GB use blargg's audio core correctly

Noise channel seems to be buggy in GBA mode (probably using uninitialized data somewhere).   Suddenly became very LOUD.  
Changed volume setting for now.

OpenGL is looking for glext which is not part of a standard windows build.  Probably should incldue it in dependencies if we are going to 
use it
This commit is contained in:
DJRobX 2007-11-08 11:42:08 +00:00
parent 17e8800d18
commit 6b947e0353
13 changed files with 672 additions and 1009 deletions

View File

@ -90,6 +90,7 @@ u32 busPrefetchCount = 0;
int cpuDmaTicksToUpdate = 0;
int cpuDmaCount = 0;
bool cpuDmaHack = false;
bool cpuDmaHack2 = false;
u32 cpuDmaLast = 0;
int dummyAddress = 0;
@ -2313,11 +2314,15 @@ void doDMA(u32 &s, u32 &d, u32 si, u32 di, u32 c, int transfer32)
}
void CPUCheckDMA(int reason, int dmamask)
bool CPUCheckDMA(int reason, int dmamask)
{
bool res = false;
cpuDmaHack = 0;
// DMA 0
if((DM0CNT_H & 0x8000) && (dmamask & 1)) {
if(((DM0CNT_H >> 12) & 3) == reason) {
res = true;
u32 sourceIncrement = 4;
u32 destIncrement = 4;
switch((DM0CNT_H >> 7) & 3) {
@ -2375,6 +2380,8 @@ void CPUCheckDMA(int reason, int dmamask)
// DMA 1
if((DM1CNT_H & 0x8000) && (dmamask & 2)) {
if(((DM1CNT_H >> 12) & 3) == reason) {
res = true;
u32 sourceIncrement = 4;
u32 destIncrement = 4;
switch((DM1CNT_H >> 7) & 3) {
@ -2444,6 +2451,7 @@ void CPUCheckDMA(int reason, int dmamask)
// DMA 2
if((DM2CNT_H & 0x8000) && (dmamask & 4)) {
if(((DM2CNT_H >> 12) & 3) == reason) {
res = true;
u32 sourceIncrement = 4;
u32 destIncrement = 4;
switch((DM2CNT_H >> 7) & 3) {
@ -2514,6 +2522,7 @@ void CPUCheckDMA(int reason, int dmamask)
// DMA 3
if((DM3CNT_H & 0x8000) && (dmamask & 8)) {
if(((DM3CNT_H >> 12) & 3) == reason) {
res = true;
u32 sourceIncrement = 4;
u32 destIncrement = 4;
switch((DM3CNT_H >> 7) & 3) {
@ -2565,6 +2574,8 @@ void CPUCheckDMA(int reason, int dmamask)
}
}
}
cpuDmaHack = false;
return res;
}
void CPUUpdateRegister(u32 address, u16 value)
@ -3846,6 +3857,8 @@ void CPULoop(int ticks)
int timerOverflow = 0;
// variable used by the CPU core
cpuTotalTicks = 0;
if(cpuDmaHack2)
cpuNextEvent = 1;
cpuBreakLoop = false;
cpuNextEvent = CPUUpdateTicks();
if(cpuNextEvent > ticks)
@ -4044,7 +4057,7 @@ void CPULoop(int ticks)
IF |= 1;
UPDATE_REG(0x202, IF);
}
CPUCheckDMA(1, 0x0f);
cpuDmaHack2 = CPUCheckDMA(1, 0x0f);
if(frameCount >= framesToSkip) {
systemDrawScreen();
frameCount = 0;
@ -4164,7 +4177,7 @@ void CPULoop(int ticks)
DISPSTAT |= 2;
UPDATE_REG(0x04, DISPSTAT);
lcdTicks += 224;
CPUCheckDMA(2, 0x0f);
cpuDmaHack2 = CPUCheckDMA(2, 0x0f);
if(DISPSTAT & 16) {
IF |= 2;
UPDATE_REG(0x202, IF);
@ -4328,6 +4341,9 @@ void CPULoop(int ticks)
goto updateLoop;
}
// if(cpuDmaHack2)
// cpuNextEvent = 1;
if(IF && (IME & 1) && armIrqEnable) {
int res = IF & IE;
if(stopState)

View File

@ -116,7 +116,7 @@ extern void CPUWriteByte(u32, u8);
extern void CPUInit(const char *,bool);
extern void CPUReset();
extern void CPULoop(int);
extern void CPUCheckDMA(int,int);
extern bool CPUCheckDMA(int,int);
extern bool CPUIsGBAImage(const char *);
extern bool CPUIsZipFile(const char *);
#ifdef PROFILING

View File

@ -1,499 +1,498 @@
// -*- C++ -*-
// VisualBoyAdvance - Nintendo Gameboy/GameboyAdvance (TM) emulator.
// Copyright (C) 1999-2003 Forgotten
// Copyright (C) 2005 Forgotten and the VBA development team
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2, or(at your option)
// any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#ifndef VBA_GBAinline_H
#define VBA_GBAinline_H
#include "System.h"
#include "Port.h"
#include "RTC.h"
extern bool cpuSramEnabled;
extern bool cpuFlashEnabled;
extern bool cpuEEPROMEnabled;
extern bool cpuEEPROMSensorEnabled;
// -*- C++ -*-
// VisualBoyAdvance - Nintendo Gameboy/GameboyAdvance (TM) emulator.
// Copyright (C) 1999-2003 Forgotten
// Copyright (C) 2005 Forgotten and the VBA development team
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2, or(at your option)
// any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#ifndef VBA_GBAinline_H
#define VBA_GBAinline_H
#include "System.h"
#include "Port.h"
#include "RTC.h"
#include "Sound.h"
extern bool cpuSramEnabled;
extern bool cpuFlashEnabled;
extern bool cpuEEPROMEnabled;
extern bool cpuEEPROMSensorEnabled;
extern int lspeed;
extern void LinkSStop(void);
extern bool cpuDmaHack;
extern u32 cpuDmaLast;
extern bool timer0On;
extern int timer0Ticks;
extern int timer0ClockReload;
extern bool timer1On;
extern int timer1Ticks;
extern int timer1ClockReload;
extern bool timer2On;
extern int timer2Ticks;
extern int timer2ClockReload;
extern bool timer3On;
extern int timer3Ticks;
extern int timer3ClockReload;
extern int cpuTotalTicks;
#define CPUReadByteQuick(addr) \
map[(addr)>>24].address[(addr) & map[(addr)>>24].mask]
#define CPUReadHalfWordQuick(addr) \
READ16LE(((u16*)&map[(addr)>>24].address[(addr) & map[(addr)>>24].mask]))
#define CPUReadMemoryQuick(addr) \
READ32LE(((u32*)&map[(addr)>>24].address[(addr) & map[(addr)>>24].mask]))
static inline u32 CPUReadMemory(u32 address)
{
#ifdef DEV_VERSION
if(address & 3) {
if(systemVerbose & VERBOSE_UNALIGNED_MEMORY) {
log("Unaligned word read: %08x at %08x\n", address, armMode ?
armNextPC - 4 : armNextPC - 2);
}
}
#endif
u32 value;
switch(address >> 24) {
case 0:
if(reg[15].I >> 24) {
if(address < 0x4000) {
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_ILLEGAL_READ) {
log("Illegal word read: %08x at %08x\n", address, armMode ?
armNextPC - 4 : armNextPC - 2);
}
#endif
value = READ32LE(((u32 *)&biosProtected));
}
else goto unreadable;
} else
value = READ32LE(((u32 *)&bios[address & 0x3FFC]));
break;
case 2:
value = READ32LE(((u32 *)&workRAM[address & 0x3FFFC]));
break;
case 3:
value = READ32LE(((u32 *)&internalRAM[address & 0x7ffC]));
break;
case 4:
if((address>=0x4000120||address<=0x4000126)&&lspeed)
extern void LinkSStop(void);
extern bool cpuDmaHack;
extern bool cpuDmaHack2;
extern u32 cpuDmaLast;
extern bool timer0On;
extern int timer0Ticks;
extern int timer0ClockReload;
extern bool timer1On;
extern int timer1Ticks;
extern int timer1ClockReload;
extern bool timer2On;
extern int timer2Ticks;
extern int timer2ClockReload;
extern bool timer3On;
extern int timer3Ticks;
extern int timer3ClockReload;
extern int cpuTotalTicks;
#define CPUReadByteQuick(addr) \
map[(addr)>>24].address[(addr) & map[(addr)>>24].mask]
#define CPUReadHalfWordQuick(addr) \
READ16LE(((u16*)&map[(addr)>>24].address[(addr) & map[(addr)>>24].mask]))
#define CPUReadMemoryQuick(addr) \
READ32LE(((u32*)&map[(addr)>>24].address[(addr) & map[(addr)>>24].mask]))
static inline u32 CPUReadMemory(u32 address)
{
#ifdef DEV_VERSION
if(address & 3) {
if(systemVerbose & VERBOSE_UNALIGNED_MEMORY) {
log("Unaligned word read: %08x at %08x\n", address, armMode ?
armNextPC - 4 : armNextPC - 2);
}
}
#endif
u32 value;
switch(address >> 24) {
case 0:
if(reg[15].I >> 24) {
if(address < 0x4000) {
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_ILLEGAL_READ) {
log("Illegal word read: %08x at %08x\n", address, armMode ?
armNextPC - 4 : armNextPC - 2);
}
#endif
value = READ32LE(((u32 *)&biosProtected));
}
else goto unreadable;
} else
value = READ32LE(((u32 *)&bios[address & 0x3FFC]));
break;
case 2:
value = READ32LE(((u32 *)&workRAM[address & 0x3FFFC]));
break;
case 3:
value = READ32LE(((u32 *)&internalRAM[address & 0x7ffC]));
break;
case 4:
if((address>=0x4000120||address<=0x4000126)&&lspeed)
LinkSStop();
if((address < 0x4000400) && ioReadable[address & 0x3fc]) {
if(ioReadable[(address & 0x3fc) + 2])
value = READ32LE(((u32 *)&ioMem[address & 0x3fC]));
else
value = READ16LE(((u16 *)&ioMem[address & 0x3fc]));
} else goto unreadable;
break;
case 5:
value = READ32LE(((u32 *)&paletteRAM[address & 0x3fC]));
break;
case 6:
address = (address & 0x1fffc);
if (((DISPCNT & 7) >2) && ((address & 0x1C000) == 0x18000))
{
value = 0;
break;
}
if ((address & 0x18000) == 0x18000)
address &= 0x17fff;
value = READ32LE(((u32 *)&vram[address]));
break;
case 7:
value = READ32LE(((u32 *)&oam[address & 0x3FC]));
break;
case 8:
case 9:
case 10:
case 11:
case 12:
value = READ32LE(((u32 *)&rom[address&0x1FFFFFC]));
break;
case 13:
if(cpuEEPROMEnabled)
// no need to swap this
return eepromRead(address);
goto unreadable;
case 14:
if(cpuFlashEnabled | cpuSramEnabled)
// no need to swap this
return flashRead(address);
// default
default:
unreadable:
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_ILLEGAL_READ) {
log("Illegal word read: %08x at %08x\n", address, armMode ?
armNextPC - 4 : armNextPC - 2);
}
#endif
if(cpuDmaHack) {
value = cpuDmaLast;
} else {
if(armState) {
value = CPUReadMemoryQuick(reg[15].I);
} else {
value = CPUReadHalfWordQuick(reg[15].I) |
CPUReadHalfWordQuick(reg[15].I) << 16;
}
}
}
if(address & 3) {
#ifdef C_CORE
int shift = (address & 3) << 3;
value = (value >> shift) | (value << (32 - shift));
#else
#ifdef __GNUC__
asm("and $3, %%ecx;"
"shl $3 ,%%ecx;"
"ror %%cl, %0"
: "=r" (value)
: "r" (value), "c" (address));
#else
__asm {
mov ecx, address;
and ecx, 3;
shl ecx, 3;
ror [dword ptr value], cl;
}
#endif
#endif
}
return value;
}
extern u32 myROM[];
static inline u32 CPUReadHalfWord(u32 address)
{
#ifdef DEV_VERSION
if(address & 1) {
if(systemVerbose & VERBOSE_UNALIGNED_MEMORY) {
log("Unaligned halfword read: %08x at %08x\n", address, armMode ?
armNextPC - 4 : armNextPC - 2);
}
}
#endif
u32 value;
switch(address >> 24) {
case 0:
if (reg[15].I >> 24) {
if(address < 0x4000) {
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_ILLEGAL_READ) {
log("Illegal halfword read: %08x at %08x\n", address, armMode ?
armNextPC - 4 : armNextPC - 2);
}
#endif
value = READ16LE(((u16 *)&biosProtected[address&2]));
} else goto unreadable;
} else
value = READ16LE(((u16 *)&bios[address & 0x3FFE]));
break;
case 2:
value = READ16LE(((u16 *)&workRAM[address & 0x3FFFE]));
break;
case 3:
value = READ16LE(((u16 *)&internalRAM[address & 0x7ffe]));
break;
case 4:
if((address>=0x4000120||address<=0x4000126)&&lspeed)
if((address < 0x4000400) && ioReadable[address & 0x3fc]) {
if(ioReadable[(address & 0x3fc) + 2])
value = soundRead32(address & 0x3fC);
else
value = soundRead16(address & 0x3fc);
} else goto unreadable;
break;
case 5:
value = READ32LE(((u32 *)&paletteRAM[address & 0x3fC]));
break;
case 6:
address = (address & 0x1fffc);
if (((DISPCNT & 7) >2) && ((address & 0x1C000) == 0x18000))
{
value = 0;
break;
}
if ((address & 0x18000) == 0x18000)
address &= 0x17fff;
value = READ32LE(((u32 *)&vram[address]));
break;
case 7:
value = READ32LE(((u32 *)&oam[address & 0x3FC]));
break;
case 8:
case 9:
case 10:
case 11:
case 12:
value = READ32LE(((u32 *)&rom[address&0x1FFFFFC]));
break;
case 13:
if(cpuEEPROMEnabled)
// no need to swap this
return eepromRead(address);
goto unreadable;
case 14:
if(cpuFlashEnabled | cpuSramEnabled)
// no need to swap this
return flashRead(address);
// default
default:
unreadable:
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_ILLEGAL_READ) {
log("Illegal word read: %08x at %08x\n", address, armMode ?
armNextPC - 4 : armNextPC - 2);
}
#endif
if(cpuDmaHack || cpuDmaHack2) {
value = cpuDmaLast;
} else {
if(armState) {
value = CPUReadMemoryQuick(reg[15].I);
} else {
value = CPUReadHalfWordQuick(reg[15].I) |
CPUReadHalfWordQuick(reg[15].I) << 16;
}
}
}
if(address & 3) {
#ifdef C_CORE
int shift = (address & 3) << 3;
value = (value >> shift) | (value << (32 - shift));
#else
#ifdef __GNUC__
asm("and $3, %%ecx;"
"shl $3 ,%%ecx;"
"ror %%cl, %0"
: "=r" (value)
: "r" (value), "c" (address));
#else
__asm {
mov ecx, address;
and ecx, 3;
shl ecx, 3;
ror [dword ptr value], cl;
}
#endif
#endif
}
return value;
}
extern u32 myROM[];
static inline u32 CPUReadHalfWord(u32 address)
{
#ifdef DEV_VERSION
if(address & 1) {
if(systemVerbose & VERBOSE_UNALIGNED_MEMORY) {
log("Unaligned halfword read: %08x at %08x\n", address, armMode ?
armNextPC - 4 : armNextPC - 2);
}
}
#endif
u32 value;
switch(address >> 24) {
case 0:
if (reg[15].I >> 24) {
if(address < 0x4000) {
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_ILLEGAL_READ) {
log("Illegal halfword read: %08x at %08x\n", address, armMode ?
armNextPC - 4 : armNextPC - 2);
}
#endif
value = READ16LE(((u16 *)&biosProtected[address&2]));
} else goto unreadable;
} else
value = READ16LE(((u16 *)&bios[address & 0x3FFE]));
break;
case 2:
value = READ16LE(((u16 *)&workRAM[address & 0x3FFFE]));
break;
case 3:
value = READ16LE(((u16 *)&internalRAM[address & 0x7ffe]));
break;
case 4:
if((address>=0x4000120||address<=0x4000126)&&lspeed)
LinkSStop();
if((address < 0x4000400) && ioReadable[address & 0x3fe])
{
value = READ16LE(((u16 *)&ioMem[address & 0x3fe]));
if (((address & 0x3fe)>0xFF) && ((address & 0x3fe)<0x10E))
{
if (((address & 0x3fe) == 0x100) && timer0On)
value = 0xFFFF - ((timer0Ticks-cpuTotalTicks) >> timer0ClockReload);
else
if (((address & 0x3fe) == 0x104) && timer1On && !(TM1CNT & 4))
value = 0xFFFF - ((timer1Ticks-cpuTotalTicks) >> timer1ClockReload);
else
if (((address & 0x3fe) == 0x108) && timer2On && !(TM2CNT & 4))
value = 0xFFFF - ((timer2Ticks-cpuTotalTicks) >> timer2ClockReload);
else
if (((address & 0x3fe) == 0x10C) && timer3On && !(TM3CNT & 4))
value = 0xFFFF - ((timer3Ticks-cpuTotalTicks) >> timer3ClockReload);
}
}
else goto unreadable;
break;
case 5:
value = READ16LE(((u16 *)&paletteRAM[address & 0x3fe]));
break;
case 6:
address = (address & 0x1fffe);
if (((DISPCNT & 7) >2) && ((address & 0x1C000) == 0x18000))
{
value = 0;
break;
}
if ((address & 0x18000) == 0x18000)
address &= 0x17fff;
value = READ16LE(((u16 *)&vram[address]));
break;
case 7:
value = READ16LE(((u16 *)&oam[address & 0x3fe]));
break;
case 8:
case 9:
case 10:
case 11:
case 12:
if(address == 0x80000c4 || address == 0x80000c6 || address == 0x80000c8)
value = rtcRead(address);
else
value = READ16LE(((u16 *)&rom[address & 0x1FFFFFE]));
break;
case 13:
if(cpuEEPROMEnabled)
// no need to swap this
return eepromRead(address);
goto unreadable;
case 14:
if(cpuFlashEnabled | cpuSramEnabled)
// no need to swap this
return flashRead(address);
// default
default:
unreadable:
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_ILLEGAL_READ) {
log("Illegal halfword read: %08x at %08x\n", address, armMode ?
armNextPC - 4 : armNextPC - 2);
}
#endif
if(cpuDmaHack) {
value = cpuDmaLast & 0xFFFF;
} else {
if(armState) {
value = CPUReadHalfWordQuick(reg[15].I + (address & 2));
} else {
value = CPUReadHalfWordQuick(reg[15].I);
}
}
break;
}
if(address & 1) {
value = (value >> 8) | (value << 24);
}
return value;
}
static inline u16 CPUReadHalfWordSigned(u32 address)
{
u16 value = CPUReadHalfWord(address);
if((address & 1))
value = (s8)value;
return value;
}
static inline u8 CPUReadByte(u32 address)
{
switch(address >> 24) {
case 0:
if (reg[15].I >> 24) {
if(address < 0x4000) {
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_ILLEGAL_READ) {
log("Illegal byte read: %08x at %08x\n", address, armMode ?
armNextPC - 4 : armNextPC - 2);
}
#endif
return biosProtected[address & 3];
} else goto unreadable;
}
return bios[address & 0x3FFF];
case 2:
return workRAM[address & 0x3FFFF];
case 3:
return internalRAM[address & 0x7fff];
case 4:
if((address>=0x4000120||address<=0x4000126)&&lspeed)
if((address < 0x4000400) && ioReadable[address & 0x3fe])
{
value = soundRead16(address & 0x3fe);
if (((address & 0x3fe)>0xFF) && ((address & 0x3fe)<0x10E))
{
if (((address & 0x3fe) == 0x100) && timer0On)
value = 0xFFFF - ((timer0Ticks-cpuTotalTicks) >> timer0ClockReload);
else
if (((address & 0x3fe) == 0x104) && timer1On && !(TM1CNT & 4))
value = 0xFFFF - ((timer1Ticks-cpuTotalTicks) >> timer1ClockReload);
else
if (((address & 0x3fe) == 0x108) && timer2On && !(TM2CNT & 4))
value = 0xFFFF - ((timer2Ticks-cpuTotalTicks) >> timer2ClockReload);
else
if (((address & 0x3fe) == 0x10C) && timer3On && !(TM3CNT & 4))
value = 0xFFFF - ((timer3Ticks-cpuTotalTicks) >> timer3ClockReload);
}
}
else goto unreadable;
break;
case 5:
value = READ16LE(((u16 *)&paletteRAM[address & 0x3fe]));
break;
case 6:
address = (address & 0x1fffe);
if (((DISPCNT & 7) >2) && ((address & 0x1C000) == 0x18000))
{
value = 0;
break;
}
if ((address & 0x18000) == 0x18000)
address &= 0x17fff;
value = READ16LE(((u16 *)&vram[address]));
break;
case 7:
value = READ16LE(((u16 *)&oam[address & 0x3fe]));
break;
case 8:
case 9:
case 10:
case 11:
case 12:
if(address == 0x80000c4 || address == 0x80000c6 || address == 0x80000c8)
value = rtcRead(address);
else
value = READ16LE(((u16 *)&rom[address & 0x1FFFFFE]));
break;
case 13:
if(cpuEEPROMEnabled)
// no need to swap this
return eepromRead(address);
goto unreadable;
case 14:
if(cpuFlashEnabled | cpuSramEnabled)
// no need to swap this
return flashRead(address);
// default
default:
unreadable:
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_ILLEGAL_READ) {
log("Illegal halfword read: %08x at %08x\n", address, armMode ?
armNextPC - 4 : armNextPC - 2);
}
#endif
if(cpuDmaHack2 || cpuDmaHack) {
value = cpuDmaLast & 0xFFFF;
} else {
if(armState) {
value = CPUReadHalfWordQuick(reg[15].I + (address & 2));
} else {
value = CPUReadHalfWordQuick(reg[15].I);
}
}
break;
}
if(address & 1) {
value = (value >> 8) | (value << 24);
}
return value;
}
static inline u16 CPUReadHalfWordSigned(u32 address)
{
u16 value = CPUReadHalfWord(address);
if((address & 1))
value = (s8)value;
return value;
}
static inline u8 CPUReadByte(u32 address)
{
switch(address >> 24) {
case 0:
if (reg[15].I >> 24) {
if(address < 0x4000) {
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_ILLEGAL_READ) {
log("Illegal byte read: %08x at %08x\n", address, armMode ?
armNextPC - 4 : armNextPC - 2);
}
#endif
return biosProtected[address & 3];
} else goto unreadable;
}
return bios[address & 0x3FFF];
case 2:
return workRAM[address & 0x3FFFF];
case 3:
return internalRAM[address & 0x7fff];
case 4:
if((address>=0x4000120||address<=0x4000126)&&lspeed)
LinkSStop();
if((address < 0x4000400) && ioReadable[address & 0x3ff])
return ioMem[address & 0x3ff];
else goto unreadable;
case 5:
return paletteRAM[address & 0x3ff];
case 6:
address = (address & 0x1ffff);
if (((DISPCNT & 7) >2) && ((address & 0x1C000) == 0x18000))
return 0;
if ((address & 0x18000) == 0x18000)
address &= 0x17fff;
return vram[address];
case 7:
return oam[address & 0x3ff];
case 8:
case 9:
case 10:
case 11:
case 12:
return rom[address & 0x1FFFFFF];
case 13:
if(cpuEEPROMEnabled)
return eepromRead(address);
goto unreadable;
case 14:
if(cpuSramEnabled | cpuFlashEnabled)
return flashRead(address);
if(cpuEEPROMSensorEnabled) {
switch(address & 0x00008f00) {
case 0x8200:
return systemGetSensorX() & 255;
case 0x8300:
return (systemGetSensorX() >> 8)|0x80;
case 0x8400:
return systemGetSensorY() & 255;
case 0x8500:
return systemGetSensorY() >> 8;
}
}
// default
default:
unreadable:
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_ILLEGAL_READ) {
log("Illegal byte read: %08x at %08x\n", address, armMode ?
armNextPC - 4 : armNextPC - 2);
}
#endif
if(cpuDmaHack) {
return cpuDmaLast & 0xFF;
} else {
if(armState) {
return CPUReadByteQuick(reg[15].I+(address & 3));
} else {
return CPUReadByteQuick(reg[15].I+(address & 1));
}
}
break;
}
}
static inline void CPUWriteMemory(u32 address, u32 value)
{
#ifdef DEV_VERSION
if(address & 3) {
if(systemVerbose & VERBOSE_UNALIGNED_MEMORY) {
log("Unaligned word write: %08x to %08x from %08x\n",
value,
address,
armMode ? armNextPC - 4 : armNextPC - 2);
}
}
#endif
switch(address >> 24) {
case 0x02:
#ifdef BKPT_SUPPORT
if(*((u32 *)&freezeWorkRAM[address & 0x3FFFC]))
cheatsWriteMemory(address & 0x203FFFC,
value);
else
#endif
WRITE32LE(((u32 *)&workRAM[address & 0x3FFFC]), value);
break;
case 0x03:
#ifdef BKPT_SUPPORT
if(*((u32 *)&freezeInternalRAM[address & 0x7ffc]))
cheatsWriteMemory(address & 0x3007FFC,
value);
else
#endif
WRITE32LE(((u32 *)&internalRAM[address & 0x7ffC]), value);
break;
case 0x04:
if(address < 0x4000400) {
CPUUpdateRegister((address & 0x3FC), value & 0xFFFF);
CPUUpdateRegister((address & 0x3FC) + 2, (value >> 16));
} else goto unwritable;
break;
case 0x05:
#ifdef BKPT_SUPPORT
if(*((u32 *)&freezePRAM[address & 0x3fc]))
cheatsWriteMemory(address & 0x70003FC,
value);
else
#endif
WRITE32LE(((u32 *)&paletteRAM[address & 0x3FC]), value);
break;
case 0x06:
address = (address & 0x1fffc);
if (((DISPCNT & 7) >2) && ((address & 0x1C000) == 0x18000))
return;
if ((address & 0x18000) == 0x18000)
address &= 0x17fff;
#ifdef BKPT_SUPPORT
if(*((u32 *)&freezeVRAM[address]))
cheatsWriteMemory(address + 0x06000000, value);
else
#endif
WRITE32LE(((u32 *)&vram[address]), value);
break;
case 0x07:
#ifdef BKPT_SUPPORT
if(*((u32 *)&freezeOAM[address & 0x3fc]))
cheatsWriteMemory(address & 0x70003FC,
value);
else
#endif
WRITE32LE(((u32 *)&oam[address & 0x3fc]), value);
break;
case 0x0D:
if(cpuEEPROMEnabled) {
eepromWrite(address, value);
break;
}
goto unwritable;
case 0x0E:
if(!eepromInUse | cpuSramEnabled | cpuFlashEnabled) {
(*cpuSaveGameFunc)(address, (u8)value);
break;
}
// default
default:
unwritable:
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_ILLEGAL_WRITE) {
log("Illegal word write: %08x to %08x from %08x\n",
value,
address,
armMode ? armNextPC - 4 : armNextPC - 2);
}
#endif
break;
}
}
#endif //VBA_GBAinline_H
if((address < 0x4000400) && ioReadable[address & 0x3ff])
return soundRead(address & 0x3ff);
else goto unreadable;
case 5:
return paletteRAM[address & 0x3ff];
case 6:
address = (address & 0x1ffff);
if (((DISPCNT & 7) >2) && ((address & 0x1C000) == 0x18000))
return 0;
if ((address & 0x18000) == 0x18000)
address &= 0x17fff;
return vram[address];
case 7:
return oam[address & 0x3ff];
case 8:
case 9:
case 10:
case 11:
case 12:
return rom[address & 0x1FFFFFF];
case 13:
if(cpuEEPROMEnabled)
return eepromRead(address);
goto unreadable;
case 14:
if(cpuSramEnabled | cpuFlashEnabled)
return flashRead(address);
if(cpuEEPROMSensorEnabled) {
switch(address & 0x00008f00) {
case 0x8200:
return systemGetSensorX() & 255;
case 0x8300:
return (systemGetSensorX() >> 8)|0x80;
case 0x8400:
return systemGetSensorY() & 255;
case 0x8500:
return systemGetSensorY() >> 8;
}
}
// default
default:
unreadable:
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_ILLEGAL_READ) {
log("Illegal byte read: %08x at %08x\n", address, armMode ?
armNextPC - 4 : armNextPC - 2);
}
#endif
if(cpuDmaHack || cpuDmaHack2) {
return cpuDmaLast & 0xFF;
} else {
if(armState) {
return CPUReadByteQuick(reg[15].I+(address & 3));
} else {
return CPUReadByteQuick(reg[15].I+(address & 1));
}
}
break;
}
}
static inline void CPUWriteMemory(u32 address, u32 value)
{
#ifdef DEV_VERSION
if(address & 3) {
if(systemVerbose & VERBOSE_UNALIGNED_MEMORY) {
log("Unaligned word write: %08x to %08x from %08x\n",
value,
address,
armMode ? armNextPC - 4 : armNextPC - 2);
}
}
#endif
switch(address >> 24) {
case 0x02:
#ifdef BKPT_SUPPORT
if(*((u32 *)&freezeWorkRAM[address & 0x3FFFC]))
cheatsWriteMemory(address & 0x203FFFC,
value);
else
#endif
WRITE32LE(((u32 *)&workRAM[address & 0x3FFFC]), value);
break;
case 0x03:
#ifdef BKPT_SUPPORT
if(*((u32 *)&freezeInternalRAM[address & 0x7ffc]))
cheatsWriteMemory(address & 0x3007FFC,
value);
else
#endif
WRITE32LE(((u32 *)&internalRAM[address & 0x7ffC]), value);
break;
case 0x04:
if(address < 0x4000400) {
CPUUpdateRegister((address & 0x3FC), value & 0xFFFF);
CPUUpdateRegister((address & 0x3FC) + 2, (value >> 16));
} else goto unwritable;
break;
case 0x05:
#ifdef BKPT_SUPPORT
if(*((u32 *)&freezePRAM[address & 0x3fc]))
cheatsWriteMemory(address & 0x70003FC,
value);
else
#endif
WRITE32LE(((u32 *)&paletteRAM[address & 0x3FC]), value);
break;
case 0x06:
address = (address & 0x1fffc);
if (((DISPCNT & 7) >2) && ((address & 0x1C000) == 0x18000))
return;
if ((address & 0x18000) == 0x18000)
address &= 0x17fff;
#ifdef BKPT_SUPPORT
if(*((u32 *)&freezeVRAM[address]))
cheatsWriteMemory(address + 0x06000000, value);
else
#endif
WRITE32LE(((u32 *)&vram[address]), value);
break;
case 0x07:
#ifdef BKPT_SUPPORT
if(*((u32 *)&freezeOAM[address & 0x3fc]))
cheatsWriteMemory(address & 0x70003FC,
value);
else
#endif
WRITE32LE(((u32 *)&oam[address & 0x3fc]), value);
break;
case 0x0D:
if(cpuEEPROMEnabled) {
eepromWrite(address, value);
break;
}
goto unwritable;
case 0x0E:
if(!eepromInUse | cpuSramEnabled | cpuFlashEnabled) {
(*cpuSaveGameFunc)(address, (u8)value);
break;
}
// default
default:
unwritable:
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_ILLEGAL_WRITE) {
log("Illegal word write: %08x to %08x from %08x\n",
value,
address,
armMode ? armNextPC - 4 : armNextPC - 2);
}
#endif
break;
}
}
#endif //VBA_GBAinline_H

View File

@ -320,7 +320,7 @@ void Blip_Synth_::volume_unit( double new_unit )
factor *= 2.0;
}
if ( shift )
// if ( shift )
{
kernel_unit >>= shift;
assert( kernel_unit > 0 ); // fails if volume unit is too low

View File

@ -107,7 +107,7 @@ void Gb_Apu::reset(bool igba)
square1.reset();
square2.reset();
wave.reset(gba = igba);
noise.reset();
noise.reset(igba);
noise.bits = 1;
wave.wave_pos = 0;

View File

@ -172,6 +172,7 @@ void Gb_Square::run( gb_time_t time, gb_time_t end_time, int playing )
void Gb_Noise::run( gb_time_t time, gb_time_t end_time, int playing )
{
int amp = volume & playing;
int tap = 13 - (regs [3] & 8);
if ( bits >> tap & 2 )
amp = -amp;
@ -197,7 +198,7 @@ void Gb_Noise::run( gb_time_t time, gb_time_t end_time, int playing )
const blip_resampled_time_t resampled_period =
output->resampled_duration( period );
blip_resampled_time_t resampled_time = output->resampled_time( time );
unsigned bits = this->bits;
// unsigned bits = this->bits;
int delta = amp * 2;
do
@ -215,7 +216,7 @@ void Gb_Noise::run( gb_time_t time, gb_time_t end_time, int playing )
}
while ( time < end_time );
this->bits = bits;
//this->bits = bits;
last_amp = delta >> 1;
}
delay = time - end_time;
@ -227,7 +228,7 @@ void Gb_Wave::reset(bool gba)
{
volume_forced = 0;
wave_pos = 0;
wave_mode = gba;
wave_mode = (gba ? 1 : 0);
wave_size = 32;
wave_bank = 0;
memset( wave, 0, sizeof wave );
@ -270,6 +271,33 @@ inline void Gb_Wave::write_register( int reg, int data )
}
}
bool Gb_Noise::write_register( int reg, int data )
{
switch ( reg )
{
case 1:
length = 64 - (regs [1] & 0x3f);
break;
case 2:
if ( !(data >> 4) )
enabled = false;
break;
case 4:
if ( data & trigger )
{
env_delay = regs [2] & 7;
volume = regs [2] >> (4 + (gba ? 1 : 0));
enabled = true;
if ( length == 0 )
length = 64;
return true;
}
}
return false;
}
void Gb_Wave::run( gb_time_t time, gb_time_t end_time, int playing )
{
int volume_shift = (volume - 1) & 7; // volume = 0 causes shift = 7

View File

@ -57,10 +57,17 @@ struct Gb_Square : Gb_Env
struct Gb_Noise : Gb_Env
{
bool gba;
typedef Blip_Synth<blip_med_quality,1> Synth;
Synth const* synth;
unsigned bits;
bool write_register( int, int );
void reset(bool igba)
{
gba = igba;
Gb_Env::reset();
}
void run( gb_time_t, gb_time_t, int playing );
};

View File

@ -53,7 +53,7 @@ int lspeed = 0;
lserver ls;
lclient lc;
bool oncewait = false, after = false;
bool adapter = true;
bool adapter = false;
u8 rfu_cmd, rfu_qsend, rfu_qrecv;
int rfu_state, rfu_polarity, linktime2, counter, rfu_masterq;
int transferend, numtransfers = 0;

View File

@ -670,7 +670,7 @@ void soundDirectSoundATimer()
{
if(soundDSAEnabled) {
if(soundDSFifoACount <= 16) {
CPUCheckDMA(3, 2);
cpuDmaHack2 = CPUCheckDMA(3, 2);
if(soundDSFifoACount <= 16) {
soundEvent(FIFOA_L, (u16)0);
soundEvent(FIFOA_H, (u16)0);
@ -699,8 +699,7 @@ void soundDirectSoundBTimer()
{
if(soundDSBEnabled) {
if(soundDSFifoBCount <= 16) {
//cpuDmaHack2 =
CPUCheckDMA(3, 4);
cpuDmaHack2 = CPUCheckDMA(3, 4);
if(soundDSFifoBCount <= 16) {
soundEvent(FIFOB_L, (u16)0);
soundEvent(FIFOB_H, (u16)0);

View File

@ -998,7 +998,7 @@ void gbWriteMemory(register u16 address, register u8 value)
case 0x3d:
case 0x3e:
case 0x3f: {
gbMemory[address] = value;
SOUND_EVENT(address,value);
return;
}
@ -1783,6 +1783,11 @@ u8 gbReadMemory(register u16 address)
}
if(address >= 0xff00) {
if (address >= 0xFF10 && address <= 0xFF3F) {
return gbSoundRead(address);
}
switch(address & 0x00ff) {
case 0x00:
{
@ -3527,6 +3532,8 @@ static bool gbWriteSaveState(gzFile gzFile)
utilGzWrite(gzFile, &gbDataMMM01, sizeof(gbDataMMM01));
utilGzWrite(gzFile, gbPalette, 128 * sizeof(u16));
for (int i = 0xFF10; i <= 0xFF3F; i++) gbMemory[i] = gbReadMemory(i);
utilGzWrite(gzFile, &gbMemory[0x8000], 0x8000);
@ -3718,6 +3725,8 @@ static bool gbReadSaveState(gzFile gzFile)
utilGzRead(gzFile, &gbMemory[0x8000], 0x8000);
for (int i = 0xFF10; i <= 0xFF3F; i++) gbSoundEvent(i, gbMemory[i]);
if(gbRamSize && gbRam) {
if (version < 11)
utilGzRead(gzFile, gbRam, gbRamSize);

View File

@ -23,6 +23,9 @@
#include "gbGlobals.h"
#include "gbSound.h"
#include "../Gb_Apu/Multi_Buffer.h"
#include "../Gb_Apu/Gb_Apu.h"
extern u8 soundBuffer[6][735];
extern u16 soundFinalWave[1470];
extern int soundVolume;
@ -56,6 +59,9 @@ extern int soundBufferIndex;
int soundVIN = 0;
extern int soundDebug;
extern Multi_Buffer * apu_out;
extern Gb_Apu * apu;
extern int sound1On;
extern int sound1ATL;
int sound1ATLreload;
@ -132,7 +138,45 @@ extern bool soundLowPass;
extern bool soundReverse;
extern bool soundOffFlag;
bool gbDigitalSound = false;
u8 gbSoundRead(u16 address)
{
if (address < NR10 || address > 0xFF3F || !apu) return gbMemory[address];
if (address == NR51) return soundBalance;
int clock = (SOUND_CLOCK_TICKS - soundTicks) * 95 / (24 * (gbSpeed ? 2 : 1));
int ret = apu->read_register(clock, address);
switch ( address )
{
case NR10:
ret |= 0x80; break;
case NR11:
case NR21:
ret |= 0x3F; break;
case NR13:
case NR23:
case NR31:
case NR33:
ret = 0xFF; break;
case NR14:
case NR24:
case NR34:
case NR44:
ret |= 0xBF; break;
case NR30:
ret |= 0x7F; break;
case NR32:
ret |= 0x9F; break;
}
return ret;
}
void gbSoundEvent(register u16 address, register int data)
{
@ -146,481 +190,58 @@ void gbSoundEvent(register u16 address, register int data)
log("Sound event: %08lx %02x\n", address, data);
}
#endif
switch(address) {
case NR10:
gbMemory[address] = data | 0x80;
sound1SweepATL = sound1SweepATLReload = 344 * ((data >> 4) & 7);
sound1SweepSteps = data & 7;
sound1SweepUpDown = data & 0x08;
sound1SweepStep = 0;
break;
case NR11:
gbMemory[address] = data | 0x3f;
sound1Wave = soundWavePattern[data >> 6];
sound1ATL = sound1ATLreload = 172 * (64 - (data & 0x3f));
break;
case NR12:
sound1EnvelopeVolume = data >> 4;
sound1EnvelopeUpDown = data & 0x08;
sound1EnvelopeATLReload = sound1EnvelopeATL = 689 * (data & 7);
break;
case NR13:
gbMemory[address] = 0xff;
freq1low = data;
freq = ((((int)(freq1high & 7)) << 8) | freq1low);
sound1ATL = sound1ATLreload;
freq = 2048 - freq;
if(freq) {
sound1Skip = SOUND_MAGIC / freq;
} else
sound1Skip = 0;
break;
case NR14:
gbMemory[address] = data | 0xbf;
freq1high = data;
freq = ((((int)(freq1high & 7)) << 8) | freq1low);
freq = 2048 - freq;
sound1ATL = sound1ATLreload;
sound1Continue = data & 0x40;
if(freq) {
sound1Skip = SOUND_MAGIC / freq;
} else
sound1Skip = 0;
if(data & 0x80) {
gbMemory[NR52] |= 1;
sound1EnvelopeVolume = gbMemory[NR12] >> 4;
sound1EnvelopeUpDown = gbMemory[NR12] & 0x08;
sound1EnvelopeATLReload = sound1EnvelopeATL = 689 * (gbMemory[NR12] & 7);
sound1SweepATL = sound1SweepATLReload = 344 * ((gbMemory[NR10] >> 4) & 7);
sound1SweepSteps = gbMemory[NR10] & 7;
sound1SweepUpDown = gbMemory[NR10] & 0x08;
sound1SweepStep = 0;
sound1Index = 0;
sound1On = 1;
if (apu && address >= NR10 && address <= 0xFF3F)
{
int clock = (SOUND_CLOCK_TICKS - soundTicks) * 95 / (24 * (gbSpeed ? 2 : 1));
if (address == NR50)
{
apu->write_register(clock, address, data);
}
break;
case NR21:
gbMemory[address] = data | 0x3f;
sound2Wave = soundWavePattern[data >> 6];
sound2ATL = sound2ATLreload = 172 * (64 - (data & 0x3f));
break;
case NR22:
sound2EnvelopeVolume = data >> 4;
sound2EnvelopeUpDown = data & 0x08;
sound2EnvelopeATLReload = sound2EnvelopeATL = 689 * (data & 7);
break;
case NR23:
gbMemory[address] = 0xff;
freq2low = data;
freq = (((int)(freq2high & 7)) << 8) | freq2low;
sound2ATL = sound2ATLreload;
freq = 2048 - freq;
if(freq) {
sound2Skip = SOUND_MAGIC / freq;
} else
sound2Skip = 0;
break;
case NR24:
gbMemory[address] = data | 0xbf;
freq2high = data;
freq = (((int)(freq2high & 7)) << 8) | freq2low;
freq = 2048 - freq;
sound2ATL = sound2ATLreload;
sound2Continue = data & 0x40;
if(freq) {
sound2Skip = SOUND_MAGIC / freq;
} else
sound2Skip = 0;
if(data & 0x80) {
gbMemory[NR52] |= 2;
sound2EnvelopeVolume = gbMemory[NR22] >> 4;
sound2EnvelopeUpDown = gbMemory[NR22] & 0x08;
sound2ATL = sound2ATLreload;
sound2EnvelopeATLReload = sound2EnvelopeATL = 689 * (gbMemory[NR22] & 7);
sound2Index = 0;
sound2On = 1;
else if (address == NR51)
{
soundBalance = data;
apu->write_register(clock, address, data & soundEnableFlag);
}
break;
case NR30:
gbMemory[address] = data | 0x7f;
if(!(data & 0x80)) {
gbMemory[NR52] &= 0xfb;
sound3On = 0;
}
break;
case NR31:
gbMemory[address] = 0xff;
sound3ATL = sound3ATLreload = 172 * (256-data);
break;
case NR32:
gbMemory[address] = data | 0x9f;
sound3OutputLevel = (data >> 5) & 3;
break;
case NR33:
gbMemory[address] = 0xff;
freq3low = data;
freq = 2048 - (((int)(freq3high&7) << 8) | freq3low);
if(freq) {
sound3Skip = SOUND_MAGIC_2 / freq;
} else
sound3Skip = 0;
break;
case NR34:
gbMemory[address] = data | 0xbf;
freq3high = data;
freq = 2048 - (((int)(freq3high&7) << 8) | freq3low);
if(freq) {
sound3Skip = SOUND_MAGIC_2 / freq;
} else {
sound3Skip = 0;
}
sound3Continue = data & 0x40;
if((data & 0x80) && (gbMemory[NR30] & 0x80)) {
gbMemory[NR52] |= 4;
sound3ATL = sound3ATLreload;
sound3Index = 0;
sound3On = 1;
}
break;
case NR41:
sound4ATL = sound4ATLreload = 172 * (64 - (data & 0x3f));
break;
case NR42:
sound4EnvelopeVolume = data >> 4;
sound4EnvelopeUpDown = data & 0x08;
sound4EnvelopeATLReload = sound4EnvelopeATL = 689 * (data & 7);
break;
case NR43:
freq = freq4 = soundFreqRatio[data & 7];
sound4NSteps = data & 0x08;
sound4Skip = (freq << 8) / NOISE_MAGIC;
sound4Clock = data >> 4;
freq = freq / soundShiftClock[sound4Clock];
sound4ShiftSkip = (freq << 8) / NOISE_MAGIC;
break;
case NR44:
gbMemory[address] = data | 0xbf;
sound4Continue = data & 0x40;
if(data & 0x80) {
gbMemory[NR52] |= 8;
sound4EnvelopeVolume = gbMemory[NR42] >> 4;
sound4EnvelopeUpDown = gbMemory[NR42] & 0x08;
sound4ATL = sound4ATLreload;
sound4EnvelopeATLReload = sound4EnvelopeATL = 689 * (gbMemory[NR42] & 7);
sound4On = 1;
sound4Index = 0;
sound4ShiftIndex = 0;
if(sound4NSteps)
sound4ShiftRight = 0x7fff;
else
sound4ShiftRight = 0x7f;
}
break;
case NR50:
soundVIN = data & 0x88;
soundLevel1 = data & 7;
soundLevel2 = (data >> 4) & 7;
break;
case NR51:
soundBalance = (data & soundEnableFlag);
break;
case NR52:
soundMasterOn = data & 0x80;
if(!(data & 0x80)) {
sound1On = 0;
sound2On = 0;
sound3On = 0;
sound4On = 0;
gbMemory[address] &= 0xf0;
}
gbMemory[address] = data & 0x80 | 0x70 | (gbMemory[address] & 0xf);
break;
else
apu->write_register(clock, address, data);
}
gbDigitalSound = true;
if(sound1On && sound1EnvelopeVolume != 0)
gbDigitalSound = false;
if(sound2On && sound2EnvelopeVolume != 0)
gbDigitalSound = false;
if(sound3On && sound3OutputLevel != 0)
gbDigitalSound = false;
if(sound4On && sound4EnvelopeVolume != 0)
gbDigitalSound = false;
}
void gbSoundChannel1()
{
int vol = sound1EnvelopeVolume;
int freq = 0;
int value = 0;
if(sound1On && (sound1ATL || !sound1Continue)) {
sound1Index += soundQuality*sound1Skip;
sound1Index &= 0x1fffffff;
value = ((s8)sound1Wave[sound1Index>>24]) * vol;
}
soundBuffer[0][soundIndex] = value;
if(sound1On) {
if(sound1ATL) {
sound1ATL-=soundQuality;
if(sound1ATL <=0 && sound1Continue) {
gbMemory[NR52] &= 0xfe;
sound1On = 0;
}
}
if(sound1EnvelopeATL) {
sound1EnvelopeATL-=soundQuality;
if(sound1EnvelopeATL<=0) {
if(sound1EnvelopeUpDown) {
if(sound1EnvelopeVolume < 15)
sound1EnvelopeVolume++;
} else {
if(sound1EnvelopeVolume)
sound1EnvelopeVolume--;
}
sound1EnvelopeATL += sound1EnvelopeATLReload;
}
}
if(sound1SweepATL) {
sound1SweepATL-=soundQuality;
if(sound1SweepATL<=0) {
freq = (((int)(freq1high & 7)) << 8) | freq1low;
int updown = 1;
if(sound1SweepUpDown)
updown = -1;
int newfreq = 0;
if(sound1SweepSteps) {
newfreq = freq + updown * freq / (1 << sound1SweepSteps);
if(newfreq == freq)
newfreq = 0;
} else
newfreq = freq;
if(newfreq < 0) {
sound1SweepATL += sound1SweepATLReload;
} else if(newfreq > 2047) {
sound1SweepATL = 0;
sound1On = 0;
gbMemory[NR52] &= 0xfe;
} else {
sound1SweepATL += sound1SweepATLReload;
sound1Skip = SOUND_MAGIC/(2048 - newfreq);
freq1low = newfreq & 0xff;
freq1high = (freq1high & 0xf8) |((newfreq >> 8) & 7);
}
}
}
}
}
void gbSoundChannel2()
{
// int freq = 0;
int vol = sound2EnvelopeVolume;
int value = 0;
if(sound2On && (sound2ATL || !sound2Continue)) {
sound2Index += soundQuality*sound2Skip;
sound2Index &= 0x1fffffff;
value = ((s8)sound2Wave[sound2Index>>24]) * vol;
}
soundBuffer[1][soundIndex] = value;
if(sound2On) {
if(sound2ATL) {
sound2ATL-=soundQuality;
if(sound2ATL <= 0 && sound2Continue) {
gbMemory[NR52] &= 0xfd;
sound2On = 0;
}
}
if(sound2EnvelopeATL) {
sound2EnvelopeATL-=soundQuality;
if(sound2EnvelopeATL <= 0) {
if(sound2EnvelopeUpDown) {
if(sound2EnvelopeVolume < 15)
sound2EnvelopeVolume++;
} else {
if(sound2EnvelopeVolume)
sound2EnvelopeVolume--;
}
sound2EnvelopeATL += sound2EnvelopeATLReload;
}
}
}
}
void gbSoundChannel3()
{
int value = 0;
if(sound3On && (sound3ATL || !sound3Continue)) {
value = sound3Last;
sound3Index += soundQuality*sound3Skip;
sound3Index &= 0x1fffffff;
value = gbMemory[0xff30 + (sound3Index>>25)];
if( (sound3Index & 0x01000000)) {
value &= 0x0f;
} else {
value >>= 4;
}
value -= 8;
switch(sound3OutputLevel) {
case 0:
value = 0;
break;
case 1:
break;
case 2:
value = (value >> 1);
break;
case 3:
value = (value >> 2);
break;
}
sound3Last = value;
}
soundBuffer[2][soundIndex] = value;
if(sound3On) {
if(sound3ATL) {
sound3ATL-=soundQuality;
if(sound3ATL <= 0 && sound3Continue) {
gbMemory[NR52] &= 0xfb;
sound3On = 0;
}
}
}
}
void gbSoundChannel4()
{
int vol = sound4EnvelopeVolume;
int value = 0;
if(sound4Clock <= 0x0c) {
if(sound4On && (sound4ATL || !sound4Continue)) {
sound4Index += soundQuality*sound4Skip;
sound4ShiftIndex += soundQuality*sound4ShiftSkip;
if(sound4NSteps) {
while(sound4ShiftIndex > 0x1fffff) {
sound4ShiftRight = (((sound4ShiftRight << 6) ^
(sound4ShiftRight << 5)) & 0x40) |
(sound4ShiftRight >> 1);
sound4ShiftIndex -= 0x200000;
}
} else {
while(sound4ShiftIndex > 0x1fffff) {
sound4ShiftRight = (((sound4ShiftRight << 14) ^
(sound4ShiftRight << 13)) & 0x4000) |
(sound4ShiftRight >> 1);
sound4ShiftIndex -= 0x200000;
}
}
sound4Index &= 0x1fffff;
sound4ShiftIndex &= 0x1fffff;
value = ((sound4ShiftRight & 1)*2-1) * vol;
} else {
value = 0;
}
}
soundBuffer[3][soundIndex] = value;
if(sound4On) {
if(sound4ATL) {
sound4ATL-=soundQuality;
if(sound4ATL <= 0 && sound4Continue) {
gbMemory[NR52] &= 0xf7;
sound4On = 0;
}
}
if(sound4EnvelopeATL) {
sound4EnvelopeATL-=soundQuality;
if(sound4EnvelopeATL <= 0) {
if(sound4EnvelopeUpDown) {
if(sound4EnvelopeVolume < 15)
sound4EnvelopeVolume++;
} else {
if(sound4EnvelopeVolume)
sound4EnvelopeVolume--;
}
sound4EnvelopeATL += sound4EnvelopeATLReload;
}
}
}
}
void gbSoundMix()
{
int res = 0;
if(soundBalance & 16) {
res += ((s8)soundBuffer[0][soundIndex]);
}
if(soundBalance & 32) {
res += ((s8)soundBuffer[1][soundIndex]);
}
if(soundBalance & 64) {
res += ((s8)soundBuffer[2][soundIndex]);
}
if(soundBalance & 128) {
res += ((s8)soundBuffer[3][soundIndex]);
blip_sample_t out[2] = {0, 0};
if ( ! apu_out ) return;
while (!apu_out->read_samples(&out[0], 2))
{
int ticks = SOUND_CLOCK_TICKS * 95 / (24 * (gbSpeed ? 2 : 1));
bool was_stereo = apu->end_frame( ticks );
apu_out->end_frame( ticks, was_stereo );
}
if(gbDigitalSound)
res *= soundLevel1*256;
else
res *= soundLevel1*60;
res = out[0];
//res = (res * 7 * 60) >> 8;
if(soundEcho) {
res *= 2;
@ -664,25 +285,7 @@ void gbSoundMix()
else
soundFinalWave[soundBufferIndex++] = res;
res = 0;
if(soundBalance & 1) {
res += ((s8)soundBuffer[0][soundIndex]);
}
if(soundBalance & 2) {
res += ((s8)soundBuffer[1][soundIndex]);
}
if(soundBalance & 4) {
res += ((s8)soundBuffer[2][soundIndex]);
}
if(soundBalance & 8) {
res += ((s8)soundBuffer[3][soundIndex]);
}
if(gbDigitalSound)
res *= soundLevel2*256;
else
res *= soundLevel2*60;
res = out[1];
if(soundEcho) {
res *= 2;
@ -734,10 +337,10 @@ void gbSoundTick()
{
if(systemSoundOn) {
if(soundMasterOn) {
gbSoundChannel1();
/*gbSoundChannel1();
gbSoundChannel2();
gbSoundChannel3();
gbSoundChannel4();
gbSoundChannel4();*/
gbSoundMix();
} else {
@ -775,7 +378,7 @@ void gbSoundReset()
soundLevel2 = 7;
soundVIN = 0;
sound1On = 0;
/*sound1On = 0;
sound1ATL = 0;
sound1Skip = 0;
sound1Index = 0;
@ -821,53 +424,48 @@ void gbSoundReset()
sound4EnvelopeVolume = 0;
sound4EnvelopeATL = 0;
sound4EnvelopeUpDown = 0;
sound4EnvelopeATLReload = 0;
sound4EnvelopeATLReload = 0;*/
// don't translate
if(soundDebug) {
log("*** Sound Init ***\n");
}
gbSoundEvent(0xff10, 0x80);
gbSoundEvent(0xff11, 0xbf);
gbSoundEvent(0xff12, 0xf3);
gbSoundEvent(0xff14, 0xbf);
gbSoundEvent(0xff16, 0x3f);
gbSoundEvent(0xff17, 0x00);
gbSoundEvent(0xff19, 0xbf);
gbSoundEvent(0xff1a, 0x7f);
gbSoundEvent(0xff1b, 0xff);
gbSoundEvent(0xff1c, 0xbf);
gbSoundEvent(0xff1e, 0xbf);
if (apu_out)
{
apu_out->clear();
apu->reset(false);
gbSoundEvent(0xff20, 0xff);
gbSoundEvent(0xff21, 0x00);
gbSoundEvent(0xff22, 0x00);
gbSoundEvent(0xff23, 0xbf);
gbSoundEvent(0xff24, 0x77);
gbSoundEvent(0xff25, 0xf3);
extern const BOOST::uint8_t sound_data[Gb_Apu::end_addr - Gb_Apu::start_addr + 1];
if (gbHardware & 0x4)
gbSoundEvent(0xff26, 0xf0);
else
gbSoundEvent(0xff26, 0xf1);
int addr = 0;
while (addr < 0x30) {
apu->write_register( 0, 0xFF10 + addr, sound_data [ addr ] );
addr++;
}
}
// don't translate
if(soundDebug) {
log("*** Sound Init Complete ***\n");
}
sound1On = 0;
/*sound1On = 0;
sound2On = 0;
sound3On = 0;
sound4On = 0;
sound4On = 0;*/
int addr = 0xff30;
if (apu)
{
int addr = 0xff30;
while(addr < 0xff40) {
gbMemory[addr++] = 0x00;
gbMemory[addr++] = 0xff;
while(addr < 0xff40) {
/*gbMemory[addr++] = 0x00;
gbMemory[addr++] = 0xff;*/
gbSoundEvent(addr++, 0x00);
gbSoundEvent(addr++, 0xFF);
}
}
memset(soundFinalWave, 0x00, soundBufferLen);

View File

@ -22,6 +22,7 @@
#define NR12 0xff12
#define NR13 0xff13
#define NR14 0xff14
#define NR20 0xff15
#define NR21 0xff16
#define NR22 0xff17
#define NR23 0xff18
@ -31,6 +32,7 @@
#define NR32 0xff1c
#define NR33 0xff1d
#define NR34 0xff1e
#define NR40 0xff1f
#define NR41 0xff20
#define NR42 0xff21
#define NR43 0xff22
@ -54,6 +56,8 @@ extern void gbSoundReadGame(int,gzFile);
extern void gbSoundEvent(register u16, register int);
extern void gbSoundSetQuality(int);
extern u8 gbSoundRead(u16 address);
extern int soundTicks;
extern int soundQuality;
extern int SOUND_CLOCK_TICKS;

View File

@ -32,7 +32,10 @@
// OpenGL
#include <gl/GL.h> // main include file
#ifdef HAS_GLEXT
#include <gl/glext.h>
#endif
typedef BOOL (APIENTRY *PFNWGLSWAPINTERVALFARPROC)( int );
extern int Init_2xSaI(u32);