visualboyadvance-m/third_party/sfml/include/SFML/System/Vector3.hpp

357 lines
12 KiB
C++

////////////////////////////////////////////////////////////
//
// SFML - Simple and Fast Multimedia Library
// Copyright (C) 2007-2025 Laurent Gomila (laurent@sfml-dev.org)
//
// This software is provided 'as-is', without any express or implied warranty.
// In no event will the authors be held liable for any damages arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it freely,
// subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented;
// you must not claim that you wrote the original software.
// If you use this software in a product, an acknowledgment
// in the product documentation would be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such,
// and must not be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source distribution.
//
////////////////////////////////////////////////////////////
#pragma once
#include <SFML/System/Export.hpp>
namespace sf
{
////////////////////////////////////////////////////////////
/// \brief Utility template class for manipulating
/// 3-dimensional vectors
///
////////////////////////////////////////////////////////////
template <typename T>
class Vector3
{
public:
////////////////////////////////////////////////////////////
/// \brief Default constructor
///
/// Creates a `Vector3(0, 0, 0)`.
///
////////////////////////////////////////////////////////////
constexpr Vector3() = default;
////////////////////////////////////////////////////////////
/// \brief Construct the vector from its coordinates
///
/// \param x X coordinate
/// \param y Y coordinate
/// \param z Z coordinate
///
////////////////////////////////////////////////////////////
constexpr Vector3(T x, T y, T z);
////////////////////////////////////////////////////////////
/// \brief Converts the vector to another type of vector
///
////////////////////////////////////////////////////////////
template <typename U>
constexpr explicit operator Vector3<U>() const;
////////////////////////////////////////////////////////////
/// \brief Length of the vector <i><b>(floating-point)</b></i>.
///
/// If you are not interested in the actual length, but only in comparisons, consider using `lengthSquared()`.
///
////////////////////////////////////////////////////////////
[[nodiscard]] SFML_SYSTEM_API T length() const;
////////////////////////////////////////////////////////////
/// \brief Square of vector's length.
///
/// Suitable for comparisons, more efficient than `length()`.
///
////////////////////////////////////////////////////////////
[[nodiscard]] constexpr T lengthSquared() const;
////////////////////////////////////////////////////////////
/// \brief Vector with same direction but length 1 <i><b>(floating-point)</b></i>.
///
/// \pre `*this` is no zero vector.
///
////////////////////////////////////////////////////////////
[[nodiscard]] SFML_SYSTEM_API Vector3 normalized() const;
////////////////////////////////////////////////////////////
/// \brief Dot product of two 3D vectors.
///
////////////////////////////////////////////////////////////
[[nodiscard]] constexpr T dot(const Vector3& rhs) const;
////////////////////////////////////////////////////////////
/// \brief Cross product of two 3D vectors.
///
////////////////////////////////////////////////////////////
[[nodiscard]] constexpr Vector3 cross(const Vector3& rhs) const;
////////////////////////////////////////////////////////////
/// \brief Component-wise multiplication of `*this` and `rhs`.
///
/// Computes `(lhs.x*rhs.x, lhs.y*rhs.y, lhs.z*rhs.z)`.
///
/// Scaling is the most common use case for component-wise multiplication/division.
/// This operation is also known as the Hadamard or Schur product.
///
////////////////////////////////////////////////////////////
[[nodiscard]] constexpr Vector3 componentWiseMul(const Vector3& rhs) const;
////////////////////////////////////////////////////////////
/// \brief Component-wise division of `*this` and `rhs`.
///
/// Computes `(lhs.x/rhs.x, lhs.y/rhs.y, lhs.z/rhs.z)`.
///
/// Scaling is the most common use case for component-wise multiplication/division.
///
/// \pre Neither component of `rhs` is zero.
///
////////////////////////////////////////////////////////////
[[nodiscard]] constexpr Vector3 componentWiseDiv(const Vector3& rhs) const;
////////////////////////////////////////////////////////////
// Member data
////////////////////////////////////////////////////////////
T x{}; //!< X coordinate of the vector
T y{}; //!< Y coordinate of the vector
T z{}; //!< Z coordinate of the vector
};
////////////////////////////////////////////////////////////
/// \relates Vector3
/// \brief Overload of unary `operator-`
///
/// \param left Vector to negate
///
/// \return Member-wise opposite of the vector
///
////////////////////////////////////////////////////////////
template <typename T>
[[nodiscard]] constexpr Vector3<T> operator-(const Vector3<T>& left);
////////////////////////////////////////////////////////////
/// \relates Vector3
/// \brief Overload of binary `operator+=`
///
/// This operator performs a member-wise addition of both vectors,
/// and assigns the result to `left`.
///
/// \param left Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return Reference to `left`
///
////////////////////////////////////////////////////////////
template <typename T>
constexpr Vector3<T>& operator+=(Vector3<T>& left, const Vector3<T>& right);
////////////////////////////////////////////////////////////
/// \relates Vector3
/// \brief Overload of binary `operator-=`
///
/// This operator performs a member-wise subtraction of both vectors,
/// and assigns the result to `left`.
///
/// \param left Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return Reference to `left`
///
////////////////////////////////////////////////////////////
template <typename T>
constexpr Vector3<T>& operator-=(Vector3<T>& left, const Vector3<T>& right);
////////////////////////////////////////////////////////////
/// \relates Vector3
/// \brief Overload of binary `operator+`
///
/// \param left Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return Member-wise addition of both vectors
///
////////////////////////////////////////////////////////////
template <typename T>
[[nodiscard]] constexpr Vector3<T> operator+(const Vector3<T>& left, const Vector3<T>& right);
////////////////////////////////////////////////////////////
/// \relates Vector3
/// \brief Overload of binary `operator-`
///
/// \param left Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return Member-wise subtraction of both vectors
///
////////////////////////////////////////////////////////////
template <typename T>
[[nodiscard]] constexpr Vector3<T> operator-(const Vector3<T>& left, const Vector3<T>& right);
////////////////////////////////////////////////////////////
/// \relates Vector3
/// \brief Overload of binary `operator*`
///
/// \param left Left operand (a vector)
/// \param right Right operand (a scalar value)
///
/// \return Member-wise multiplication by `right`
///
////////////////////////////////////////////////////////////
template <typename T>
[[nodiscard]] constexpr Vector3<T> operator*(const Vector3<T>& left, T right);
////////////////////////////////////////////////////////////
/// \relates Vector3
/// \brief Overload of binary `operator*`
///
/// \param left Left operand (a scalar value)
/// \param right Right operand (a vector)
///
/// \return Member-wise multiplication by `left`
///
////////////////////////////////////////////////////////////
template <typename T>
[[nodiscard]] constexpr Vector3<T> operator*(T left, const Vector3<T>& right);
////////////////////////////////////////////////////////////
/// \relates Vector3
/// \brief Overload of binary `operator*=`
///
/// This operator performs a member-wise multiplication by `right`,
/// and assigns the result to `left`.
///
/// \param left Left operand (a vector)
/// \param right Right operand (a scalar value)
///
/// \return Reference to `left`
///
////////////////////////////////////////////////////////////
template <typename T>
constexpr Vector3<T>& operator*=(Vector3<T>& left, T right);
////////////////////////////////////////////////////////////
/// \relates Vector3
/// \brief Overload of binary `operator/`
///
/// \param left Left operand (a vector)
/// \param right Right operand (a scalar value)
///
/// \return Member-wise division by `right`
///
////////////////////////////////////////////////////////////
template <typename T>
[[nodiscard]] constexpr Vector3<T> operator/(const Vector3<T>& left, T right);
////////////////////////////////////////////////////////////
/// \relates Vector3
/// \brief Overload of binary `operator/=`
///
/// This operator performs a member-wise division by `right`,
/// and assigns the result to `left`.
///
/// \param left Left operand (a vector)
/// \param right Right operand (a scalar value)
///
/// \return Reference to `left`
///
////////////////////////////////////////////////////////////
template <typename T>
constexpr Vector3<T>& operator/=(Vector3<T>& left, T right);
////////////////////////////////////////////////////////////
/// \relates Vector3
/// \brief Overload of binary `operator==`
///
/// This operator compares strict equality between two vectors.
///
/// \param left Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return `true` if `left` is equal to `right`
///
////////////////////////////////////////////////////////////
template <typename T>
[[nodiscard]] constexpr bool operator==(const Vector3<T>& left, const Vector3<T>& right);
////////////////////////////////////////////////////////////
/// \relates Vector3
/// \brief Overload of binary `operator!=`
///
/// This operator compares strict difference between two vectors.
///
/// \param left Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return `true` if `left` is not equal to `right`
///
////////////////////////////////////////////////////////////
template <typename T>
[[nodiscard]] constexpr bool operator!=(const Vector3<T>& left, const Vector3<T>& right);
// Aliases for the most common types
using Vector3i = Vector3<int>;
using Vector3f = Vector3<float>;
} // namespace sf
#include <SFML/System/Vector3.inl>
////////////////////////////////////////////////////////////
/// \class sf::Vector3
/// \ingroup system
///
/// `sf::Vector3` is a simple class that defines a mathematical
/// vector with three coordinates (x, y and z). It can be used to
/// represent anything that has three dimensions: a size, a point,
/// a velocity, etc.
///
/// The template parameter T is the type of the coordinates. It
/// can be any type that supports arithmetic operations (+, -, /, *)
/// and comparisons (==, !=), for example int or float.
/// Note that some operations are only meaningful for vectors where T is
/// a floating point type (e.g. float or double), often because
/// results cannot be represented accurately with integers.
/// The method documentation mentions "(floating-point)" in those cases.
///
/// You generally don't have to care about the templated form (`sf::Vector3<T>`),
/// the most common specializations have special type aliases:
/// \li `sf::Vector3<float>` is `sf::Vector3f`
/// \li `sf::Vector3<int>` is `sf::Vector3i`
///
/// The `sf::Vector3` class has a small and simple interface, its x, y and z members
/// can be accessed directly (there are no accessors like `setX()`, `getX()`).
///
/// Usage example:
/// \code
/// sf::Vector3f v(16.5f, 24.f, -3.2f);
/// v.x = 18.2f;
/// float y = v.y;
///
/// sf::Vector3f w = v * 5.f;
/// sf::Vector3f u;
/// u = v + w;
///
/// float s = v.dot(w);
/// sf::Vector3f t = v.cross(w);
///
/// bool different = (v != u);
/// \endcode
///
/// Note: for 2-dimensional vectors, see `sf::Vector2`.
///
////////////////////////////////////////////////////////////