// VisualBoyAdvance - Nintendo Gameboy/GameboyAdvance (TM) emulator. // Copyright (C) 1999-2003 Forgotten // Copyright (C) 2004 Forgotten and the VBA development team // Copyright (C) 2004-2006 VBA development team // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2, or(at your option) // any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software Foundation, // Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. #include #include "Sound.h" #include "GBA.h" #include "Globals.h" #include "Util.h" #include "snd_interp.h" #define USE_TICKS_AS 380 #define SOUND_MAGIC 0x60000000 #define SOUND_MAGIC_2 0x30000000 #define NOISE_MAGIC 5 extern bool stopState; u8 soundWavePattern[4][32] = { {0x01,0x01,0x01,0x01, 0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff}, {0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01, 0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff}, {0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01, 0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff}, {0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01, 0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff} }; int soundFreqRatio[8] = { 1048576, // 0 524288, // 1 262144, // 2 174763, // 3 131072, // 4 104858, // 5 87381, // 6 74898 // 7 }; int soundShiftClock[16]= { 2, // 0 4, // 1 8, // 2 16, // 3 32, // 4 64, // 5 128, // 6 256, // 7 512, // 8 1024, // 9 2048, // 10 4096, // 11 8192, // 12 16384, // 13 1, // 14 1 // 15 }; int soundVolume = 0; u8 soundBuffer[6][735]; u16 directBuffer[2][735]; u16 soundFinalWave[1470]; int soundBufferLen = 1470; int soundBufferTotalLen = 14700; int soundQuality = 2; int soundInterpolation = 0; bool soundPaused = true; int soundPlay = 0; int soundTicks = soundQuality * USE_TICKS_AS; int SOUND_CLOCK_TICKS = soundQuality * USE_TICKS_AS; u32 soundNextPosition = 0; int soundLevel1 = 0; int soundLevel2 = 0; int soundBalance = 0; int soundMasterOn = 0; int soundIndex = 0; int soundBufferIndex = 0; int soundDebug = 0; bool soundOffFlag = false; int sound1On = 0; int sound1ATL = 0; int sound1Skip = 0; int sound1Index = 0; int sound1Continue = 0; int sound1EnvelopeVolume = 0; int sound1EnvelopeATL = 0; int sound1EnvelopeUpDown = 0; int sound1EnvelopeATLReload = 0; int sound1SweepATL = 0; int sound1SweepATLReload = 0; int sound1SweepSteps = 0; int sound1SweepUpDown = 0; int sound1SweepStep = 0; u8 *sound1Wave = soundWavePattern[2]; int sound2On = 0; int sound2ATL = 0; int sound2Skip = 0; int sound2Index = 0; int sound2Continue = 0; int sound2EnvelopeVolume = 0; int sound2EnvelopeATL = 0; int sound2EnvelopeUpDown = 0; int sound2EnvelopeATLReload = 0; u8 *sound2Wave = soundWavePattern[2]; int sound3On = 0; int sound3ATL = 0; int sound3Skip = 0; int sound3Index = 0; int sound3Continue = 0; int sound3OutputLevel = 0; int sound3Last = 0; u8 sound3WaveRam[0x20]; int sound3Bank = 0; int sound3DataSize = 0; int sound3ForcedOutput = 0; int sound4On = 0; int sound4Clock = 0; int sound4ATL = 0; int sound4Skip = 0; int sound4Index = 0; int sound4ShiftRight = 0x7f; int sound4ShiftSkip = 0; int sound4ShiftIndex = 0; int sound4NSteps = 0; int sound4CountDown = 0; int sound4Continue = 0; int sound4EnvelopeVolume = 0; int sound4EnvelopeATL = 0; int sound4EnvelopeUpDown = 0; int sound4EnvelopeATLReload = 0; int soundControl = 0; int soundDSFifoAIndex = 0; int soundDSFifoACount = 0; int soundDSFifoAWriteIndex = 0; bool soundDSAEnabled = false; int soundDSATimer = 0; u8 soundDSFifoA[32]; u8 soundDSAValue = 0; int soundDSFifoBIndex = 0; int soundDSFifoBCount = 0; int soundDSFifoBWriteIndex = 0; bool soundDSBEnabled = false; int soundDSBTimer = 0; u8 soundDSFifoB[32]; u8 soundDSBValue = 0; int soundEnableFlag = 0x3ff; s16 soundFilter[4000]; s16 soundRight[5] = { 0, 0, 0, 0, 0 }; s16 soundLeft[5] = { 0, 0, 0, 0, 0 }; int soundEchoIndex = 0; bool soundEcho = false; bool soundLowPass = false; bool soundReverse = false; variable_desc soundSaveStruct[] = { { &soundPaused, sizeof(int) }, { &soundPlay, sizeof(int) }, { &soundTicks, sizeof(int) }, { &SOUND_CLOCK_TICKS, sizeof(int) }, { &soundLevel1, sizeof(int) }, { &soundLevel2, sizeof(int) }, { &soundBalance, sizeof(int) }, { &soundMasterOn, sizeof(int) }, { &soundIndex, sizeof(int) }, { &sound1On, sizeof(int) }, { &sound1ATL, sizeof(int) }, { &sound1Skip, sizeof(int) }, { &sound1Index, sizeof(int) }, { &sound1Continue, sizeof(int) }, { &sound1EnvelopeVolume, sizeof(int) }, { &sound1EnvelopeATL, sizeof(int) }, { &sound1EnvelopeATLReload, sizeof(int) }, { &sound1EnvelopeUpDown, sizeof(int) }, { &sound1SweepATL, sizeof(int) }, { &sound1SweepATLReload, sizeof(int) }, { &sound1SweepSteps, sizeof(int) }, { &sound1SweepUpDown, sizeof(int) }, { &sound1SweepStep, sizeof(int) }, { &sound2On, sizeof(int) }, { &sound2ATL, sizeof(int) }, { &sound2Skip, sizeof(int) }, { &sound2Index, sizeof(int) }, { &sound2Continue, sizeof(int) }, { &sound2EnvelopeVolume, sizeof(int) }, { &sound2EnvelopeATL, sizeof(int) }, { &sound2EnvelopeATLReload, sizeof(int) }, { &sound2EnvelopeUpDown, sizeof(int) }, { &sound3On, sizeof(int) }, { &sound3ATL, sizeof(int) }, { &sound3Skip, sizeof(int) }, { &sound3Index, sizeof(int) }, { &sound3Continue, sizeof(int) }, { &sound3OutputLevel, sizeof(int) }, { &sound4On, sizeof(int) }, { &sound4ATL, sizeof(int) }, { &sound4Skip, sizeof(int) }, { &sound4Index, sizeof(int) }, { &sound4Clock, sizeof(int) }, { &sound4ShiftRight, sizeof(int) }, { &sound4ShiftSkip, sizeof(int) }, { &sound4ShiftIndex, sizeof(int) }, { &sound4NSteps, sizeof(int) }, { &sound4CountDown, sizeof(int) }, { &sound4Continue, sizeof(int) }, { &sound4EnvelopeVolume, sizeof(int) }, { &sound4EnvelopeATL, sizeof(int) }, { &sound4EnvelopeATLReload, sizeof(int) }, { &sound4EnvelopeUpDown, sizeof(int) }, { &soundEnableFlag, sizeof(int) }, { &soundControl, sizeof(int) }, { &soundDSFifoAIndex, sizeof(int) }, { &soundDSFifoACount, sizeof(int) }, { &soundDSFifoAWriteIndex, sizeof(int) }, { &soundDSAEnabled, sizeof(bool) }, { &soundDSATimer, sizeof(int) }, { &soundDSFifoA[0], 32 }, { &soundDSAValue, sizeof(u8) }, { &soundDSFifoBIndex, sizeof(int) }, { &soundDSFifoBCount, sizeof(int) }, { &soundDSFifoBWriteIndex, sizeof(int) }, { &soundDSBEnabled, sizeof(int) }, { &soundDSBTimer, sizeof(int) }, { &soundDSFifoB[0], 32 }, { &soundDSBValue, sizeof(u8) }, { &soundBuffer[0][0], 6*735 }, { &soundFinalWave[0], 2*735 }, { NULL, 0 } }; variable_desc soundSaveStructV2[] = { { &sound3WaveRam[0], 0x20 }, { &sound3Bank, sizeof(int) }, { &sound3DataSize, sizeof(int) }, { &sound3ForcedOutput, sizeof(int) }, { NULL, 0 } }; // *** Begin snd_interp code // and here is the implementation specific code, in a messier state than the stuff above extern bool timer0On; extern int timer0Reload; extern int timer0ClockReload; extern bool timer1On; extern int timer1Reload; extern int timer1ClockReload; extern int SOUND_CLOCK_TICKS; extern int soundInterpolation; inline double calc_rate(int timer) { if (timer ? timer1On : timer0On) { return double(SOUND_CLOCK_TICKS) / double((0x10000 - (timer ? timer1Reload : timer0Reload)) * 1 << (timer ? timer1ClockReload : timer0ClockReload)); } else { return 1.; } } static foo_interpolate * interp[2]; class foo_interpolate_setup { public: foo_interpolate_setup() { for (int i = 0; i < 2; i++) { interp[i] = get_filter(0); } } ~foo_interpolate_setup() { for (int i = 0; i < 2; i++) { delete interp[i]; } } }; static foo_interpolate_setup blah; static int interpolation = 0; void interp_reset(int ch) { setSoundFn(); interp[ch]->reset(); interp_rate(); } void interp_switch(int which) { for (int i = 0; i < 2; i++) { delete interp[i]; interp[i] = get_filter(which); } interpolation = which; interp_rate(); } void interp_rate() { interp[0]->rate(calc_rate(soundDSATimer)); interp[1]->rate(calc_rate(soundDSBTimer)); } inline void interp_push(int ch, int sample) { interp[ch]->push(sample); } inline int interp_pop(int ch) { return interp[ch]->pop(); } // *** End snd_interp code void soundEvent(u32 address, u8 data) { int freq = 0; switch(address) { case NR10: data &= 0x7f; sound1SweepATL = sound1SweepATLReload = 344 * ((data >> 4) & 7); sound1SweepSteps = data & 7; sound1SweepUpDown = data & 0x08; sound1SweepStep = 0; ioMem[address] = data; break; case NR11: sound1Wave = soundWavePattern[data >> 6]; sound1ATL = 172 * (64 - (data & 0x3f)); ioMem[address] = data; break; case NR12: sound1EnvelopeUpDown = data & 0x08; sound1EnvelopeATLReload = 689 * (data & 7); if((data & 0xF8) == 0) sound1EnvelopeVolume = 0; ioMem[address] = data; break; case NR13: freq = (((int)(ioMem[NR14] & 7)) << 8) | data; sound1ATL = 172 * (64 - (ioMem[NR11] & 0x3f)); freq = 2048 - freq; if(freq) { sound1Skip = SOUND_MAGIC / freq; } else sound1Skip = 0; ioMem[address] = data; break; case NR14: data &= 0xC7; freq = (((int)(data&7) << 8) | ioMem[NR13]); freq = 2048 - freq; sound1ATL = 172 * (64 - (ioMem[NR11] & 0x3f)); sound1Continue = data & 0x40; if(freq) { sound1Skip = SOUND_MAGIC / freq; } else sound1Skip = 0; if(data & 0x80) { ioMem[NR52] |= 1; sound1EnvelopeVolume = ioMem[NR12] >> 4; sound1EnvelopeUpDown = ioMem[NR12] & 0x08; sound1ATL = 172 * (64 - (ioMem[NR11] & 0x3f)); sound1EnvelopeATLReload = sound1EnvelopeATL = 689 * (ioMem[NR12] & 7); sound1SweepATL = sound1SweepATLReload = 344 * ((ioMem[NR10] >> 4) & 7); sound1SweepSteps = ioMem[NR10] & 7; sound1SweepUpDown = ioMem[NR10] & 0x08; sound1SweepStep = 0; sound1Index = 0; sound1On = 1; } ioMem[address] = data; break; case NR21: sound2Wave = soundWavePattern[data >> 6]; sound2ATL = 172 * (64 - (data & 0x3f)); ioMem[address] = data; break; case NR22: sound2EnvelopeUpDown = data & 0x08; sound2EnvelopeATLReload = 689 * (data & 7); if((data & 0xF8) == 0) sound2EnvelopeVolume = 0; ioMem[address] = data; break; case NR23: freq = (((int)(ioMem[NR24] & 7)) << 8) | data; sound2ATL = 172 * (64 - (ioMem[NR21] & 0x3f)); freq = 2048 - freq; if(freq) { sound2Skip = SOUND_MAGIC / freq; } else sound2Skip = 0; ioMem[address] = data; break; case NR24: data &= 0xC7; freq = (((int)(data&7) << 8) | ioMem[NR23]); freq = 2048 - freq; sound2ATL = 172 * (64 - (ioMem[NR21] & 0x3f)); sound2Continue = data & 0x40; if(freq) { sound2Skip = SOUND_MAGIC / freq; } else sound2Skip = 0; if(data & 0x80) { ioMem[NR52] |= 2; sound2EnvelopeVolume = ioMem[NR22] >> 4; sound2EnvelopeUpDown = ioMem[NR22] & 0x08; sound2ATL = 172 * (64 - (ioMem[NR21] & 0x3f)); sound2EnvelopeATLReload = sound2EnvelopeATL = 689 * (ioMem[NR22] & 7); sound2Index = 0; sound2On = 1; } ioMem[address] = data; break; case NR30: data &= 0xe0; if(!(data & 0x80)) { ioMem[NR52] &= 0xfb; sound3On = 0; } if(((data >> 6) & 1) != sound3Bank) memcpy(&ioMem[0x90], &sound3WaveRam[(((data >> 6) & 1) * 0x10)^0x10], 0x10); sound3Bank = (data >> 6) & 1; sound3DataSize = (data >> 5) & 1; ioMem[address] = data; break; case NR31: sound3ATL = 172 * (256-data); ioMem[address] = data; break; case NR32: data &= 0xe0; sound3OutputLevel = (data >> 5) & 3; sound3ForcedOutput = (data >> 7) & 1; ioMem[address] = data; break; case NR33: freq = 2048 - (((int)(ioMem[NR34]&7) << 8) | data); if(freq) { sound3Skip = SOUND_MAGIC_2 / freq; } else sound3Skip = 0; ioMem[address] = data; break; case NR34: data &= 0xc7; freq = 2048 - (((data &7) << 8) | (int)ioMem[NR33]); if(freq) { sound3Skip = SOUND_MAGIC_2 / freq; } else { sound3Skip = 0; } sound3Continue = data & 0x40; if((data & 0x80) && (ioMem[NR30] & 0x80)) { ioMem[NR52] |= 4; sound3ATL = 172 * (256 - ioMem[NR31]); sound3Index = 0; sound3On = 1; } ioMem[address] = data; break; case NR41: data &= 0x3f; sound4ATL = 172 * (64 - (data & 0x3f)); ioMem[address] = data; break; case NR42: sound4EnvelopeUpDown = data & 0x08; sound4EnvelopeATLReload = 689 * (data & 7); if((data & 0xF8) == 0) sound4EnvelopeVolume = 0; ioMem[address] = data; break; case NR43: freq = soundFreqRatio[data & 7]; sound4NSteps = data & 0x08; sound4Skip = (freq << 8) / NOISE_MAGIC; sound4Clock = data >> 4; freq = freq / soundShiftClock[sound4Clock]; sound4ShiftSkip = (freq << 8) / NOISE_MAGIC; ioMem[address] = data; break; case NR44: data &= 0xc0; sound4Continue = data & 0x40; if(data & 0x80) { ioMem[NR52] |= 8; sound4EnvelopeVolume = ioMem[NR42] >> 4; sound4EnvelopeUpDown = ioMem[NR42] & 0x08; sound4ATL = 172 * (64 - (ioMem[NR41] & 0x3f)); sound4EnvelopeATLReload = sound4EnvelopeATL = 689 * (ioMem[NR42] & 7); sound4On = 1; sound4Index = 0; sound4ShiftIndex = 0; freq = soundFreqRatio[ioMem[NR43] & 7]; sound4Skip = (freq << 8) / NOISE_MAGIC; sound4NSteps = ioMem[NR43] & 0x08; freq = freq / soundShiftClock[ioMem[NR43] >> 4]; sound4ShiftSkip = (freq << 8) / NOISE_MAGIC; if(sound4NSteps) sound4ShiftRight = 0x7fff; else sound4ShiftRight = 0x7f; } ioMem[address] = data; break; case NR50: data &= 0x77; soundLevel1 = data & 7; soundLevel2 = (data >> 4) & 7; ioMem[address] = data; break; case NR51: soundBalance = (data & soundEnableFlag); ioMem[address] = data; break; case NR52: data &= 0x80; data |= ioMem[NR52] & 15; soundMasterOn = data & 0x80; if(!(data & 0x80)) { sound1On = 0; sound2On = 0; sound3On = 0; sound4On = 0; } ioMem[address] = data; break; case 0x90: case 0x91: case 0x92: case 0x93: case 0x94: case 0x95: case 0x96: case 0x97: case 0x98: case 0x99: case 0x9a: case 0x9b: case 0x9c: case 0x9d: case 0x9e: case 0x9f: sound3WaveRam[(sound3Bank*0x10)^0x10+(address&15)] = data; break; } } void soundEvent(u32 address, u16 data) { switch(address) { case SGCNT0_H: data &= 0xFF0F; soundControl = data & 0x770F; if(data & 0x0800) { soundDSFifoAWriteIndex = 0; soundDSFifoAIndex = 0; soundDSFifoACount = 0; soundDSAValue = 0; memset(soundDSFifoA, 0, 32); } soundDSAEnabled = (data & 0x0300) ? true : false; soundDSATimer = (data & 0x0400) ? 1 : 0; if(data & 0x8000) { soundDSFifoBWriteIndex = 0; soundDSFifoBIndex = 0; soundDSFifoBCount = 0; soundDSBValue = 0; memset(soundDSFifoB, 0, 32); } soundDSBEnabled = (data & 0x3000) ? true : false; soundDSBTimer = (data & 0x4000) ? 1 : 0; *((u16 *)&ioMem[address]) = soundControl; break; case FIFOA_L: case FIFOA_H: soundDSFifoA[soundDSFifoAWriteIndex++] = data & 0xFF; soundDSFifoA[soundDSFifoAWriteIndex++] = data >> 8; soundDSFifoACount += 2; soundDSFifoAWriteIndex &= 31; *((u16 *)&ioMem[address]) = data; break; case FIFOB_L: case FIFOB_H: soundDSFifoB[soundDSFifoBWriteIndex++] = data & 0xFF; soundDSFifoB[soundDSFifoBWriteIndex++] = data >> 8; soundDSFifoBCount += 2; soundDSFifoBWriteIndex &= 31; *((u16 *)&ioMem[address]) = data; break; case 0x88: data &= 0xC3FF; *((u16 *)&ioMem[address]) = data; break; case 0x90: case 0x92: case 0x94: case 0x96: case 0x98: case 0x9a: case 0x9c: case 0x9e: *((u16 *)&sound3WaveRam[(sound3Bank*0x10)^0x10+(address&14)]) = data; *((u16 *)&ioMem[address]) = data; break; } } void soundChannel1() { int vol = sound1EnvelopeVolume; int freq = 0; int value = 0; if(sound1On && (sound1ATL || !sound1Continue)) { sound1Index += soundQuality*sound1Skip; sound1Index &= 0x1fffffff; value = ((s8)sound1Wave[sound1Index>>24]) * vol; } soundBuffer[0][soundIndex] = value; if(sound1On) { if(sound1ATL) { sound1ATL-=soundQuality; if(sound1ATL <=0 && sound1Continue) { ioMem[NR52] &= 0xfe; sound1On = 0; } } if(sound1EnvelopeATL) { sound1EnvelopeATL-=soundQuality; if(sound1EnvelopeATL<=0) { if(sound1EnvelopeUpDown) { if(sound1EnvelopeVolume < 15) sound1EnvelopeVolume++; } else { if(sound1EnvelopeVolume) sound1EnvelopeVolume--; } sound1EnvelopeATL += sound1EnvelopeATLReload; } } if(sound1SweepATL) { sound1SweepATL-=soundQuality; if(sound1SweepATL<=0) { freq = (((int)(ioMem[NR14]&7) << 8) | ioMem[NR13]); int updown = 1; if(sound1SweepUpDown) updown = -1; int newfreq = 0; if(sound1SweepSteps) { newfreq = freq + updown * freq / (1 << sound1SweepSteps); if(newfreq == freq) newfreq = 0; } else newfreq = freq; if(newfreq < 0) { sound1SweepATL += sound1SweepATLReload; } else if(newfreq > 2047) { sound1SweepATL = 0; sound1On = 0; ioMem[NR52] &= 0xfe; } else { sound1SweepATL += sound1SweepATLReload; sound1Skip = SOUND_MAGIC/(2048 - newfreq); ioMem[NR13] = newfreq & 0xff; ioMem[NR14] = (ioMem[NR14] & 0xf8) |((newfreq >> 8) & 7); } } } } } void soundChannel2() { // int freq = 0; int vol = sound2EnvelopeVolume; int value = 0; if(sound2On && (sound2ATL || !sound2Continue)) { sound2Index += soundQuality*sound2Skip; sound2Index &= 0x1fffffff; value = ((s8)sound2Wave[sound2Index>>24]) * vol; } soundBuffer[1][soundIndex] = value; if(sound2On) { if(sound2ATL) { sound2ATL-=soundQuality; if(sound2ATL <= 0 && sound2Continue) { ioMem[NR52] &= 0xfd; sound2On = 0; } } if(sound2EnvelopeATL) { sound2EnvelopeATL-=soundQuality; if(sound2EnvelopeATL <= 0) { if(sound2EnvelopeUpDown) { if(sound2EnvelopeVolume < 15) sound2EnvelopeVolume++; } else { if(sound2EnvelopeVolume) sound2EnvelopeVolume--; } sound2EnvelopeATL += sound2EnvelopeATLReload; } } } } void soundChannel3() { int value = sound3Last; if(sound3On && (sound3ATL || !sound3Continue)) { sound3Index += soundQuality*sound3Skip; if(sound3DataSize) { sound3Index &= 0x3fffffff; value = sound3WaveRam[sound3Index>>25]; } else { sound3Index &= 0x1fffffff; value = sound3WaveRam[sound3Bank*0x10 + (sound3Index>>25)]; } if( (sound3Index & 0x01000000)) { value &= 0x0f; } else { value >>= 4; } value -= 8; value *= 2; if(sound3ForcedOutput) { value = ((value >> 1) + value) >> 1; } else { switch(sound3OutputLevel) { case 0: value = 0; break; case 1: break; case 2: value = (value >> 1); break; case 3: value = (value >> 2); break; } } sound3Last = value; } soundBuffer[2][soundIndex] = value; if(sound3On) { if(sound3ATL) { sound3ATL-=soundQuality; if(sound3ATL <= 0 && sound3Continue) { ioMem[NR52] &= 0xfb; sound3On = 0; } } } } void soundChannel4() { int vol = sound4EnvelopeVolume; int value = 0; if(sound4Clock <= 0x0c) { if(sound4On && (sound4ATL || !sound4Continue)) { sound4Index += soundQuality*sound4Skip; sound4ShiftIndex += soundQuality*sound4ShiftSkip; if(sound4NSteps) { while(sound4ShiftIndex > 0x1fffff) { sound4ShiftRight = (((sound4ShiftRight << 6) ^ (sound4ShiftRight << 5)) & 0x40) | (sound4ShiftRight >> 1); sound4ShiftIndex -= 0x200000; } } else { while(sound4ShiftIndex > 0x1fffff) { sound4ShiftRight = (((sound4ShiftRight << 14) ^ (sound4ShiftRight << 13)) & 0x4000) | (sound4ShiftRight >> 1); sound4ShiftIndex -= 0x200000; } } sound4Index &= 0x1fffff; sound4ShiftIndex &= 0x1fffff; value = ((sound4ShiftRight & 1)*2-1) * vol; } else { value = 0; } } soundBuffer[3][soundIndex] = value; if(sound4On) { if(sound4ATL) { sound4ATL-=soundQuality; if(sound4ATL <= 0 && sound4Continue) { ioMem[NR52] &= 0xfd; sound4On = 0; } } if(sound4EnvelopeATL) { sound4EnvelopeATL-=soundQuality; if(sound4EnvelopeATL <= 0) { if(sound4EnvelopeUpDown) { if(sound4EnvelopeVolume < 15) sound4EnvelopeVolume++; } else { if(sound4EnvelopeVolume) sound4EnvelopeVolume--; } sound4EnvelopeATL += sound4EnvelopeATLReload; } } } } extern bool cpuDmaHack2; void soundDirectSoundATimer() { if(soundDSAEnabled) { if(soundDSFifoACount <= 16) { cpuDmaHack2 = CPUCheckDMA(3, 2); if(soundDSFifoACount <= 16) { soundEvent(FIFOA_L, (u16)0); soundEvent(FIFOA_H, (u16)0); soundEvent(FIFOA_L, (u16)0); soundEvent(FIFOA_H, (u16)0); soundEvent(FIFOA_L, (u16)0); soundEvent(FIFOA_H, (u16)0); soundEvent(FIFOA_L, (u16)0); soundEvent(FIFOA_H, (u16)0); } } soundDSAValue = (soundDSFifoA[soundDSFifoAIndex]); interp_push(0, (s8)soundDSAValue << 8); soundDSFifoAIndex = (++soundDSFifoAIndex) & 31; soundDSFifoACount--; } else soundDSAValue = 0; } void soundDirectSoundA() { directBuffer[0][soundIndex] = interp_pop(0); //soundDSAValue; } void soundDirectSoundB() { directBuffer[1][soundIndex] = interp_pop(1); //soundDSBValue; } void soundDirectSoundBTimer() { if(soundDSBEnabled) { if(soundDSFifoBCount <= 16) { cpuDmaHack2 = CPUCheckDMA(3, 4); if(soundDSFifoBCount <= 16) { soundEvent(FIFOB_L, (u16)0); soundEvent(FIFOB_H, (u16)0); soundEvent(FIFOB_L, (u16)0); soundEvent(FIFOB_H, (u16)0); soundEvent(FIFOB_L, (u16)0); soundEvent(FIFOB_H, (u16)0); soundEvent(FIFOB_L, (u16)0); soundEvent(FIFOB_H, (u16)0); } } soundDSBValue = (soundDSFifoB[soundDSFifoBIndex]); interp_push(1, (s8)soundDSBValue << 8); soundDSFifoBIndex = (++soundDSFifoBIndex) & 31; soundDSFifoBCount--; } else { soundDSBValue = 0; } } void soundTimerOverflow(int timer) { if(soundDSAEnabled && (soundDSATimer == timer)) { soundDirectSoundATimer(); } if(soundDSBEnabled && (soundDSBTimer == timer)) { soundDirectSoundBTimer(); } } #ifndef max #define max(a,b) (a)<(b)?(b):(a) #endif void soundMix() { int res = 0; int cgbRes = 0; int ratio = ioMem[0x82] & 3; int dsaRatio = ioMem[0x82] & 4; int dsbRatio = ioMem[0x82] & 8; if(soundBalance & 16) { cgbRes = ((s8)soundBuffer[0][soundIndex]); } if(soundBalance & 32) { cgbRes += ((s8)soundBuffer[1][soundIndex]); } if(soundBalance & 64) { cgbRes += ((s8)soundBuffer[2][soundIndex]); } if(soundBalance & 128) { cgbRes += ((s8)soundBuffer[3][soundIndex]); } if((soundControl & 0x0200) && (soundEnableFlag & 0x100)){ if(!dsaRatio) res = ((s16)directBuffer[0][soundIndex])>>1; else res = ((s16)directBuffer[0][soundIndex]); } if((soundControl & 0x2000) && (soundEnableFlag & 0x200)){ if(!dsbRatio) res += ((s16)directBuffer[1][soundIndex])>>1; else res += ((s16)directBuffer[1][soundIndex]); } res = (res * 170) >> 8; cgbRes = (cgbRes * 52 * soundLevel1); switch(ratio) { case 0: case 3: // prohibited, but 25% cgbRes >>= 2; break; case 1: cgbRes >>= 1; break; case 2: break; } res += cgbRes; if(soundEcho) { res *= 2; res += soundFilter[soundEchoIndex]; res /= 2; soundFilter[soundEchoIndex++] = res; } if(soundLowPass) { soundLeft[4] = soundLeft[3]; soundLeft[3] = soundLeft[2]; soundLeft[2] = soundLeft[1]; soundLeft[1] = soundLeft[0]; soundLeft[0] = res; res = (soundLeft[4] + 2*soundLeft[3] + 8*soundLeft[2] + 2*soundLeft[1] + soundLeft[0])/14; } switch(soundVolume) { case 0: case 1: case 2: case 3: res *= (soundVolume+1); break; case 4: res >>= 2; break; case 5: res >>= 1; break; } if(res > 32767) res = 32767; if(res < -32768) res = -32768; if(soundReverse) soundFinalWave[++soundBufferIndex] = res; else soundFinalWave[soundBufferIndex++] = res; res = 0; cgbRes = 0; if(soundBalance & 1) { cgbRes = ((s8)soundBuffer[0][soundIndex]); } if(soundBalance & 2) { cgbRes += ((s8)soundBuffer[1][soundIndex]); } if(soundBalance & 4) { cgbRes += ((s8)soundBuffer[2][soundIndex]); } if(soundBalance & 8) { cgbRes += ((s8)soundBuffer[3][soundIndex]); } if((soundControl & 0x0100) && (soundEnableFlag & 0x100)){ if(!dsaRatio) res = ((s16)directBuffer[0][soundIndex])>>1; else res = ((s16)directBuffer[0][soundIndex]); } if((soundControl & 0x1000) && (soundEnableFlag & 0x200)){ if(!dsbRatio) res += ((s16)directBuffer[1][soundIndex])>>1; else res += ((s16)directBuffer[1][soundIndex]); } res = (res * 170) >> 8; cgbRes = (cgbRes * 52 * soundLevel1); switch(ratio) { case 0: case 3: // prohibited, but 25% cgbRes >>= 2; break; case 1: cgbRes >>= 1; break; case 2: break; } res += cgbRes; if(soundEcho) { res *= 2; res += soundFilter[soundEchoIndex]; res /= 2; soundFilter[soundEchoIndex++] = res; if(soundEchoIndex >= 4000) soundEchoIndex = 0; } if(soundLowPass) { soundRight[4] = soundRight[3]; soundRight[3] = soundRight[2]; soundRight[2] = soundRight[1]; soundRight[1] = soundRight[0]; soundRight[0] = res; res = (soundRight[4] + 2*soundRight[3] + 8*soundRight[2] + 2*soundRight[1] + soundRight[0])/14; } switch(soundVolume) { case 0: case 1: case 2: case 3: res *= (soundVolume+1); break; case 4: res >>= 2; break; case 5: res >>= 1; break; } if(res > 32767) res = 32767; if(res < -32768) res = -32768; if(soundReverse) soundFinalWave[-1+soundBufferIndex++] = res; else soundFinalWave[soundBufferIndex++] = res; } // soundTick gets called a lot // if we are operating normally // call normalSoundTick to avoid // all the comparison checks. void normalsoundTick() { soundChannel1(); soundChannel2(); soundChannel3(); soundChannel4(); soundDirectSoundA(); soundDirectSoundB(); soundMix(); soundIndex++; if(2*soundBufferIndex >= soundBufferLen) { systemWriteDataToSoundBuffer(); soundIndex = 0; soundBufferIndex = 0; } } void soundTick() { if(systemSoundOn) { if(soundMasterOn && !stopState) { soundChannel1(); soundChannel2(); soundChannel3(); soundChannel4(); soundDirectSoundA(); soundDirectSoundB(); soundMix(); } else { soundFinalWave[soundBufferIndex++] = 0; soundFinalWave[soundBufferIndex++] = 0; } soundIndex++; if(2*soundBufferIndex >= soundBufferLen) { if(systemSoundOn) { if(soundPaused) { soundResume(); setSoundFn(); } systemWriteDataToSoundBuffer(); } soundIndex = 0; soundBufferIndex = 0; } } } void (*psoundTickfn)()=soundTick; void setSoundFn() { if (systemSoundOn && !soundPaused && soundMasterOn) psoundTickfn = normalsoundTick; else psoundTickfn = soundTick; if (soundInterpolation != interpolation) interp_switch(soundInterpolation); } void setsystemSoundOn(bool value) { systemSoundOn = value; setSoundFn(); } void setsoundPaused(bool value) { soundPaused = value; setSoundFn(); } void setsoundMasterOn(bool value) { soundMasterOn = value; setSoundFn(); } void soundShutdown() { systemSoundShutdown(); } void soundPause() { systemSoundPause(); setsoundPaused(true); } void soundResume() { systemSoundResume(); setsoundPaused(false); } void soundEnable(int channels) { int c = channels & 0x0f; soundEnableFlag |= ((channels & 0x30f) |c | (c << 4)); if(ioMem) soundBalance = (ioMem[NR51] & soundEnableFlag); } void soundDisable(int channels) { int c = channels & 0x0f; soundEnableFlag &= (~((channels & 0x30f)|c|(c<<4))); if(ioMem) soundBalance = (ioMem[NR51] & soundEnableFlag); } int soundGetEnable() { return (soundEnableFlag & 0x30f); } void soundReset() { systemSoundReset(); setsoundPaused(true); soundPlay = 0; SOUND_CLOCK_TICKS = soundQuality * USE_TICKS_AS; soundTicks = SOUND_CLOCK_TICKS; soundNextPosition = 0; setsoundMasterOn(true); soundIndex = 0; soundBufferIndex = 0; soundLevel1 = 7; soundLevel2 = 7; sound1On = 0; sound1ATL = 0; sound1Skip = 0; sound1Index = 0; sound1Continue = 0; sound1EnvelopeVolume = 0; sound1EnvelopeATL = 0; sound1EnvelopeUpDown = 0; sound1EnvelopeATLReload = 0; sound1SweepATL = 0; sound1SweepATLReload = 0; sound1SweepSteps = 0; sound1SweepUpDown = 0; sound1SweepStep = 0; sound1Wave = soundWavePattern[2]; sound2On = 0; sound2ATL = 0; sound2Skip = 0; sound2Index = 0; sound2Continue = 0; sound2EnvelopeVolume = 0; sound2EnvelopeATL = 0; sound2EnvelopeUpDown = 0; sound2EnvelopeATLReload = 0; sound2Wave = soundWavePattern[2]; sound3On = 0; sound3ATL = 0; sound3Skip = 0; sound3Index = 0; sound3Continue = 0; sound3OutputLevel = 0; sound3Last = 0; sound3Bank = 0; sound3DataSize = 0; sound3ForcedOutput = 0; sound4On = 0; sound4Clock = 0; sound4ATL = 0; sound4Skip = 0; sound4Index = 0; sound4ShiftRight = 0x7f; sound4NSteps = 0; sound4CountDown = 0; sound4Continue = 0; sound4EnvelopeVolume = 0; sound4EnvelopeATL = 0; sound4EnvelopeUpDown = 0; sound4EnvelopeATLReload = 0; sound1On = 0; sound2On = 0; sound3On = 0; sound4On = 0; int addr = 0x90; while(addr < 0xA0) { ioMem[addr++] = 0x00; ioMem[addr++] = 0xff; } addr = 0; while(addr < 0x20) { sound3WaveRam[addr++] = 0x00; sound3WaveRam[addr++] = 0xff; } memset(soundFinalWave, 0, soundBufferLen); memset(soundFilter, 0, sizeof(soundFilter)); soundEchoIndex = 0; } bool soundInit() { if(systemSoundInit()) { memset(soundBuffer[0], 0, 735*2); memset(soundBuffer[1], 0, 735*2); memset(soundBuffer[2], 0, 735*2); memset(soundBuffer[3], 0, 735*2); memset(soundFinalWave, 0, soundBufferLen); soundPaused = true; return true; } return false; } void soundSetQuality(int quality) { if(soundQuality != quality && systemCanChangeSoundQuality()) { if(!soundOffFlag) soundShutdown(); soundQuality = quality; soundNextPosition = 0; if(!soundOffFlag) soundInit(); SOUND_CLOCK_TICKS = USE_TICKS_AS * soundQuality; soundIndex = 0; soundBufferIndex = 0; } else if(soundQuality != quality) { soundNextPosition = 0; SOUND_CLOCK_TICKS = USE_TICKS_AS * soundQuality; soundIndex = 0; soundBufferIndex = 0; } } void soundSaveGame(gzFile gzFile) { utilWriteData(gzFile, soundSaveStruct); utilWriteData(gzFile, soundSaveStructV2); utilGzWrite(gzFile, &soundQuality, sizeof(int)); } void soundReadGame(gzFile gzFile, int version) { utilReadData(gzFile, soundSaveStruct); if(version >= SAVE_GAME_VERSION_3) { utilReadData(gzFile, soundSaveStructV2); } else { sound3Bank = (ioMem[NR30] >> 6) & 1; sound3DataSize = (ioMem[NR30] >> 5) & 1; sound3ForcedOutput = (ioMem[NR32] >> 7) & 1; // nothing better to do here... memcpy(&sound3WaveRam[0x00], &ioMem[0x90], 0x10); memcpy(&sound3WaveRam[0x10], &ioMem[0x90], 0x10); } soundBufferIndex = soundIndex * 2; int quality = 1; utilGzRead(gzFile, &quality, sizeof(int)); soundSetQuality(quality); sound1Wave = soundWavePattern[ioMem[NR11] >> 6]; sound2Wave = soundWavePattern[ioMem[NR21] >> 6]; }