Finished libresample removal

This commit is contained in:
mudlord 2007-12-13 11:05:49 +00:00
parent 81e02386b4
commit 98cd8a44e3
2 changed files with 0 additions and 516 deletions

View File

@ -1,481 +0,0 @@
#include <math.h>
#include "libresample-0.1.3/include/libresample.h"
#include "snd_interp.h"
// this was once borrowed from libmodplug, and was also used to generate the FIR coefficient
// tables that ZSNES uses for its "FIR" interpolation mode
/*
------------------------------------------------------------------------------------------------
fir interpolation doc,
(derived from "an engineer's guide to fir digital filters", n.j. loy)
calculate coefficients for ideal lowpass filter (with cutoff = fc in 0..1 (mapped to 0..nyquist))
c[-N..N] = (i==0) ? fc : sin(fc*pi*i)/(pi*i)
then apply selected window to coefficients
c[-N..N] *= w(0..N)
with n in 2*N and w(n) being a window function (see loy)
then calculate gain and scale filter coefs to have unity gain.
------------------------------------------------------------------------------------------------
*/
// quantizer scale of window coefs
#define WFIR_QUANTBITS 14
#define WFIR_QUANTSCALE (1L<<WFIR_QUANTBITS)
#define WFIR_8SHIFT (WFIR_QUANTBITS-8)
#define WFIR_16BITSHIFT (WFIR_QUANTBITS)
// log2(number)-1 of precalculated taps range is [4..12]
#define WFIR_FRACBITS 12
#define WFIR_LUTLEN ((1L<<(WFIR_FRACBITS+1))+1)
// number of samples in window
#define WFIR_LOG2WIDTH 3
#define WFIR_WIDTH (1L<<WFIR_LOG2WIDTH)
#define WFIR_SMPSPERWING ((WFIR_WIDTH-1)>>1)
// cutoff (1.0 == pi/2)
#define WFIR_CUTOFF 0.95f
// wfir type
#define WFIR_HANN 0
#define WFIR_HAMMING 1
#define WFIR_BLACKMANEXACT 2
#define WFIR_BLACKMAN3T61 3
#define WFIR_BLACKMAN3T67 4
#define WFIR_BLACKMAN4T92 5
#define WFIR_BLACKMAN4T74 6
#define WFIR_KAISER4T 7
#define WFIR_LANCZOS 8
#define WFIR_TYPE WFIR_LANCZOS
// wfir help
#ifndef M_zPI
#define M_zPI 3.1415926535897932384626433832795
#endif
#define M_zEPS 1e-8
#define M_zBESSELEPS 1e-21
class CzWINDOWEDFIR
{ public:
CzWINDOWEDFIR( );
~CzWINDOWEDFIR( );
float coef( int _PCnr, float _POfs, float _PCut, int _PWidth, int _PType ) //float _PPos, float _PFc, int _PLen )
{ double _LWidthM1 = _PWidth-1;
double _LWidthM1Half = 0.5*_LWidthM1;
double _LPosU = ((double)_PCnr - _POfs);
double _LPos = _LPosU-_LWidthM1Half;
double _LPIdl = 2.0*M_zPI/_LWidthM1;
double _LWc,_LSi;
if( fabs(_LPos)<M_zEPS )
{ _LWc = 1.0;
_LSi = _PCut;
}
else
{ switch( _PType )
{ case WFIR_HANN:
_LWc = 0.50 - 0.50 * cos(_LPIdl*_LPosU);
break;
case WFIR_HAMMING:
_LWc = 0.54 - 0.46 * cos(_LPIdl*_LPosU);
break;
case WFIR_BLACKMANEXACT:
_LWc = 0.42 - 0.50 * cos(_LPIdl*_LPosU) + 0.08 * cos(2.0*_LPIdl*_LPosU);
break;
case WFIR_BLACKMAN3T61:
_LWc = 0.44959 - 0.49364 * cos(_LPIdl*_LPosU) + 0.05677 * cos(2.0*_LPIdl*_LPosU);
break;
case WFIR_BLACKMAN3T67:
_LWc = 0.42323 - 0.49755 * cos(_LPIdl*_LPosU) + 0.07922 * cos(2.0*_LPIdl*_LPosU);
break;
case WFIR_BLACKMAN4T92:
_LWc = 0.35875 - 0.48829 * cos(_LPIdl*_LPosU) + 0.14128 * cos(2.0*_LPIdl*_LPosU) - 0.01168 * cos(3.0*_LPIdl*_LPosU);
break;
case WFIR_BLACKMAN4T74:
_LWc = 0.40217 - 0.49703 * cos(_LPIdl*_LPosU) + 0.09392 * cos(2.0*_LPIdl*_LPosU) - 0.00183 * cos(3.0*_LPIdl*_LPosU);
break;
case WFIR_KAISER4T:
_LWc = 0.40243 - 0.49804 * cos(_LPIdl*_LPosU) + 0.09831 * cos(2.0*_LPIdl*_LPosU) - 0.00122 * cos(3.0*_LPIdl*_LPosU);
break;
case WFIR_LANCZOS:
_LWc = 1 - (sin(_LPIdl*_LPosU) / (_LPIdl*_LPosU));
break;
default:
_LWc = 1.0;
break;
}
_LPos *= M_zPI;
_LSi = sin(_PCut*_LPos)/_LPos;
}
return (float)(_LWc*_LSi);
}
static signed short lut[WFIR_LUTLEN*WFIR_WIDTH];
};
signed short CzWINDOWEDFIR::lut[WFIR_LUTLEN*WFIR_WIDTH];
CzWINDOWEDFIR::CzWINDOWEDFIR()
{ int _LPcl;
float _LPcllen = (float)(1L<<WFIR_FRACBITS); // number of precalculated lines for 0..1 (-1..0)
float _LNorm = 1.0f / (float)(2.0f * _LPcllen);
float _LCut = WFIR_CUTOFF;
float _LScale = (float)WFIR_QUANTSCALE;
float _LGain,_LCoefs[WFIR_WIDTH];
for( _LPcl=0;_LPcl<WFIR_LUTLEN;_LPcl++ )
{
float _LOfs = ((float)_LPcl-_LPcllen)*_LNorm;
int _LCc,_LIdx = _LPcl<<WFIR_LOG2WIDTH;
for( _LCc=0,_LGain=0.0f;_LCc<WFIR_WIDTH;_LCc++ )
{ _LGain += (_LCoefs[_LCc] = coef( _LCc, _LOfs, _LCut, WFIR_WIDTH, WFIR_TYPE ));
}
_LGain = 1.0f/_LGain;
for( _LCc=0;_LCc<WFIR_WIDTH;_LCc++ )
{ float _LCoef = (float)floor( 0.5 + _LScale*_LCoefs[_LCc]*_LGain );
lut[_LIdx+_LCc] = (signed short)( (_LCoef<-_LScale)?-_LScale:((_LCoef>_LScale)?_LScale:_LCoef) );
}
}
}
CzWINDOWEDFIR::~CzWINDOWEDFIR()
{ // nothing todo
}
CzWINDOWEDFIR sfir;
template <class T, int buffer_size>
class sample_buffer
{
int ptr, filled;
T * buffer;
public:
sample_buffer() : ptr(0), filled(0)
{
buffer = new T[buffer_size];
}
~sample_buffer()
{
if (buffer) delete [] buffer;
}
void clear()
{
ptr = filled = 0;
}
inline int size() const
{
return filled;
}
inline void push_back(T sample)
{
buffer[ptr] = sample;
if (++ptr >= buffer_size) ptr = 0;
if (filled < buffer_size) filled++;
}
inline void erase(int count)
{
if (count > filled) filled = 0;
else filled -= count;
}
inline T operator[] (int index) const
{
index += ptr - filled;
if (index < 0) index += buffer_size;
else if (index > buffer_size) index -= buffer_size;
return buffer[index];
}
};
class foo_null : public foo_interpolate
{
int sample;
public:
foo_null() : sample(0) {}
~foo_null() {}
void reset() {}
void push(int psample)
{
sample = psample;
}
int pop()
{
return sample;
}
};
class foo_linear : public foo_interpolate
{
sample_buffer<int,4> samples;
int position;
inline int smp(int index)
{
return samples[index];
}
public:
foo_linear()
{
position = 0;
}
~foo_linear() {}
void reset()
{
position = 0;
samples.clear();
}
void push(int sample)
{
samples.push_back(sample);
}
int pop()
{
int ret;
if (position > 0x7fff)
{
int howmany = position >> 15;
position &= 0x7fff;
samples.erase(howmany);
}
if (samples.size() < 2) return 0;
ret = smp(0) * (0x8000 - position);
ret += smp(1) * position;
ret >>= 15;
position+=lrate;
return ret;
}
};
// and this integer cubic interpolation implementation was kind of borrowed from either TiMidity
// or the P.E.Op.S. SPU project, or is in use in both, or something...
class foo_cubic : public foo_interpolate
{
sample_buffer<int,12> samples;
int position;
inline int smp(int index)
{
return samples[index];
}
public:
foo_cubic()
{
position = 0;
}
~foo_cubic() {}
void reset()
{
position = 0;
samples.clear();
}
void push(int sample)
{
samples.push_back(sample);
}
int pop()
{
int ret;
if (position > 0x7fff)
{
int howmany = position >> 15;
position &= 0x7fff;
samples.erase(howmany);
}
if (samples.size() < 4) return 0;
ret = smp(3) - 3 * smp(2) + 3 * smp(1) - smp(0);
ret *= (position - (2 << 15)) / 6;
ret >>= 15;
ret += smp(2) - 2 * smp(1) + smp(0);
ret *= (position - (1 << 15)) >> 1;
ret >>= 15;
ret += smp(1) - smp(0);
ret *= position;
ret >>= 15;
ret += smp(0);
if (ret > 32767) ret = 32767;
else if (ret < -32768) ret = -32768;
position+=lrate;
return ret;
}
};
class foo_fir : public foo_interpolate
{
sample_buffer<int,24> samples;
int position;
inline int smp(int index)
{
return samples[index];
}
public:
foo_fir()
{
position = 0;
}
~foo_fir()
{
position=666;
}
void reset()
{
position = 0;
samples.clear();
}
void push(int sample)
{
samples.push_back(sample);
}
int pop()
{
int ret;
if (position > 0x7fff)
{
int howmany = position >> 15;
position &= 0x7fff;
samples.erase(howmany);
}
if (samples.size() < 8) return 0;
ret = smp(0) * CzWINDOWEDFIR::lut[(position & ~7) ];
ret += smp(1) * CzWINDOWEDFIR::lut[(position & ~7) + 1];
ret += smp(2) * CzWINDOWEDFIR::lut[(position & ~7) + 2];
ret += smp(3) * CzWINDOWEDFIR::lut[(position & ~7) + 3];
ret += smp(4) * CzWINDOWEDFIR::lut[(position & ~7) + 4];
ret += smp(5) * CzWINDOWEDFIR::lut[(position & ~7) + 5];
ret += smp(6) * CzWINDOWEDFIR::lut[(position & ~7) + 6];
ret += smp(7) * CzWINDOWEDFIR::lut[(position & ~7) + 7];
ret >>= WFIR_QUANTBITS;
if (ret > 32767) ret = 32767;
else if (ret < -32768) ret = -32768;
position+=lrate;
return ret;
}
};
class foo_libresample : public foo_interpolate
{
sample_buffer<float,32> samples;
void * resampler;
public:
foo_libresample()
{
resampler = 0;
}
~foo_libresample()
{
reset();
}
void reset()
{
samples.clear();
if (resampler)
{
resample_close(resampler);
resampler = 0;
}
}
void push(int sample)
{
samples.push_back(float(sample));
}
int pop()
{
int ret;
if (!resampler)
{
resampler = resample_open(0, .25, 44100. / 4000.);
}
{
int count = samples.size();
float * in = new float[count];
float out;
int used, returned;
for (used = 0; used < count; used++)
{
in[used] = samples[used];
}
returned = resample_process(resampler, 32767. / lrate, in, count, 0, &used, &out, 1);
if (used)
{
samples.erase(used);
}
delete [] in;
if (returned < 1) return 0;
ret = (int)out;
}
if (ret > 32767) ret = 32767;
else if (ret < -32768) ret = -32768;
return ret;
}
};
foo_interpolate * get_filter(int which)
{
switch (which)
{
default:
return new foo_null;
case 1:
return new foo_linear;
case 2:
return new foo_cubic;
case 3:
return new foo_fir;
case 4:
return new foo_libresample;
}
}

View File

@ -1,35 +0,0 @@
#ifndef __SND_INTERP_H__
#define __SND_INTERP_H__
class foo_interpolate
{
public:
foo_interpolate() {}
virtual ~foo_interpolate() {};
virtual void reset() = 0;
long lrate;
virtual void rate(double rate)
{
lrate = (int)(32768. * rate);
};
virtual void push(int sample) = 0;
virtual int pop() = 0;
};
extern foo_interpolate * get_filter(int which);
/*
// complicated, synced interface, specific to this implementation
double calc_rate(int timer);
void interp_switch(int which);
void interp_reset(int ch);
inline void interp_push(int ch, int sample);
inline int interp_pop(int ch, double rate); */
#endif