000000000000ULL}, /* extended 5.0 */
|
||||
{ 0x3ffe, 0x8000000000000000ULL}, /* extended 0.5 */
|
||||
{ 0x4002, 0xa000000000000000ULL} /* extended 10.0 */
|
||||
};
|
||||
|
||||
const float64 float64Constant[] = {
|
||||
0x0000000000000000ULL, /* double 0.0 */
|
||||
0x3ff0000000000000ULL, /* double 1.0 */
|
||||
0x4000000000000000ULL, /* double 2.0 */
|
||||
0x4008000000000000ULL, /* double 3.0 */
|
||||
0x4010000000000000ULL, /* double 4.0 */
|
||||
0x4014000000000000ULL, /* double 5.0 */
|
||||
0x3fe0000000000000ULL, /* double 0.5 */
|
||||
0x4024000000000000ULL /* double 10.0 */
|
||||
};
|
||||
|
||||
const float32 float32Constant[] = {
|
||||
0x00000000, /* single 0.0 */
|
||||
0x3f800000, /* single 1.0 */
|
||||
0x40000000, /* single 2.0 */
|
||||
0x40400000, /* single 3.0 */
|
||||
0x40800000, /* single 4.0 */
|
||||
0x40a00000, /* single 5.0 */
|
||||
0x3f000000, /* single 0.5 */
|
||||
0x41200000 /* single 10.0 */
|
||||
};
|
||||
|
||||
unsigned int getTransferLength(const unsigned int opcode)
|
||||
{
|
||||
unsigned int nRc;
|
||||
|
||||
switch (opcode & MASK_TRANSFER_LENGTH)
|
||||
{
|
||||
case 0x00000000: nRc = 1; break; /* single precision */
|
||||
case 0x00008000: nRc = 2; break; /* double precision */
|
||||
case 0x00400000: nRc = 3; break; /* extended precision */
|
||||
default: nRc = 0;
|
||||
}
|
||||
|
||||
return(nRc);
|
||||
}
|
||||
|
||||
unsigned int getRegisterCount(const unsigned int opcode)
|
||||
{
|
||||
unsigned int nRc;
|
||||
|
||||
switch (opcode & MASK_REGISTER_COUNT)
|
||||
{
|
||||
case 0x00000000: nRc = 4; break;
|
||||
case 0x00008000: nRc = 1; break;
|
||||
case 0x00400000: nRc = 2; break;
|
||||
case 0x00408000: nRc = 3; break;
|
||||
default: nRc = 0;
|
||||
}
|
||||
|
||||
return(nRc);
|
||||
}
|
||||
|
||||
unsigned int getRoundingPrecision(const unsigned int opcode)
|
||||
{
|
||||
unsigned int nRc;
|
||||
|
||||
switch (opcode & MASK_ROUNDING_PRECISION)
|
||||
{
|
||||
case 0x00000000: nRc = 1; break;
|
||||
case 0x00000080: nRc = 2; break;
|
||||
case 0x00080000: nRc = 3; break;
|
||||
default: nRc = 0;
|
||||
}
|
||||
|
||||
return(nRc);
|
||||
}
|
||||
|
||||
unsigned int getDestinationSize(const unsigned int opcode)
|
||||
{
|
||||
unsigned int nRc;
|
||||
|
||||
switch (opcode & MASK_DESTINATION_SIZE)
|
||||
{
|
||||
case 0x00000000: nRc = typeSingle; break;
|
||||
case 0x00000080: nRc = typeDouble; break;
|
||||
case 0x00080000: nRc = typeExtended; break;
|
||||
default: nRc = typeNone;
|
||||
}
|
||||
|
||||
return(nRc);
|
||||
}
|
||||
|
||||
/* condition code lookup table
|
||||
index into the table is test code: EQ, NE, ... LT, GT, AL, NV
|
||||
bit position in short is condition code: NZCV */
|
||||
static const unsigned short aCC[16] = {
|
||||
0xF0F0, // EQ == Z set
|
||||
0x0F0F, // NE
|
||||
0xCCCC, // CS == C set
|
||||
0x3333, // CC
|
||||
0xFF00, // MI == N set
|
||||
0x00FF, // PL
|
||||
0xAAAA, // VS == V set
|
||||
0x5555, // VC
|
||||
0x0C0C, // HI == C set && Z clear
|
||||
0xF3F3, // LS == C clear || Z set
|
||||
0xAA55, // GE == (N==V)
|
||||
0x55AA, // LT == (N!=V)
|
||||
0x0A05, // GT == (!Z && (N==V))
|
||||
0xF5FA, // LE == (Z || (N!=V))
|
||||
0xFFFF, // AL always
|
||||
0 // NV
|
||||
};
|
||||
|
||||
unsigned int checkCondition(const unsigned int opcode, const unsigned int ccodes)
|
||||
{
|
||||
return (aCC[opcode>>28] >> (ccodes>>28)) & 1;
|
||||
}
|
|
@ -0,0 +1,390 @@
|
|||
/*
|
||||
NetWinder Floating Point Emulator
|
||||
(c) Rebel.COM, 1998,1999
|
||||
|
||||
Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||||
*/
|
||||
|
||||
#ifndef __FPOPCODE_H__
|
||||
#define __FPOPCODE_H__
|
||||
|
||||
/*
|
||||
ARM Floating Point Instruction Classes
|
||||
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|
||||
|c o n d|1 1 0 P|U|u|W|L| Rn |v| Fd |0|0|0|1| o f f s e t | CPDT
|
||||
|c o n d|1 1 0 P|U|w|W|L| Rn |x| Fd |0|0|0|1| o f f s e t | CPDT
|
||||
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|
||||
|c o n d|1 1 1 0|a|b|c|d|e| Fn |j| Fd |0|0|0|1|f|g|h|0|i| Fm | CPDO
|
||||
|c o n d|1 1 1 0|a|b|c|L|e| Fn | Rd |0|0|0|1|f|g|h|1|i| Fm | CPRT
|
||||
|c o n d|1 1 1 0|a|b|c|1|e| Fn |1|1|1|1|0|0|0|1|f|g|h|1|i| Fm | comparisons
|
||||
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|
||||
|
||||
CPDT data transfer instructions
|
||||
LDF, STF, LFM, SFM
|
||||
|
||||
CPDO dyadic arithmetic instructions
|
||||
ADF, MUF, SUF, RSF, DVF, RDF,
|
||||
POW, RPW, RMF, FML, FDV, FRD, POL
|
||||
|
||||
CPDO monadic arithmetic instructions
|
||||
MVF, MNF, ABS, RND, SQT, LOG, LGN, EXP,
|
||||
SIN, COS, TAN, ASN, ACS, ATN, URD, NRM
|
||||
|
||||
CPRT joint arithmetic/data transfer instructions
|
||||
FIX (arithmetic followed by load/store)
|
||||
FLT (load/store followed by arithmetic)
|
||||
CMF, CNF CMFE, CNFE (comparisons)
|
||||
WFS, RFS (write/read floating point status register)
|
||||
WFC, RFC (write/read floating point control register)
|
||||
|
||||
cond condition codes
|
||||
P pre/post index bit: 0 = postindex, 1 = preindex
|
||||
U up/down bit: 0 = stack grows down, 1 = stack grows up
|
||||
W write back bit: 1 = update base register (Rn)
|
||||
L load/store bit: 0 = store, 1 = load
|
||||
Rn base register
|
||||
Rd destination/source register
|
||||
Fd floating point destination register
|
||||
Fn floating point source register
|
||||
Fm floating point source register or floating point constant
|
||||
|
||||
uv transfer length (TABLE 1)
|
||||
wx register count (TABLE 2)
|
||||
abcd arithmetic opcode (TABLES 3 & 4)
|
||||
ef destination size (rounding precision) (TABLE 5)
|
||||
gh rounding mode (TABLE 6)
|
||||
j dyadic/monadic bit: 0 = dyadic, 1 = monadic
|
||||
i constant bit: 1 = constant (TABLE 6)
|
||||
*/
|
||||
|
||||
/*
|
||||
TABLE 1
|
||||
+-------------------------+---+---+---------+---------+
|
||||
| Precision | u | v | FPSR.EP | length |
|
||||
+-------------------------+---+---+---------+---------+
|
||||
| Single | 0 ü 0 | x | 1 words |
|
||||
| Double | 1 ü 1 | x | 2 words |
|
||||
| Extended | 1 ü 1 | x | 3 words |
|
||||
| Packed decimal | 1 ü 1 | 0 | 3 words |
|
||||
| Expanded packed decimal | 1 ü 1 | 1 | 4 words |
|
||||
+-------------------------+---+---+---------+---------+
|
||||
Note: x = don't care
|
||||
*/
|
||||
|
||||
/*
|
||||
TABLE 2
|
||||
+---+---+---------------------------------+
|
||||
| w | x | Number of registers to transfer |
|
||||
+---+---+---------------------------------+
|
||||
| 0 ü 1 | 1 |
|
||||
| 1 ü 0 | 2 |
|
||||
| 1 ü 1 | 3 |
|
||||
| 0 ü 0 | 4 |
|
||||
+---+---+---------------------------------+
|
||||
*/
|
||||
|
||||
/*
|
||||
TABLE 3: Dyadic Floating Point Opcodes
|
||||
+---+---+---+---+----------+-----------------------+-----------------------+
|
||||
| a | b | c | d | Mnemonic | Description | Operation |
|
||||
+---+---+---+---+----------+-----------------------+-----------------------+
|
||||
| 0 | 0 | 0 | 0 | ADF | Add | Fd := Fn + Fm |
|
||||
| 0 | 0 | 0 | 1 | MUF | Multiply | Fd := Fn * Fm |
|
||||
| 0 | 0 | 1 | 0 | SUF | Subtract | Fd := Fn - Fm |
|
||||
| 0 | 0 | 1 | 1 | RSF | Reverse subtract | Fd := Fm - Fn |
|
||||
| 0 | 1 | 0 | 0 | DVF | Divide | Fd := Fn / Fm |
|
||||
| 0 | 1 | 0 | 1 | RDF | Reverse divide | Fd := Fm / Fn |
|
||||
| 0 | 1 | 1 | 0 | POW | Power | Fd := Fn ^ Fm |
|
||||
| 0 | 1 | 1 | 1 | RPW | Reverse power | Fd := Fm ^ Fn |
|
||||
| 1 | 0 | 0 | 0 | RMF | Remainder | Fd := IEEE rem(Fn/Fm) |
|
||||
| 1 | 0 | 0 | 1 | FML | Fast Multiply | Fd := Fn * Fm |
|
||||
| 1 | 0 | 1 | 0 | FDV | Fast Divide | Fd := Fn / Fm |
|
||||
| 1 | 0 | 1 | 1 | FRD | Fast reverse divide | Fd := Fm / Fn |
|
||||
| 1 | 1 | 0 | 0 | POL | Polar angle (ArcTan2) | Fd := arctan2(Fn,Fm) |
|
||||
| 1 | 1 | 0 | 1 | | undefined instruction | trap |
|
||||
| 1 | 1 | 1 | 0 | | undefined instruction | trap |
|
||||
| 1 | 1 | 1 | 1 | | undefined instruction | trap |
|
||||
+---+---+---+---+----------+-----------------------+-----------------------+
|
||||
Note: POW, RPW, POL are deprecated, and are available for backwards
|
||||
compatibility only.
|
||||
*/
|
||||
|
||||
/*
|
||||
TABLE 4: Monadic Floating Point Opcodes
|
||||
+---+---+---+---+----------+-----------------------+-----------------------+
|
||||
| a | b | c | d | Mnemonic | Description | Operation |
|
||||
+---+---+---+---+----------+-----------------------+-----------------------+
|
||||
| 0 | 0 | 0 | 0 | MVF | Move | Fd := Fm |
|
||||
| 0 | 0 | 0 | 1 | MNF | Move negated | Fd := - Fm |
|
||||
| 0 | 0 | 1 | 0 | ABS | Absolute value | Fd := abs(Fm) |
|
||||
| 0 | 0 | 1 | 1 | RND | Round to integer | Fd := int(Fm) |
|
||||
| 0 | 1 | 0 | 0 | SQT | Square root | Fd := sqrt(Fm) |
|
||||
| 0 | 1 | 0 | 1 | LOG | Log base 10 | Fd := log10(Fm) |
|
||||
| 0 | 1 | 1 | 0 | LGN | Log base e | Fd := ln(Fm) |
|
||||
| 0 | 1 | 1 | 1 | EXP | Exponent | Fd := e ^ Fm |
|
||||
| 1 | 0 | 0 | 0 | SIN | Sine | Fd := sin(Fm) |
|
||||
| 1 | 0 | 0 | 1 | COS | Cosine | Fd := cos(Fm) |
|
||||
| 1 | 0 | 1 | 0 | TAN | Tangent | Fd := tan(Fm) |
|
||||
| 1 | 0 | 1 | 1 | ASN | Arc Sine | Fd := arcsin(Fm) |
|
||||
| 1 | 1 | 0 | 0 | ACS | Arc Cosine | Fd := arccos(Fm) |
|
||||
| 1 | 1 | 0 | 1 | ATN | Arc Tangent | Fd := arctan(Fm) |
|
||||
| 1 | 1 | 1 | 0 | URD | Unnormalized round | Fd := int(Fm) |
|
||||
| 1 | 1 | 1 | 1 | NRM | Normalize | Fd := norm(Fm) |
|
||||
+---+---+---+---+----------+-----------------------+-----------------------+
|
||||
Note: LOG, LGN, EXP, SIN, COS, TAN, ASN, ACS, ATN are deprecated, and are
|
||||
available for backwards compatibility only.
|
||||
*/
|
||||
|
||||
/*
|
||||
TABLE 5
|
||||
+-------------------------+---+---+
|
||||
| Rounding Precision | e | f |
|
||||
+-------------------------+---+---+
|
||||
| IEEE Single precision | 0 ü 0 |
|
||||
| IEEE Double precision | 0 ü 1 |
|
||||
| IEEE Extended precision | 1 ü 0 |
|
||||
| undefined (trap) | 1 ü 1 |
|
||||
+-------------------------+---+---+
|
||||
*/
|
||||
|
||||
/*
|
||||
TABLE 5
|
||||
+---------------------------------+---+---+
|
||||
| Rounding Mode | g | h |
|
||||
+---------------------------------+---+---+
|
||||
| Round to nearest (default) | 0 ü 0 |
|
||||
| Round toward plus infinity | 0 ü 1 |
|
||||
| Round toward negative infinity | 1 ü 0 |
|
||||
| Round toward zero | 1 ü 1 |
|
||||
+---------------------------------+---+---+
|
||||
*/
|
||||
|
||||
/*
|
||||
===
|
||||
=== Definitions for load and store instructions
|
||||
===
|
||||
*/
|
||||
|
||||
/* bit masks */
|
||||
#define BIT_PREINDEX 0x01000000
|
||||
#define BIT_UP 0x00800000
|
||||
#define BIT_WRITE_BACK 0x00200000
|
||||
#define BIT_LOAD 0x00100000
|
||||
|
||||
/* masks for load/store */
|
||||
#define MASK_CPDT 0x0c000000 /* data processing opcode */
|
||||
#define MASK_OFFSET 0x000000ff
|
||||
#define MASK_TRANSFER_LENGTH 0x00408000
|
||||
#define MASK_REGISTER_COUNT MASK_TRANSFER_LENGTH
|
||||
#define MASK_COPROCESSOR 0x00000f00
|
||||
|
||||
/* Tests for transfer length */
|
||||
#define TRANSFER_SINGLE 0x00000000
|
||||
#define TRANSFER_DOUBLE 0x00008000
|
||||
#define TRANSFER_EXTENDED 0x00400000
|
||||
#define TRANSFER_PACKED MASK_TRANSFER_LENGTH
|
||||
|
||||
/* Get the coprocessor number from the opcode. */
|
||||
#define getCoprocessorNumber(opcode) ((opcode & MASK_COPROCESSOR) >> 8)
|
||||
|
||||
/* Get the offset from the opcode. */
|
||||
#define getOffset(opcode) (opcode & MASK_OFFSET)
|
||||
|
||||
/* Tests for specific data transfer load/store opcodes. */
|
||||
#define TEST_OPCODE(opcode,mask) (((opcode) & (mask)) == (mask))
|
||||
|
||||
#define LOAD_OP(opcode) TEST_OPCODE((opcode),MASK_CPDT | BIT_LOAD)
|
||||
#define STORE_OP(opcode) ((opcode & (MASK_CPDT | BIT_LOAD)) == MASK_CPDT)
|
||||
|
||||
#define LDF_OP(opcode) (LOAD_OP(opcode) && (getCoprocessorNumber(opcode) == 1))
|
||||
#define LFM_OP(opcode) (LOAD_OP(opcode) && (getCoprocessorNumber(opcode) == 2))
|
||||
#define STF_OP(opcode) (STORE_OP(opcode) && (getCoprocessorNumber(opcode) == 1))
|
||||
#define SFM_OP(opcode) (STORE_OP(opcode) && (getCoprocessorNumber(opcode) == 2))
|
||||
|
||||
#define PREINDEXED(opcode) ((opcode & BIT_PREINDEX) != 0)
|
||||
#define POSTINDEXED(opcode) ((opcode & BIT_PREINDEX) == 0)
|
||||
#define BIT_UP_SET(opcode) ((opcode & BIT_UP) != 0)
|
||||
#define BIT_UP_CLEAR(opcode) ((opcode & BIT_DOWN) == 0)
|
||||
#define WRITE_BACK(opcode) ((opcode & BIT_WRITE_BACK) != 0)
|
||||
#define LOAD(opcode) ((opcode & BIT_LOAD) != 0)
|
||||
#define STORE(opcode) ((opcode & BIT_LOAD) == 0)
|
||||
|
||||
/*
|
||||
===
|
||||
=== Definitions for arithmetic instructions
|
||||
===
|
||||
*/
|
||||
/* bit masks */
|
||||
#define BIT_MONADIC 0x00008000
|
||||
#define BIT_CONSTANT 0x00000008
|
||||
|
||||
#define CONSTANT_FM(opcode) ((opcode & BIT_CONSTANT) != 0)
|
||||
#define MONADIC_INSTRUCTION(opcode) ((opcode & BIT_MONADIC) != 0)
|
||||
|
||||
/* instruction identification masks */
|
||||
#define MASK_CPDO 0x0e000000 /* arithmetic opcode */
|
||||
#define MASK_ARITHMETIC_OPCODE 0x00f08000
|
||||
#define MASK_DESTINATION_SIZE 0x00080080
|
||||
|
||||
/* dyadic arithmetic opcodes. */
|
||||
#define ADF_CODE 0x00000000
|
||||
#define MUF_CODE 0x00100000
|
||||
#define SUF_CODE 0x00200000
|
||||
#define RSF_CODE 0x00300000
|
||||
#define DVF_CODE 0x00400000
|
||||
#define RDF_CODE 0x00500000
|
||||
#define POW_CODE 0x00600000
|
||||
#define RPW_CODE 0x00700000
|
||||
#define RMF_CODE 0x00800000
|
||||
#define FML_CODE 0x00900000
|
||||
#define FDV_CODE 0x00a00000
|
||||
#define FRD_CODE 0x00b00000
|
||||
#define POL_CODE 0x00c00000
|
||||
/* 0x00d00000 is an invalid dyadic arithmetic opcode */
|
||||
/* 0x00e00000 is an invalid dyadic arithmetic opcode */
|
||||
/* 0x00f00000 is an invalid dyadic arithmetic opcode */
|
||||
|
||||
/* monadic arithmetic opcodes. */
|
||||
#define MVF_CODE 0x00008000
|
||||
#define MNF_CODE 0x00108000
|
||||
#define ABS_CODE 0x00208000
|
||||
#define RND_CODE 0x00308000
|
||||
#define SQT_CODE 0x00408000
|
||||
#define LOG_CODE 0x00508000
|
||||
#define LGN_CODE 0x00608000
|
||||
#define EXP_CODE 0x00708000
|
||||
#define SIN_CODE 0x00808000
|
||||
#define COS_CODE 0x00908000
|
||||
#define TAN_CODE 0x00a08000
|
||||
#define ASN_CODE 0x00b08000
|
||||
#define ACS_CODE 0x00c08000
|
||||
#define ATN_CODE 0x00d08000
|
||||
#define URD_CODE 0x00e08000
|
||||
#define NRM_CODE 0x00f08000
|
||||
|
||||
/*
|
||||
===
|
||||
=== Definitions for register transfer and comparison instructions
|
||||
===
|
||||
*/
|
||||
|
||||
#define MASK_CPRT 0x0e000010 /* register transfer opcode */
|
||||
#define MASK_CPRT_CODE 0x00f00000
|
||||
#define FLT_CODE 0x00000000
|
||||
#define FIX_CODE 0x00100000
|
||||
#define WFS_CODE 0x00200000
|
||||
#define RFS_CODE 0x00300000
|
||||
#define WFC_CODE 0x00400000
|
||||
#define RFC_CODE 0x00500000
|
||||
#define CMF_CODE 0x00900000
|
||||
#define CNF_CODE 0x00b00000
|
||||
#define CMFE_CODE 0x00d00000
|
||||
#define CNFE_CODE 0x00f00000
|
||||
|
||||
/*
|
||||
===
|
||||
=== Common definitions
|
||||
===
|
||||
*/
|
||||
|
||||
/* register masks */
|
||||
#define MASK_Rd 0x0000f000
|
||||
#define MASK_Rn 0x000f0000
|
||||
#define MASK_Fd 0x00007000
|
||||
#define MASK_Fm 0x00000007
|
||||
#define MASK_Fn 0x00070000
|
||||
|
||||
/* condition code masks */
|
||||
#define CC_MASK 0xf0000000
|
||||
#define CC_NEGATIVE 0x80000000
|
||||
#define CC_ZERO 0x40000000
|
||||
#define CC_CARRY 0x20000000
|
||||
#define CC_OVERFLOW 0x10000000
|
||||
#define CC_EQ 0x00000000
|
||||
#define CC_NE 0x10000000
|
||||
#define CC_CS 0x20000000
|
||||
#define CC_HS CC_CS
|
||||
#define CC_CC 0x30000000
|
||||
#define CC_LO CC_CC
|
||||
#define CC_MI 0x40000000
|
||||
#define CC_PL 0x50000000
|
||||
#define CC_VS 0x60000000
|
||||
#define CC_VC 0x70000000
|
||||
#define CC_HI 0x80000000
|
||||
#define CC_LS 0x90000000
|
||||
#define CC_GE 0xa0000000
|
||||
#define CC_LT 0xb0000000
|
||||
#define CC_GT 0xc0000000
|
||||
#define CC_LE 0xd0000000
|
||||
#define CC_AL 0xe0000000
|
||||
#define CC_NV 0xf0000000
|
||||
|
||||
/* rounding masks/values */
|
||||
#define MASK_ROUNDING_MODE 0x00000060
|
||||
#define ROUND_TO_NEAREST 0x00000000
|
||||
#define ROUND_TO_PLUS_INFINITY 0x00000020
|
||||
#define ROUND_TO_MINUS_INFINITY 0x00000040
|
||||
#define ROUND_TO_ZERO 0x00000060
|
||||
|
||||
#define MASK_ROUNDING_PRECISION 0x00080080
|
||||
#define ROUND_SINGLE 0x00000000
|
||||
#define ROUND_DOUBLE 0x00000080
|
||||
#define ROUND_EXTENDED 0x00080000
|
||||
|
||||
/* Get the condition code from the opcode. */
|
||||
#define getCondition(opcode) (opcode >> 28)
|
||||
|
||||
/* Get the source register from the opcode. */
|
||||
#define getRn(opcode) ((opcode & MASK_Rn) >> 16)
|
||||
|
||||
/* Get the destination floating point register from the opcode. */
|
||||
#define getFd(opcode) ((opcode & MASK_Fd) >> 12)
|
||||
|
||||
/* Get the first source floating point register from the opcode. */
|
||||
#define getFn(opcode) ((opcode & MASK_Fn) >> 16)
|
||||
|
||||
/* Get the second source floating point register from the opcode. */
|
||||
#define getFm(opcode) (opcode & MASK_Fm)
|
||||
|
||||
/* Get the destination register from the opcode. */
|
||||
#define getRd(opcode) ((opcode & MASK_Rd) >> 12)
|
||||
|
||||
/* Get the rounding mode from the opcode. */
|
||||
#define getRoundingMode(opcode) ((opcode & MASK_ROUNDING_MODE) >> 5)
|
||||
|
||||
static inline const floatx80 getExtendedConstant(const unsigned int nIndex)
|
||||
{
|
||||
extern const floatx80 floatx80Constant[];
|
||||
return floatx80Constant[nIndex];
|
||||
}
|
||||
|
||||
static inline const float64 getDoubleConstant(const unsigned int nIndex)
|
||||
{
|
||||
extern const float64 float64Constant[];
|
||||
return float64Constant[nIndex];
|
||||
}
|
||||
|
||||
static inline const float32 getSingleConstant(const unsigned int nIndex)
|
||||
{
|
||||
extern const float32 float32Constant[];
|
||||
return float32Constant[nIndex];
|
||||
}
|
||||
|
||||
extern unsigned int getRegisterCount(const unsigned int opcode);
|
||||
extern unsigned int getDestinationSize(const unsigned int opcode);
|
||||
|
||||
#endif
|
|
@ -0,0 +1,108 @@
|
|||
/*
|
||||
NetWinder Floating Point Emulator
|
||||
(c) Rebel.com, 1998-1999
|
||||
|
||||
Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||||
*/
|
||||
|
||||
#ifndef __FPSR_H__
|
||||
#define __FPSR_H__
|
||||
|
||||
/*
|
||||
The FPSR is a 32 bit register consisting of 4 parts, each exactly
|
||||
one byte.
|
||||
|
||||
SYSTEM ID
|
||||
EXCEPTION TRAP ENABLE BYTE
|
||||
SYSTEM CONTROL BYTE
|
||||
CUMULATIVE EXCEPTION FLAGS BYTE
|
||||
|
||||
The FPCR is a 32 bit register consisting of bit flags.
|
||||
*/
|
||||
|
||||
/* SYSTEM ID
|
||||
------------
|
||||
Note: the system id byte is read only */
|
||||
|
||||
typedef unsigned int FPSR; /* type for floating point status register */
|
||||
typedef unsigned int FPCR; /* type for floating point control register */
|
||||
|
||||
#define MASK_SYSID 0xff000000
|
||||
#define BIT_HARDWARE 0x80000000
|
||||
#define FP_EMULATOR 0x01000000 /* System ID for emulator */
|
||||
#define FP_ACCELERATOR 0x81000000 /* System ID for FPA11 */
|
||||
|
||||
/* EXCEPTION TRAP ENABLE BYTE
|
||||
----------------------------- */
|
||||
|
||||
#define MASK_TRAP_ENABLE 0x00ff0000
|
||||
#define MASK_TRAP_ENABLE_STRICT 0x001f0000
|
||||
#define BIT_IXE 0x00100000 /* inexact exception enable */
|
||||
#define BIT_UFE 0x00080000 /* underflow exception enable */
|
||||
#define BIT_OFE 0x00040000 /* overflow exception enable */
|
||||
#define BIT_DZE 0x00020000 /* divide by zero exception enable */
|
||||
#define BIT_IOE 0x00010000 /* invalid operation exception enable */
|
||||
|
||||
/* SYSTEM CONTROL BYTE
|
||||
---------------------- */
|
||||
|
||||
#define MASK_SYSTEM_CONTROL 0x0000ff00
|
||||
#define MASK_TRAP_STRICT 0x00001f00
|
||||
|
||||
#define BIT_AC 0x00001000 /* use alternative C-flag definition
|
||||
for compares */
|
||||
#define BIT_EP 0x00000800 /* use expanded packed decimal format */
|
||||
#define BIT_SO 0x00000400 /* select synchronous operation of FPA */
|
||||
#define BIT_NE 0x00000200 /* NaN exception bit */
|
||||
#define BIT_ND 0x00000100 /* no denormalized numbers bit */
|
||||
|
||||
/* CUMULATIVE EXCEPTION FLAGS BYTE
|
||||
---------------------------------- */
|
||||
|
||||
#define MASK_EXCEPTION_FLAGS 0x000000ff
|
||||
#define MASK_EXCEPTION_FLAGS_STRICT 0x0000001f
|
||||
|
||||
#define BIT_IXC 0x00000010 /* inexact exception flag */
|
||||
#define BIT_UFC 0x00000008 /* underflow exception flag */
|
||||
#define BIT_OFC 0x00000004 /* overfloat exception flag */
|
||||
#define BIT_DZC 0x00000002 /* divide by zero exception flag */
|
||||
#define BIT_IOC 0x00000001 /* invalid operation exception flag */
|
||||
|
||||
/* Floating Point Control Register
|
||||
----------------------------------*/
|
||||
|
||||
#define BIT_RU 0x80000000 /* rounded up bit */
|
||||
#define BIT_IE 0x10000000 /* inexact bit */
|
||||
#define BIT_MO 0x08000000 /* mantissa overflow bit */
|
||||
#define BIT_EO 0x04000000 /* exponent overflow bit */
|
||||
#define BIT_SB 0x00000800 /* store bounce */
|
||||
#define BIT_AB 0x00000400 /* arithmetic bounce */
|
||||
#define BIT_RE 0x00000200 /* rounding exception */
|
||||
#define BIT_DA 0x00000100 /* disable FPA */
|
||||
|
||||
#define MASK_OP 0x00f08010 /* AU operation code */
|
||||
#define MASK_PR 0x00080080 /* AU precision */
|
||||
#define MASK_S1 0x00070000 /* AU source register 1 */
|
||||
#define MASK_S2 0x00000007 /* AU source register 2 */
|
||||
#define MASK_DS 0x00007000 /* AU destination register */
|
||||
#define MASK_RM 0x00000060 /* AU rounding mode */
|
||||
#define MASK_ALU 0x9cfff2ff /* only ALU can write these bits */
|
||||
#define MASK_RESET 0x00000d00 /* bits set on reset, all others cleared */
|
||||
#define MASK_WFC MASK_RESET
|
||||
#define MASK_RFC ~MASK_RESET
|
||||
|
||||
#endif
|
|
@ -0,0 +1,48 @@
|
|||
|
||||
/*
|
||||
===============================================================================
|
||||
|
||||
This C header file is part of the SoftFloat IEC/IEEE Floating-point
|
||||
Arithmetic Package, Release 2.
|
||||
|
||||
Written by John R. Hauser. This work was made possible in part by the
|
||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||||
National Science Foundation under grant MIP-9311980. The original version
|
||||
of this code was written as part of a project to build a fixed-point vector
|
||||
processor in collaboration with the University of California at Berkeley,
|
||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||||
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
|
||||
arithmetic/softfloat.html'.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
|
||||
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
|
||||
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
|
||||
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
|
||||
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, so long as
|
||||
(1) they include prominent notice that the work is derivative, and (2) they
|
||||
include prominent notice akin to these three paragraphs for those parts of
|
||||
this code that are retained.
|
||||
|
||||
===============================================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Include common integer types and flags.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#include "ARM-gcc.h"
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Symbolic Boolean literals.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
enum {
|
||||
FALSE = 0,
|
||||
TRUE = 1
|
||||
};
|
||||
|
|
@ -0,0 +1,255 @@
|
|||
/*
|
||||
NetWinder Floating Point Emulator
|
||||
(c) Rebel.COM, 1998,1999
|
||||
|
||||
Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||||
*/
|
||||
|
||||
#include "fpa11.h"
|
||||
#include "softfloat.h"
|
||||
#include "fpopcode.h"
|
||||
|
||||
float32 float32_exp(float32 Fm);
|
||||
float32 float32_ln(float32 Fm);
|
||||
float32 float32_sin(float32 rFm);
|
||||
float32 float32_cos(float32 rFm);
|
||||
float32 float32_arcsin(float32 rFm);
|
||||
float32 float32_arctan(float32 rFm);
|
||||
float32 float32_log(float32 rFm);
|
||||
float32 float32_tan(float32 rFm);
|
||||
float32 float32_arccos(float32 rFm);
|
||||
float32 float32_pow(float32 rFn,float32 rFm);
|
||||
float32 float32_pol(float32 rFn,float32 rFm);
|
||||
|
||||
unsigned int SingleCPDO(const unsigned int opcode)
|
||||
{
|
||||
FPA11 *fpa11 = GET_FPA11();
|
||||
float32 rFm, rFn;
|
||||
unsigned int Fd, Fm, Fn, nRc = 1;
|
||||
|
||||
Fm = getFm(opcode);
|
||||
if (CONSTANT_FM(opcode))
|
||||
{
|
||||
rFm = getSingleConstant(Fm);
|
||||
}
|
||||
else
|
||||
{
|
||||
switch (fpa11->fType[Fm])
|
||||
{
|
||||
case typeSingle:
|
||||
rFm = fpa11->fpreg[Fm].fSingle;
|
||||
break;
|
||||
|
||||
default: return 0;
|
||||
}
|
||||
}
|
||||
|
||||
if (!MONADIC_INSTRUCTION(opcode))
|
||||
{
|
||||
Fn = getFn(opcode);
|
||||
switch (fpa11->fType[Fn])
|
||||
{
|
||||
case typeSingle:
|
||||
rFn = fpa11->fpreg[Fn].fSingle;
|
||||
break;
|
||||
|
||||
default: return 0;
|
||||
}
|
||||
}
|
||||
|
||||
Fd = getFd(opcode);
|
||||
switch (opcode & MASK_ARITHMETIC_OPCODE)
|
||||
{
|
||||
/* dyadic opcodes */
|
||||
case ADF_CODE:
|
||||
fpa11->fpreg[Fd].fSingle = float32_add(rFn,rFm);
|
||||
break;
|
||||
|
||||
case MUF_CODE:
|
||||
case FML_CODE:
|
||||
fpa11->fpreg[Fd].fSingle = float32_mul(rFn,rFm);
|
||||
break;
|
||||
|
||||
case SUF_CODE:
|
||||
fpa11->fpreg[Fd].fSingle = float32_sub(rFn,rFm);
|
||||
break;
|
||||
|
||||
case RSF_CODE:
|
||||
fpa11->fpreg[Fd].fSingle = float32_sub(rFm,rFn);
|
||||
break;
|
||||
|
||||
case DVF_CODE:
|
||||
case FDV_CODE:
|
||||
fpa11->fpreg[Fd].fSingle = float32_div(rFn,rFm);
|
||||
break;
|
||||
|
||||
case RDF_CODE:
|
||||
case FRD_CODE:
|
||||
fpa11->fpreg[Fd].fSingle = float32_div(rFm,rFn);
|
||||
break;
|
||||
|
||||
#if 0
|
||||
case POW_CODE:
|
||||
fpa11->fpreg[Fd].fSingle = float32_pow(rFn,rFm);
|
||||
break;
|
||||
|
||||
case RPW_CODE:
|
||||
fpa11->fpreg[Fd].fSingle = float32_pow(rFm,rFn);
|
||||
break;
|
||||
#endif
|
||||
|
||||
case RMF_CODE:
|
||||
fpa11->fpreg[Fd].fSingle = float32_rem(rFn,rFm);
|
||||
break;
|
||||
|
||||
#if 0
|
||||
case POL_CODE:
|
||||
fpa11->fpreg[Fd].fSingle = float32_pol(rFn,rFm);
|
||||
break;
|
||||
#endif
|
||||
|
||||
/* monadic opcodes */
|
||||
case MVF_CODE:
|
||||
fpa11->fpreg[Fd].fSingle = rFm;
|
||||
break;
|
||||
|
||||
case MNF_CODE:
|
||||
rFm ^= 0x80000000;
|
||||
fpa11->fpreg[Fd].fSingle = rFm;
|
||||
break;
|
||||
|
||||
case ABS_CODE:
|
||||
rFm &= 0x7fffffff;
|
||||
fpa11->fpreg[Fd].fSingle = rFm;
|
||||
break;
|
||||
|
||||
case RND_CODE:
|
||||
case URD_CODE:
|
||||
fpa11->fpreg[Fd].fSingle = float32_round_to_int(rFm);
|
||||
break;
|
||||
|
||||
case SQT_CODE:
|
||||
fpa11->fpreg[Fd].fSingle = float32_sqrt(rFm);
|
||||
break;
|
||||
|
||||
#if 0
|
||||
case LOG_CODE:
|
||||
fpa11->fpreg[Fd].fSingle = float32_log(rFm);
|
||||
break;
|
||||
|
||||
case LGN_CODE:
|
||||
fpa11->fpreg[Fd].fSingle = float32_ln(rFm);
|
||||
break;
|
||||
|
||||
case EXP_CODE:
|
||||
fpa11->fpreg[Fd].fSingle = float32_exp(rFm);
|
||||
break;
|
||||
|
||||
case SIN_CODE:
|
||||
fpa11->fpreg[Fd].fSingle = float32_sin(rFm);
|
||||
break;
|
||||
|
||||
case COS_CODE:
|
||||
fpa11->fpreg[Fd].fSingle = float32_cos(rFm);
|
||||
break;
|
||||
|
||||
case TAN_CODE:
|
||||
fpa11->fpreg[Fd].fSingle = float32_tan(rFm);
|
||||
break;
|
||||
|
||||
case ASN_CODE:
|
||||
fpa11->fpreg[Fd].fSingle = float32_arcsin(rFm);
|
||||
break;
|
||||
|
||||
case ACS_CODE:
|
||||
fpa11->fpreg[Fd].fSingle = float32_arccos(rFm);
|
||||
break;
|
||||
|
||||
case ATN_CODE:
|
||||
fpa11->fpreg[Fd].fSingle = float32_arctan(rFm);
|
||||
break;
|
||||
#endif
|
||||
|
||||
case NRM_CODE:
|
||||
break;
|
||||
|
||||
default:
|
||||
{
|
||||
nRc = 0;
|
||||
}
|
||||
}
|
||||
|
||||
if (0 != nRc) fpa11->fType[Fd] = typeSingle;
|
||||
return nRc;
|
||||
}
|
||||
|
||||
#if 0
|
||||
float32 float32_exp(float32 Fm)
|
||||
{
|
||||
//series
|
||||
}
|
||||
|
||||
float32 float32_ln(float32 Fm)
|
||||
{
|
||||
//series
|
||||
}
|
||||
|
||||
float32 float32_sin(float32 rFm)
|
||||
{
|
||||
//series
|
||||
}
|
||||
|
||||
float32 float32_cos(float32 rFm)
|
||||
{
|
||||
//series
|
||||
}
|
||||
|
||||
float32 float32_arcsin(float32 rFm)
|
||||
{
|
||||
//series
|
||||
}
|
||||
|
||||
float32 float32_arctan(float32 rFm)
|
||||
{
|
||||
//series
|
||||
}
|
||||
|
||||
float32 float32_arccos(float32 rFm)
|
||||
{
|
||||
//return float32_sub(halfPi,float32_arcsin(rFm));
|
||||
}
|
||||
|
||||
float32 float32_log(float32 rFm)
|
||||
{
|
||||
return float32_div(float32_ln(rFm),getSingleConstant(7));
|
||||
}
|
||||
|
||||
float32 float32_tan(float32 rFm)
|
||||
{
|
||||
return float32_div(float32_sin(rFm),float32_cos(rFm));
|
||||
}
|
||||
|
||||
float32 float32_pow(float32 rFn,float32 rFm)
|
||||
{
|
||||
return float32_exp(float32_mul(rFm,float32_ln(rFn)));
|
||||
}
|
||||
|
||||
float32 float32_pol(float32 rFn,float32 rFm)
|
||||
{
|
||||
return float32_arctan(float32_div(rFn,rFm));
|
||||
}
|
||||
#endif
|
|
@ -0,0 +1,740 @@
|
|||
|
||||
/*
|
||||
===============================================================================
|
||||
|
||||
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
|
||||
Arithmetic Package, Release 2.
|
||||
|
||||
Written by John R. Hauser. This work was made possible in part by the
|
||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||||
National Science Foundation under grant MIP-9311980. The original version
|
||||
of this code was written as part of a project to build a fixed-point vector
|
||||
processor in collaboration with the University of California at Berkeley,
|
||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||||
is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
|
||||
arithmetic/softfloat.html'.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
|
||||
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
|
||||
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
|
||||
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
|
||||
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, so long as
|
||||
(1) they include prominent notice that the work is derivative, and (2) they
|
||||
include prominent notice akin to these three paragraphs for those parts of
|
||||
this code that are retained.
|
||||
|
||||
===============================================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Shifts `a' right by the number of bits given in `count'. If any nonzero
|
||||
bits are shifted off, they are ``jammed'' into the least significant bit of
|
||||
the result by setting the least significant bit to 1. The value of `count'
|
||||
can be arbitrarily large; in particular, if `count' is greater than 32, the
|
||||
result will be either 0 or 1, depending on whether `a' is zero or nonzero.
|
||||
The result is stored in the location pointed to by `zPtr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr )
|
||||
{
|
||||
bits32 z;
|
||||
if ( count == 0 ) {
|
||||
z = a;
|
||||
}
|
||||
else if ( count < 32 ) {
|
||||
z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 );
|
||||
}
|
||||
else {
|
||||
z = ( a != 0 );
|
||||
}
|
||||
*zPtr = z;
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Shifts `a' right by the number of bits given in `count'. If any nonzero
|
||||
bits are shifted off, they are ``jammed'' into the least significant bit of
|
||||
the result by setting the least significant bit to 1. The value of `count'
|
||||
can be arbitrarily large; in particular, if `count' is greater than 64, the
|
||||
result will be either 0 or 1, depending on whether `a' is zero or nonzero.
|
||||
The result is stored in the location pointed to by `zPtr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void shift64RightJamming( bits64 a, int16 count, bits64 *zPtr )
|
||||
{
|
||||
bits64 z;
|
||||
|
||||
// __asm__("@shift64RightJamming -- start");
|
||||
if ( count == 0 ) {
|
||||
z = a;
|
||||
}
|
||||
else if ( count < 64 ) {
|
||||
z = ( a>>count ) | ( ( a<<( ( - count ) & 63 ) ) != 0 );
|
||||
}
|
||||
else {
|
||||
z = ( a != 0 );
|
||||
}
|
||||
// __asm__("@shift64RightJamming -- end");
|
||||
*zPtr = z;
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Shifts the 128-bit value formed by concatenating `a0' and `a1' right by 64
|
||||
_plus_ the number of bits given in `count'. The shifted result is at most
|
||||
64 nonzero bits; this is stored at the location pointed to by `z0Ptr'. The
|
||||
bits shifted off form a second 64-bit result as follows: The _last_ bit
|
||||
shifted off is the most-significant bit of the extra result, and the other
|
||||
63 bits of the extra result are all zero if and only if _all_but_the_last_
|
||||
bits shifted off were all zero. This extra result is stored in the location
|
||||
pointed to by `z1Ptr'. The value of `count' can be arbitrarily large.
|
||||
(This routine makes more sense if `a0' and `a1' are considered to form a
|
||||
fixed-point value with binary point between `a0' and `a1'. This fixed-point
|
||||
value is shifted right by the number of bits given in `count', and the
|
||||
integer part of the result is returned at the location pointed to by
|
||||
`z0Ptr'. The fractional part of the result may be slightly corrupted as
|
||||
described above, and is returned at the location pointed to by `z1Ptr'.)
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
shift64ExtraRightJamming(
|
||||
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
|
||||
{
|
||||
bits64 z0, z1;
|
||||
int8 negCount = ( - count ) & 63;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z1 = a1;
|
||||
z0 = a0;
|
||||
}
|
||||
else if ( count < 64 ) {
|
||||
z1 = ( a0<<negCount ) | ( a1 != 0 );
|
||||
z0 = a0>>count;
|
||||
}
|
||||
else {
|
||||
if ( count == 64 ) {
|
||||
z1 = a0 | ( a1 != 0 );
|
||||
}
|
||||
else {
|
||||
z1 = ( ( a0 | a1 ) != 0 );
|
||||
}
|
||||
z0 = 0;
|
||||
}
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the
|
||||
number of bits given in `count'. Any bits shifted off are lost. The value
|
||||
of `count' can be arbitrarily large; in particular, if `count' is greater
|
||||
than 128, the result will be 0. The result is broken into two 64-bit pieces
|
||||
which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
shift128Right(
|
||||
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
|
||||
{
|
||||
bits64 z0, z1;
|
||||
int8 negCount = ( - count ) & 63;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z1 = a1;
|
||||
z0 = a0;
|
||||
}
|
||||
else if ( count < 64 ) {
|
||||
z1 = ( a0<<negCount ) | ( a1>>count );
|
||||
z0 = a0>>count;
|
||||
}
|
||||
else {
|
||||
z1 = ( count < 64 ) ? ( a0>>( count & 63 ) ) : 0;
|
||||
z0 = 0;
|
||||
}
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the
|
||||
number of bits given in `count'. If any nonzero bits are shifted off, they
|
||||
are ``jammed'' into the least significant bit of the result by setting the
|
||||
least significant bit to 1. The value of `count' can be arbitrarily large;
|
||||
in particular, if `count' is greater than 128, the result will be either 0
|
||||
or 1, depending on whether the concatenation of `a0' and `a1' is zero or
|
||||
nonzero. The result is broken into two 64-bit pieces which are stored at
|
||||
the locations pointed to by `z0Ptr' and `z1Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
shift128RightJamming(
|
||||
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
|
||||
{
|
||||
bits64 z0, z1;
|
||||
int8 negCount = ( - count ) & 63;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z1 = a1;
|
||||
z0 = a0;
|
||||
}
|
||||
else if ( count < 64 ) {
|
||||
z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 );
|
||||
z0 = a0>>count;
|
||||
}
|
||||
else {
|
||||
if ( count == 64 ) {
|
||||
z1 = a0 | ( a1 != 0 );
|
||||
}
|
||||
else if ( count < 128 ) {
|
||||
z1 = ( a0>>( count & 63 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 );
|
||||
}
|
||||
else {
|
||||
z1 = ( ( a0 | a1 ) != 0 );
|
||||
}
|
||||
z0 = 0;
|
||||
}
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' right
|
||||
by 64 _plus_ the number of bits given in `count'. The shifted result is
|
||||
at most 128 nonzero bits; these are broken into two 64-bit pieces which are
|
||||
stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted
|
||||
off form a third 64-bit result as follows: The _last_ bit shifted off is
|
||||
the most-significant bit of the extra result, and the other 63 bits of the
|
||||
extra result are all zero if and only if _all_but_the_last_ bits shifted off
|
||||
were all zero. This extra result is stored in the location pointed to by
|
||||
`z2Ptr'. The value of `count' can be arbitrarily large.
|
||||
(This routine makes more sense if `a0', `a1', and `a2' are considered
|
||||
to form a fixed-point value with binary point between `a1' and `a2'. This
|
||||
fixed-point value is shifted right by the number of bits given in `count',
|
||||
and the integer part of the result is returned at the locations pointed to
|
||||
by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly
|
||||
corrupted as described above, and is returned at the location pointed to by
|
||||
`z2Ptr'.)
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
shift128ExtraRightJamming(
|
||||
bits64 a0,
|
||||
bits64 a1,
|
||||
bits64 a2,
|
||||
int16 count,
|
||||
bits64 *z0Ptr,
|
||||
bits64 *z1Ptr,
|
||||
bits64 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits64 z0, z1, z2;
|
||||
int8 negCount = ( - count ) & 63;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z2 = a2;
|
||||
z1 = a1;
|
||||
z0 = a0;
|
||||
}
|
||||
else {
|
||||
if ( count < 64 ) {
|
||||
z2 = a1<<negCount;
|
||||
z1 = ( a0<<negCount ) | ( a1>>count );
|
||||
z0 = a0>>count;
|
||||
}
|
||||
else {
|
||||
if ( count == 64 ) {
|
||||
z2 = a1;
|
||||
z1 = a0;
|
||||
}
|
||||
else {
|
||||
a2 |= a1;
|
||||
if ( count < 128 ) {
|
||||
z2 = a0<<negCount;
|
||||
z1 = a0>>( count & 63 );
|
||||
}
|
||||
else {
|
||||
z2 = ( count == 128 ) ? a0 : ( a0 != 0 );
|
||||
z1 = 0;
|
||||
}
|
||||
}
|
||||
z0 = 0;
|
||||
}
|
||||
z2 |= ( a2 != 0 );
|
||||
}
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Shifts the 128-bit value formed by concatenating `a0' and `a1' left by the
|
||||
number of bits given in `count'. Any bits shifted off are lost. The value
|
||||
of `count' must be less than 64. The result is broken into two 64-bit
|
||||
pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
shortShift128Left(
|
||||
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
|
||||
{
|
||||
|
||||
*z1Ptr = a1<<count;
|
||||
*z0Ptr =
|
||||
( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 63 ) );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' left
|
||||
by the number of bits given in `count'. Any bits shifted off are lost.
|
||||
The value of `count' must be less than 64. The result is broken into three
|
||||
64-bit pieces which are stored at the locations pointed to by `z0Ptr',
|
||||
`z1Ptr', and `z2Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
shortShift192Left(
|
||||
bits64 a0,
|
||||
bits64 a1,
|
||||
bits64 a2,
|
||||
int16 count,
|
||||
bits64 *z0Ptr,
|
||||
bits64 *z1Ptr,
|
||||
bits64 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits64 z0, z1, z2;
|
||||
int8 negCount;
|
||||
|
||||
z2 = a2<<count;
|
||||
z1 = a1<<count;
|
||||
z0 = a0<<count;
|
||||
if ( 0 < count ) {
|
||||
negCount = ( ( - count ) & 63 );
|
||||
z1 |= a2>>negCount;
|
||||
z0 |= a1>>negCount;
|
||||
}
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Adds the 128-bit value formed by concatenating `a0' and `a1' to the 128-bit
|
||||
value formed by concatenating `b0' and `b1'. Addition is modulo 2^128, so
|
||||
any carry out is lost. The result is broken into two 64-bit pieces which
|
||||
are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
add128(
|
||||
bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr )
|
||||
{
|
||||
bits64 z1;
|
||||
|
||||
z1 = a1 + b1;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = a0 + b0 + ( z1 < a1 );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Adds the 192-bit value formed by concatenating `a0', `a1', and `a2' to the
|
||||
192-bit value formed by concatenating `b0', `b1', and `b2'. Addition is
|
||||
modulo 2^192, so any carry out is lost. The result is broken into three
|
||||
64-bit pieces which are stored at the locations pointed to by `z0Ptr',
|
||||
`z1Ptr', and `z2Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
add192(
|
||||
bits64 a0,
|
||||
bits64 a1,
|
||||
bits64 a2,
|
||||
bits64 b0,
|
||||
bits64 b1,
|
||||
bits64 b2,
|
||||
bits64 *z0Ptr,
|
||||
bits64 *z1Ptr,
|
||||
bits64 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits64 z0, z1, z2;
|
||||
int8 carry0, carry1;
|
||||
|
||||
z2 = a2 + b2;
|
||||
carry1 = ( z2 < a2 );
|
||||
z1 = a1 + b1;
|
||||
carry0 = ( z1 < a1 );
|
||||
z0 = a0 + b0;
|
||||
z1 += carry1;
|
||||
z0 += ( z1 < carry1 );
|
||||
z0 += carry0;
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Subtracts the 128-bit value formed by concatenating `b0' and `b1' from the
|
||||
128-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo
|
||||
2^128, so any borrow out (carry out) is lost. The result is broken into two
|
||||
64-bit pieces which are stored at the locations pointed to by `z0Ptr' and
|
||||
`z1Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
sub128(
|
||||
bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr )
|
||||
{
|
||||
|
||||
*z1Ptr = a1 - b1;
|
||||
*z0Ptr = a0 - b0 - ( a1 < b1 );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Subtracts the 192-bit value formed by concatenating `b0', `b1', and `b2'
|
||||
from the 192-bit value formed by concatenating `a0', `a1', and `a2'.
|
||||
Subtraction is modulo 2^192, so any borrow out (carry out) is lost. The
|
||||
result is broken into three 64-bit pieces which are stored at the locations
|
||||
pointed to by `z0Ptr', `z1Ptr', and `z2Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
sub192(
|
||||
bits64 a0,
|
||||
bits64 a1,
|
||||
bits64 a2,
|
||||
bits64 b0,
|
||||
bits64 b1,
|
||||
bits64 b2,
|
||||
bits64 *z0Ptr,
|
||||
bits64 *z1Ptr,
|
||||
bits64 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits64 z0, z1, z2;
|
||||
int8 borrow0, borrow1;
|
||||
|
||||
z2 = a2 - b2;
|
||||
borrow1 = ( a2 < b2 );
|
||||
z1 = a1 - b1;
|
||||
borrow0 = ( a1 < b1 );
|
||||
z0 = a0 - b0;
|
||||
z0 -= ( z1 < borrow1 );
|
||||
z1 -= borrow1;
|
||||
z0 -= borrow0;
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Multiplies `a' by `b' to obtain a 128-bit product. The product is broken
|
||||
into two 64-bit pieces which are stored at the locations pointed to by
|
||||
`z0Ptr' and `z1Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void mul64To128( bits64 a, bits64 b, bits64 *z0Ptr, bits64 *z1Ptr )
|
||||
{
|
||||
bits32 aHigh, aLow, bHigh, bLow;
|
||||
bits64 z0, zMiddleA, zMiddleB, z1;
|
||||
|
||||
aLow = a;
|
||||
aHigh = a>>32;
|
||||
bLow = b;
|
||||
bHigh = b>>32;
|
||||
z1 = ( (bits64) aLow ) * bLow;
|
||||
zMiddleA = ( (bits64) aLow ) * bHigh;
|
||||
zMiddleB = ( (bits64) aHigh ) * bLow;
|
||||
z0 = ( (bits64) aHigh ) * bHigh;
|
||||
zMiddleA += zMiddleB;
|
||||
z0 += ( ( (bits64) ( zMiddleA < zMiddleB ) )<<32 ) + ( zMiddleA>>32 );
|
||||
zMiddleA <<= 32;
|
||||
z1 += zMiddleA;
|
||||
z0 += ( z1 < zMiddleA );
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Multiplies the 128-bit value formed by concatenating `a0' and `a1' by `b' to
|
||||
obtain a 192-bit product. The product is broken into three 64-bit pieces
|
||||
which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and
|
||||
`z2Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
mul128By64To192(
|
||||
bits64 a0,
|
||||
bits64 a1,
|
||||
bits64 b,
|
||||
bits64 *z0Ptr,
|
||||
bits64 *z1Ptr,
|
||||
bits64 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits64 z0, z1, z2, more1;
|
||||
|
||||
mul64To128( a1, b, &z1, &z2 );
|
||||
mul64To128( a0, b, &z0, &more1 );
|
||||
add128( z0, more1, 0, z1, &z0, &z1 );
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Multiplies the 128-bit value formed by concatenating `a0' and `a1' to the
|
||||
128-bit value formed by concatenating `b0' and `b1' to obtain a 256-bit
|
||||
product. The product is broken into four 64-bit pieces which are stored at
|
||||
the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
mul128To256(
|
||||
bits64 a0,
|
||||
bits64 a1,
|
||||
bits64 b0,
|
||||
bits64 b1,
|
||||
bits64 *z0Ptr,
|
||||
bits64 *z1Ptr,
|
||||
bits64 *z2Ptr,
|
||||
bits64 *z3Ptr
|
||||
)
|
||||
{
|
||||
bits64 z0, z1, z2, z3;
|
||||
bits64 more1, more2;
|
||||
|
||||
mul64To128( a1, b1, &z2, &z3 );
|
||||
mul64To128( a1, b0, &z1, &more2 );
|
||||
add128( z1, more2, 0, z2, &z1, &z2 );
|
||||
mul64To128( a0, b0, &z0, &more1 );
|
||||
add128( z0, more1, 0, z1, &z0, &z1 );
|
||||
mul64To128( a0, b1, &more1, &more2 );
|
||||
add128( more1, more2, 0, z2, &more1, &z2 );
|
||||
add128( z0, z1, 0, more1, &z0, &z1 );
|
||||
*z3Ptr = z3;
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns an approximation to the 64-bit integer quotient obtained by dividing
|
||||
`b' into the 128-bit value formed by concatenating `a0' and `a1'. The
|
||||
divisor `b' must be at least 2^63. If q is the exact quotient truncated
|
||||
toward zero, the approximation returned lies between q and q + 2 inclusive.
|
||||
If the exact quotient q is larger than 64 bits, the maximum positive 64-bit
|
||||
unsigned integer is returned.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static bits64 estimateDiv128To64( bits64 a0, bits64 a1, bits64 b )
|
||||
{
|
||||
bits64 b0, b1;
|
||||
bits64 rem0, rem1, term0, term1;
|
||||
bits64 z;
|
||||
if ( b <= a0 ) return LIT64( 0xFFFFFFFFFFFFFFFF );
|
||||
b0 = b>>32;
|
||||
z = ( b0<<32 <= a0 ) ? LIT64( 0xFFFFFFFF00000000 ) : ( a0 / b0 )<<32;
|
||||
mul64To128( b, z, &term0, &term1 );
|
||||
sub128( a0, a1, term0, term1, &rem0, &rem1 );
|
||||
while ( ( (sbits64) rem0 ) < 0 ) {
|
||||
z -= LIT64( 0x100000000 );
|
||||
b1 = b<<32;
|
||||
add128( rem0, rem1, b0, b1, &rem0, &rem1 );
|
||||
}
|
||||
rem0 = ( rem0<<32 ) | ( rem1>>32 );
|
||||
z |= ( b0<<32 <= rem0 ) ? 0xFFFFFFFF : rem0 / b0;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns an approximation to the square root of the 32-bit significand given
|
||||
by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of
|
||||
`aExp' (the least significant bit) is 1, the integer returned approximates
|
||||
2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp'
|
||||
is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either
|
||||
case, the approximation returned lies strictly within +/-2 of the exact
|
||||
value.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static bits32 estimateSqrt32( int16 aExp, bits32 a )
|
||||
{
|
||||
static const bits16 sqrtOddAdjustments[] = {
|
||||
0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0,
|
||||
0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67
|
||||
};
|
||||
static const bits16 sqrtEvenAdjustments[] = {
|
||||
0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E,
|
||||
0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002
|
||||
};
|
||||
int8 index;
|
||||
bits32 z;
|
||||
|
||||
index = ( a>>27 ) & 15;
|
||||
if ( aExp & 1 ) {
|
||||
z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ];
|
||||
z = ( ( a / z )<<14 ) + ( z<<15 );
|
||||
a >>= 1;
|
||||
}
|
||||
else {
|
||||
z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ];
|
||||
z = a / z + z;
|
||||
z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 );
|
||||
if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 );
|
||||
}
|
||||
return ( (bits32) ( ( ( (bits64) a )<<31 ) / z ) ) + ( z>>1 );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the number of leading 0 bits before the most-significant 1 bit
|
||||
of `a'. If `a' is zero, 32 is returned.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static int8 countLeadingZeros32( bits32 a )
|
||||
{
|
||||
static const int8 countLeadingZerosHigh[] = {
|
||||
8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
|
||||
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
|
||||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
||||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
||||
};
|
||||
int8 shiftCount;
|
||||
|
||||
shiftCount = 0;
|
||||
if ( a < 0x10000 ) {
|
||||
shiftCount += 16;
|
||||
a <<= 16;
|
||||
}
|
||||
if ( a < 0x1000000 ) {
|
||||
shiftCount += 8;
|
||||
a <<= 8;
|
||||
}
|
||||
shiftCount += countLeadingZerosHigh[ a>>24 ];
|
||||
return shiftCount;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the number of leading 0 bits before the most-significant 1 bit
|
||||
of `a'. If `a' is zero, 64 is returned.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static int8 countLeadingZeros64( bits64 a )
|
||||
{
|
||||
int8 shiftCount;
|
||||
|
||||
shiftCount = 0;
|
||||
if ( a < ( (bits64) 1 )<<32 ) {
|
||||
shiftCount += 32;
|
||||
}
|
||||
else {
|
||||
a >>= 32;
|
||||
}
|
||||
shiftCount += countLeadingZeros32( a );
|
||||
return shiftCount;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the 128-bit value formed by concatenating `a0' and `a1'
|
||||
is equal to the 128-bit value formed by concatenating `b0' and `b1'.
|
||||
Otherwise, returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE flag eq128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
|
||||
{
|
||||
|
||||
return ( a0 == b0 ) && ( a1 == b1 );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less
|
||||
than or equal to the 128-bit value formed by concatenating `b0' and `b1'.
|
||||
Otherwise, returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE flag le128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
|
||||
{
|
||||
|
||||
return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less
|
||||
than the 128-bit value formed by concatenating `b0' and `b1'. Otherwise,
|
||||
returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE flag lt128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
|
||||
{
|
||||
|
||||
return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is
|
||||
not equal to the 128-bit value formed by concatenating `b0' and `b1'.
|
||||
Otherwise, returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE flag ne128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
|
||||
{
|
||||
|
||||
return ( a0 != b0 ) || ( a1 != b1 );
|
||||
|
||||
}
|
||||
|
|
@ -0,0 +1,366 @@
|
|||
|
||||
/*
|
||||
===============================================================================
|
||||
|
||||
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
|
||||
Arithmetic Package, Release 2.
|
||||
|
||||
Written by John R. Hauser. This work was made possible in part by the
|
||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||||
National Science Foundation under grant MIP-9311980. The original version
|
||||
of this code was written as part of a project to build a fixed-point vector
|
||||
processor in collaboration with the University of California at Berkeley,
|
||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||||
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
|
||||
arithmetic/softfloat.html'.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
|
||||
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
|
||||
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
|
||||
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
|
||||
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, so long as
|
||||
(1) they include prominent notice that the work is derivative, and (2) they
|
||||
include prominent notice akin to these three paragraphs for those parts of
|
||||
this code that are retained.
|
||||
|
||||
===============================================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Underflow tininess-detection mode, statically initialized to default value.
|
||||
(The declaration in `softfloat.h' must match the `int8' type here.)
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
int8 float_detect_tininess = float_tininess_after_rounding;
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Raises the exceptions specified by `flags'. Floating-point traps can be
|
||||
defined here if desired. It is currently not possible for such a trap to
|
||||
substitute a result value. If traps are not implemented, this routine
|
||||
should be simply `float_exception_flags |= flags;'.
|
||||
|
||||
ScottB: November 4, 1998
|
||||
Moved this function out of softfloat-specialize into fpmodule.c.
|
||||
This effectively isolates all the changes required for integrating with the
|
||||
Linux kernel into fpmodule.c. Porting to NetBSD should only require modifying
|
||||
fpmodule.c to integrate with the NetBSD kernel (I hope!).
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
void float_raise( int8 flags )
|
||||
{
|
||||
float_exception_flags |= flags;
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Internal canonical NaN format.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
typedef struct {
|
||||
flag sign;
|
||||
bits64 high, low;
|
||||
} commonNaNT;
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
The pattern for a default generated single-precision NaN.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#define float32_default_nan 0xFFFFFFFF
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the single-precision floating-point value `a' is a NaN;
|
||||
otherwise returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
flag float32_is_nan( float32 a )
|
||||
{
|
||||
|
||||
return ( 0xFF000000 < (bits32) ( a<<1 ) );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the single-precision floating-point value `a' is a signaling
|
||||
NaN; otherwise returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
flag float32_is_signaling_nan( float32 a )
|
||||
{
|
||||
|
||||
return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the result of converting the single-precision floating-point NaN
|
||||
`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
||||
exception is raised.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static commonNaNT float32ToCommonNaN( float32 a )
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
||||
z.sign = a>>31;
|
||||
z.low = 0;
|
||||
z.high = ( (bits64) a )<<41;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the result of converting the canonical NaN `a' to the single-
|
||||
precision floating-point format.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static float32 commonNaNToFloat32( commonNaNT a )
|
||||
{
|
||||
|
||||
return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Takes two single-precision floating-point values `a' and `b', one of which
|
||||
is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
|
||||
signaling NaN, the invalid exception is raised.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static float32 propagateFloat32NaN( float32 a, float32 b )
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = float32_is_nan( a );
|
||||
aIsSignalingNaN = float32_is_signaling_nan( a );
|
||||
bIsNaN = float32_is_nan( b );
|
||||
bIsSignalingNaN = float32_is_signaling_nan( b );
|
||||
a |= 0x00400000;
|
||||
b |= 0x00400000;
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
||||
if ( aIsNaN ) {
|
||||
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
||||
}
|
||||
else {
|
||||
return b;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
The pattern for a default generated double-precision NaN.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF )
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the double-precision floating-point value `a' is a NaN;
|
||||
otherwise returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
flag float64_is_nan( float64 a )
|
||||
{
|
||||
|
||||
return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the double-precision floating-point value `a' is a signaling
|
||||
NaN; otherwise returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
flag float64_is_signaling_nan( float64 a )
|
||||
{
|
||||
|
||||
return
|
||||
( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
|
||||
&& ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the result of converting the double-precision floating-point NaN
|
||||
`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
||||
exception is raised.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static commonNaNT float64ToCommonNaN( float64 a )
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
||||
z.sign = a>>63;
|
||||
z.low = 0;
|
||||
z.high = a<<12;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the result of converting the canonical NaN `a' to the double-
|
||||
precision floating-point format.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static float64 commonNaNToFloat64( commonNaNT a )
|
||||
{
|
||||
|
||||
return
|
||||
( ( (bits64) a.sign )<<63 )
|
||||
| LIT64( 0x7FF8000000000000 )
|
||||
| ( a.high>>12 );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Takes two double-precision floating-point values `a' and `b', one of which
|
||||
is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
|
||||
signaling NaN, the invalid exception is raised.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static float64 propagateFloat64NaN( float64 a, float64 b )
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = float64_is_nan( a );
|
||||
aIsSignalingNaN = float64_is_signaling_nan( a );
|
||||
bIsNaN = float64_is_nan( b );
|
||||
bIsSignalingNaN = float64_is_signaling_nan( b );
|
||||
a |= LIT64( 0x0008000000000000 );
|
||||
b |= LIT64( 0x0008000000000000 );
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
||||
if ( aIsNaN ) {
|
||||
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
||||
}
|
||||
else {
|
||||
return b;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#ifdef FLOATX80
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
The pattern for a default generated extended double-precision NaN. The
|
||||
`high' and `low' values hold the most- and least-significant bits,
|
||||
respectively.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#define floatx80_default_nan_high 0xFFFF
|
||||
#define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the extended double-precision floating-point value `a' is a
|
||||
NaN; otherwise returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
flag floatx80_is_nan( floatx80 a )
|
||||
{
|
||||
|
||||
return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the extended double-precision floating-point value `a' is a
|
||||
signaling NaN; otherwise returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
flag floatx80_is_signaling_nan( floatx80 a )
|
||||
{
|
||||
//register int lr;
|
||||
bits64 aLow;
|
||||
|
||||
//__asm__("mov %0, lr" : : "g" (lr));
|
||||
//fp_printk("floatx80_is_signalling_nan() called from 0x%08x\n",lr);
|
||||
aLow = a.low & ~ LIT64( 0x4000000000000000 );
|
||||
return
|
||||
( ( a.high & 0x7FFF ) == 0x7FFF )
|
||||
&& (bits64) ( aLow<<1 )
|
||||
&& ( a.low == aLow );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the result of converting the extended double-precision floating-
|
||||
point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
|
||||
invalid exception is raised.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static commonNaNT floatx80ToCommonNaN( floatx80 a )
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
||||
z.sign = a.high>>15;
|
||||
z.low = 0;
|
||||
z.high = a.low<<1;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the result of converting the canonical NaN `a' to the extended
|
||||
double-precision floating-point format.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static floatx80 commonNaNToFloatx80( commonNaNT a )
|
||||
{
|
||||
floatx80 z;
|
||||
|
||||
z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
|
||||
z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Takes two extended double-precision floating-point values `a' and `b', one
|
||||
of which is a NaN, and returns the appropriate NaN result. If either `a' or
|
||||
`b' is a signaling NaN, the invalid exception is raised.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = floatx80_is_nan( a );
|
||||
aIsSignalingNaN = floatx80_is_signaling_nan( a );
|
||||
bIsNaN = floatx80_is_nan( b );
|
||||
bIsSignalingNaN = floatx80_is_signaling_nan( b );
|
||||
a.low |= LIT64( 0xC000000000000000 );
|
||||
b.low |= LIT64( 0xC000000000000000 );
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
||||
if ( aIsNaN ) {
|
||||
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
||||
}
|
||||
else {
|
||||
return b;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,232 @@
|
|||
|
||||
/*
|
||||
===============================================================================
|
||||
|
||||
This C header file is part of the SoftFloat IEC/IEEE Floating-point
|
||||
Arithmetic Package, Release 2.
|
||||
|
||||
Written by John R. Hauser. This work was made possible in part by the
|
||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||||
National Science Foundation under grant MIP-9311980. The original version
|
||||
of this code was written as part of a project to build a fixed-point vector
|
||||
processor in collaboration with the University of California at Berkeley,
|
||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||||
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
|
||||
arithmetic/softfloat.html'.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
|
||||
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
|
||||
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
|
||||
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
|
||||
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, so long as
|
||||
(1) they include prominent notice that the work is derivative, and (2) they
|
||||
include prominent notice akin to these three paragraphs for those parts of
|
||||
this code that are retained.
|
||||
|
||||
===============================================================================
|
||||
*/
|
||||
|
||||
#ifndef __SOFTFLOAT_H__
|
||||
#define __SOFTFLOAT_H__
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
The macro `FLOATX80' must be defined to enable the extended double-precision
|
||||
floating-point format `floatx80'. If this macro is not defined, the
|
||||
`floatx80' type will not be defined, and none of the functions that either
|
||||
input or output the `floatx80' type will be defined.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#define FLOATX80
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE floating-point types.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
typedef unsigned long int float32;
|
||||
typedef unsigned long long float64;
|
||||
typedef struct {
|
||||
unsigned short high;
|
||||
unsigned long long low;
|
||||
} floatx80;
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE floating-point underflow tininess-detection mode.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
extern signed char float_detect_tininess;
|
||||
enum {
|
||||
float_tininess_after_rounding = 0,
|
||||
float_tininess_before_rounding = 1
|
||||
};
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE floating-point rounding mode.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
extern signed char float_rounding_mode;
|
||||
enum {
|
||||
float_round_nearest_even = 0,
|
||||
float_round_to_zero = 1,
|
||||
float_round_down = 2,
|
||||
float_round_up = 3
|
||||
};
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE floating-point exception flags.
|
||||
-------------------------------------------------------------------------------
|
||||
extern signed char float_exception_flags;
|
||||
enum {
|
||||
float_flag_inexact = 1,
|
||||
float_flag_underflow = 2,
|
||||
float_flag_overflow = 4,
|
||||
float_flag_divbyzero = 8,
|
||||
float_flag_invalid = 16
|
||||
};
|
||||
|
||||
ScottB: November 4, 1998
|
||||
Changed the enumeration to match the bit order in the FPA11.
|
||||
*/
|
||||
|
||||
extern signed char float_exception_flags;
|
||||
enum {
|
||||
float_flag_invalid = 1,
|
||||
float_flag_divbyzero = 2,
|
||||
float_flag_overflow = 4,
|
||||
float_flag_underflow = 8,
|
||||
float_flag_inexact = 16
|
||||
};
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Routine to raise any or all of the software IEC/IEEE floating-point
|
||||
exception flags.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
void float_raise( signed char );
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE integer-to-floating-point conversion routines.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
float32 int32_to_float32( signed int );
|
||||
float64 int32_to_float64( signed int );
|
||||
#ifdef FLOATX80
|
||||
floatx80 int32_to_floatx80( signed int );
|
||||
#endif
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE single-precision conversion routines.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
signed int float32_to_int32( float32 );
|
||||
signed int float32_to_int32_round_to_zero( float32 );
|
||||
float64 float32_to_float64( float32 );
|
||||
#ifdef FLOATX80
|
||||
floatx80 float32_to_floatx80( float32 );
|
||||
#endif
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE single-precision operations.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
float32 float32_round_to_int( float32 );
|
||||
float32 float32_add( float32, float32 );
|
||||
float32 float32_sub( float32, float32 );
|
||||
float32 float32_mul( float32, float32 );
|
||||
float32 float32_div( float32, float32 );
|
||||
float32 float32_rem( float32, float32 );
|
||||
float32 float32_sqrt( float32 );
|
||||
char float32_eq( float32, float32 );
|
||||
char float32_le( float32, float32 );
|
||||
char float32_lt( float32, float32 );
|
||||
char float32_eq_signaling( float32, float32 );
|
||||
char float32_le_quiet( float32, float32 );
|
||||
char float32_lt_quiet( float32, float32 );
|
||||
char float32_is_signaling_nan( float32 );
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE double-precision conversion routines.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
signed int float64_to_int32( float64 );
|
||||
signed int float64_to_int32_round_to_zero( float64 );
|
||||
float32 float64_to_float32( float64 );
|
||||
#ifdef FLOATX80
|
||||
floatx80 float64_to_floatx80( float64 );
|
||||
#endif
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE double-precision operations.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
float64 float64_round_to_int( float64 );
|
||||
float64 float64_add( float64, float64 );
|
||||
float64 float64_sub( float64, float64 );
|
||||
float64 float64_mul( float64, float64 );
|
||||
float64 float64_div( float64, float64 );
|
||||
float64 float64_rem( float64, float64 );
|
||||
float64 float64_sqrt( float64 );
|
||||
char float64_eq( float64, float64 );
|
||||
char float64_le( float64, float64 );
|
||||
char float64_lt( float64, float64 );
|
||||
char float64_eq_signaling( float64, float64 );
|
||||
char float64_le_quiet( float64, float64 );
|
||||
char float64_lt_quiet( float64, float64 );
|
||||
char float64_is_signaling_nan( float64 );
|
||||
|
||||
#ifdef FLOATX80
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE extended double-precision conversion routines.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
signed int floatx80_to_int32( floatx80 );
|
||||
signed int floatx80_to_int32_round_to_zero( floatx80 );
|
||||
float32 floatx80_to_float32( floatx80 );
|
||||
float64 floatx80_to_float64( floatx80 );
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE extended double-precision rounding precision. Valid
|
||||
values are 32, 64, and 80.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
extern signed char floatx80_rounding_precision;
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE extended double-precision operations.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
floatx80 floatx80_round_to_int( floatx80 );
|
||||
floatx80 floatx80_add( floatx80, floatx80 );
|
||||
floatx80 floatx80_sub( floatx80, floatx80 );
|
||||
floatx80 floatx80_mul( floatx80, floatx80 );
|
||||
floatx80 floatx80_div( floatx80, floatx80 );
|
||||
floatx80 floatx80_rem( floatx80, floatx80 );
|
||||
floatx80 floatx80_sqrt( floatx80 );
|
||||
char floatx80_eq( floatx80, floatx80 );
|
||||
char floatx80_le( floatx80, floatx80 );
|
||||
char floatx80_lt( floatx80, floatx80 );
|
||||
char floatx80_eq_signaling( floatx80, floatx80 );
|
||||
char floatx80_le_quiet( floatx80, floatx80 );
|
||||
char floatx80_lt_quiet( floatx80, floatx80 );
|
||||
char floatx80_is_signaling_nan( floatx80 );
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue