Update 7z code to SDK 9.22

This fixes some Linux compile errors
This commit is contained in:
EoD 2016-07-30 23:53:39 +02:00
parent 0573351a65
commit 3f5f9adbe9
26 changed files with 4758 additions and 4524 deletions

View File

@ -13,62 +13,66 @@ EXTERN_C_BEGIN
extern Byte k7zSignature[k7zSignatureSize];
#define k7zMajorVersion 0
enum EIdEnum {
k7zIdEnd,
k7zIdHeader,
k7zIdArchiveProperties,
k7zIdAdditionalStreamsInfo,
k7zIdMainStreamsInfo,
k7zIdFilesInfo,
k7zIdPackInfo,
k7zIdUnpackInfo,
k7zIdSubStreamsInfo,
k7zIdSize,
k7zIdCRC,
k7zIdFolder,
k7zIdCodersUnpackSize,
k7zIdNumUnpackStream,
k7zIdEmptyStream,
k7zIdEmptyFile,
k7zIdAnti,
k7zIdName,
k7zIdCTime,
k7zIdATime,
k7zIdMTime,
k7zIdWinAttributes,
k7zIdComment,
k7zIdEncodedHeader,
k7zIdStartPos,
k7zIdDummy
enum EIdEnum
{
k7zIdEnd,
k7zIdHeader,
k7zIdArchiveProperties,
k7zIdAdditionalStreamsInfo,
k7zIdMainStreamsInfo,
k7zIdFilesInfo,
k7zIdPackInfo,
k7zIdUnpackInfo,
k7zIdSubStreamsInfo,
k7zIdSize,
k7zIdCRC,
k7zIdFolder,
k7zIdCodersUnpackSize,
k7zIdNumUnpackStream,
k7zIdEmptyStream,
k7zIdEmptyFile,
k7zIdAnti,
k7zIdName,
k7zIdCTime,
k7zIdATime,
k7zIdMTime,
k7zIdWinAttributes,
k7zIdComment,
k7zIdEncodedHeader,
k7zIdStartPos,
k7zIdDummy
};
typedef struct {
UInt32 NumInStreams;
UInt32 NumOutStreams;
UInt64 MethodID;
CBuf Props;
typedef struct
{
UInt32 NumInStreams;
UInt32 NumOutStreams;
UInt64 MethodID;
CBuf Props;
} CSzCoderInfo;
void SzCoderInfo_Init(CSzCoderInfo *p);
void SzCoderInfo_Free(CSzCoderInfo *p, ISzAlloc *alloc);
typedef struct {
UInt32 InIndex;
UInt32 OutIndex;
typedef struct
{
UInt32 InIndex;
UInt32 OutIndex;
} CSzBindPair;
typedef struct {
CSzCoderInfo *Coders;
CSzBindPair *BindPairs;
UInt32 *PackStreams;
UInt64 *UnpackSizes;
UInt32 NumCoders;
UInt32 NumBindPairs;
UInt32 NumPackStreams;
int UnpackCRCDefined;
UInt32 UnpackCRC;
typedef struct
{
CSzCoderInfo *Coders;
CSzBindPair *BindPairs;
UInt32 *PackStreams;
UInt64 *UnpackSizes;
UInt32 NumCoders;
UInt32 NumBindPairs;
UInt32 NumPackStreams;
int UnpackCRCDefined;
UInt32 UnpackCRC;
UInt32 NumUnpackStreams;
UInt32 NumUnpackStreams;
} CSzFolder;
void SzFolder_Init(CSzFolder *p);
@ -77,43 +81,48 @@ int SzFolder_FindBindPairForInStream(CSzFolder *p, UInt32 inStreamIndex);
UInt32 SzFolder_GetNumOutStreams(CSzFolder *p);
UInt64 SzFolder_GetUnpackSize(CSzFolder *p);
SRes SzFolder_Decode(const CSzFolder *folder, const UInt64 *packSizes, ILookInStream *stream,
UInt64 startPos, Byte *outBuffer, size_t outSize, ISzAlloc *allocMain);
SRes SzFolder_Decode(const CSzFolder *folder, const UInt64 *packSizes,
ILookInStream *stream, UInt64 startPos,
Byte *outBuffer, size_t outSize, ISzAlloc *allocMain);
typedef struct {
UInt32 Low;
UInt32 High;
typedef struct
{
UInt32 Low;
UInt32 High;
} CNtfsFileTime;
typedef struct {
CNtfsFileTime MTime;
UInt64 Size;
UInt32 Crc;
UInt32 Attrib;
Byte HasStream;
Byte IsDir;
Byte IsAnti;
Byte CrcDefined;
Byte MTimeDefined;
Byte AttribDefined;
typedef struct
{
CNtfsFileTime MTime;
UInt64 Size;
UInt32 Crc;
UInt32 Attrib;
Byte HasStream;
Byte IsDir;
Byte IsAnti;
Byte CrcDefined;
Byte MTimeDefined;
Byte AttribDefined;
} CSzFileItem;
void SzFile_Init(CSzFileItem *p);
typedef struct {
UInt64 *PackSizes;
Byte *PackCRCsDefined;
UInt32 *PackCRCs;
CSzFolder *Folders;
CSzFileItem *Files;
UInt32 NumPackStreams;
UInt32 NumFolders;
UInt32 NumFiles;
typedef struct
{
UInt64 *PackSizes;
Byte *PackCRCsDefined;
UInt32 *PackCRCs;
CSzFolder *Folders;
CSzFileItem *Files;
UInt32 NumPackStreams;
UInt32 NumFolders;
UInt32 NumFiles;
} CSzAr;
void SzAr_Init(CSzAr *p);
void SzAr_Free(CSzAr *p, ISzAlloc *alloc);
/*
SzExtract extracts file from archive
@ -127,26 +136,27 @@ void SzAr_Free(CSzAr *p, ISzAlloc *alloc);
*outBufferSize
You can consider "*outBuffer" as cache of solid block. If your archive is solid,
it will increase decompression speed.
If you use external function, you can declare these 3 cache variables
(blockIndex, outBuffer, outBufferSize) as static in that external function.
Free *outBuffer and set *outBuffer to 0, if you want to flush cache.
*/
typedef struct {
CSzAr db;
typedef struct
{
CSzAr db;
UInt64 startPosAfterHeader;
UInt64 dataPos;
UInt64 startPosAfterHeader;
UInt64 dataPos;
UInt32 *FolderStartPackStreamIndex;
UInt64 *PackStreamStartPositions;
UInt32 *FolderStartFileIndex;
UInt32 *FileIndexToFolderIndexMap;
UInt32 *FolderStartPackStreamIndex;
UInt64 *PackStreamStartPositions;
UInt32 *FolderStartFileIndex;
UInt32 *FileIndexToFolderIndexMap;
size_t *FileNameOffsets; /* in 2-byte steps */
CBuf FileNames; /* UTF-16-LE */
size_t *FileNameOffsets; /* in 2-byte steps */
CBuf FileNames; /* UTF-16-LE */
} CSzArEx;
void SzArEx_Init(CSzArEx *p);
@ -162,15 +172,18 @@ if dest != NULL, the return value specifies the number of 16-bit characters that
size_t SzArEx_GetFileNameUtf16(const CSzArEx *p, size_t fileIndex, UInt16 *dest);
SRes SzArEx_Extract(const CSzArEx *db, ILookInStream *inStream, UInt32 fileIndex, /* index of file
*/
UInt32 *blockIndex, /* index of solid block */
Byte **outBuffer, /* pointer to pointer to output buffer (allocated with
allocMain) */
size_t *outBufferSize, /* buffer size for output buffer */
size_t *offset, /* offset of stream for required file in *outBuffer */
size_t *outSizeProcessed, /* size of file in *outBuffer */
ISzAlloc *allocMain, ISzAlloc *allocTemp);
SRes SzArEx_Extract(
const CSzArEx *db,
ILookInStream *inStream,
UInt32 fileIndex, /* index of file */
UInt32 *blockIndex, /* index of solid block */
Byte **outBuffer, /* pointer to pointer to output buffer (allocated with allocMain) */
size_t *outBufferSize, /* buffer size for output buffer */
size_t *offset, /* offset of stream for required file in *outBuffer */
size_t *outSizeProcessed, /* size of file in *outBuffer */
ISzAlloc *allocMain,
ISzAlloc *allocTemp);
/*
SzArEx_Open Errors:

View File

@ -20,55 +20,57 @@ int g_allocCountTemp = 0;
void *SzAlloc(void *p, size_t size)
{
p = p;
if (size == 0)
return 0;
#ifdef _SZ_ALLOC_DEBUG
fprintf(stderr, "\nAlloc %10d bytes; count = %10d", size, g_allocCount);
g_allocCount++;
#endif
return malloc(size);
p = p;
if (size == 0)
return 0;
#ifdef _SZ_ALLOC_DEBUG
fprintf(stderr, "\nAlloc %10d bytes; count = %10d", size, g_allocCount);
g_allocCount++;
#endif
return malloc(size);
}
void SzFree(void *p, void *address)
{
p = p;
#ifdef _SZ_ALLOC_DEBUG
if (address != 0) {
g_allocCount--;
fprintf(stderr, "\nFree; count = %10d", g_allocCount);
}
#endif
free(address);
p = p;
#ifdef _SZ_ALLOC_DEBUG
if (address != 0)
{
g_allocCount--;
fprintf(stderr, "\nFree; count = %10d", g_allocCount);
}
#endif
free(address);
}
void *SzAllocTemp(void *p, size_t size)
{
p = p;
if (size == 0)
return 0;
#ifdef _SZ_ALLOC_DEBUG
fprintf(stderr, "\nAlloc_temp %10d bytes; count = %10d", size, g_allocCountTemp);
g_allocCountTemp++;
#ifdef _WIN32
return HeapAlloc(GetProcessHeap(), 0, size);
#endif
#endif
return malloc(size);
p = p;
if (size == 0)
return 0;
#ifdef _SZ_ALLOC_DEBUG
fprintf(stderr, "\nAlloc_temp %10d bytes; count = %10d", size, g_allocCountTemp);
g_allocCountTemp++;
#ifdef _WIN32
return HeapAlloc(GetProcessHeap(), 0, size);
#endif
#endif
return malloc(size);
}
void SzFreeTemp(void *p, void *address)
{
p = p;
#ifdef _SZ_ALLOC_DEBUG
if (address != 0) {
g_allocCountTemp--;
fprintf(stderr, "\nFree_temp; count = %10d", g_allocCountTemp);
}
#ifdef _WIN32
HeapFree(GetProcessHeap(), 0, address);
return;
#endif
#endif
free(address);
p = p;
#ifdef _SZ_ALLOC_DEBUG
if (address != 0)
{
g_allocCountTemp--;
fprintf(stderr, "\nFree_temp; count = %10d", g_allocCountTemp);
}
#ifdef _WIN32
HeapFree(GetProcessHeap(), 0, address);
return;
#endif
#endif
free(address);
}

View File

@ -7,28 +7,30 @@ Public domain */
void Buf_Init(CBuf *p)
{
p->data = 0;
p->size = 0;
p->data = 0;
p->size = 0;
}
int Buf_Create(CBuf *p, size_t size, ISzAlloc *alloc)
{
p->size = 0;
if (size == 0) {
p->data = 0;
return 1;
}
p->data = (Byte *)alloc->Alloc(alloc, size);
if (p->data != 0) {
p->size = size;
return 1;
}
return 0;
p->size = 0;
if (size == 0)
{
p->data = 0;
return 1;
}
p->data = (Byte *)alloc->Alloc(alloc, size);
if (p->data != 0)
{
p->size = size;
return 1;
}
return 0;
}
void Buf_Free(CBuf *p, ISzAlloc *alloc)
{
alloc->Free(alloc, p->data);
p->data = 0;
p->size = 0;
alloc->Free(alloc, p->data);
p->data = 0;
p->size = 0;
}

View File

@ -10,19 +10,21 @@
extern "C" {
#endif
typedef struct {
Byte *data;
size_t size;
typedef struct
{
Byte *data;
size_t size;
} CBuf;
void Buf_Init(CBuf *p);
int Buf_Create(CBuf *p, size_t size, ISzAlloc *alloc);
void Buf_Free(CBuf *p, ISzAlloc *alloc);
typedef struct {
Byte *data;
size_t size;
size_t pos;
typedef struct
{
Byte *data;
size_t size;
size_t pos;
} CDynBuf;
void DynBuf_Construct(CDynBuf *p);

View File

@ -1,73 +1,83 @@
/* 7zCrc.c -- CRC32 calculation
2009-11-23 : Igor Pavlov : Public domain */
/* 7zCrc.c -- CRC32 init
2010-12-01 : Igor Pavlov : Public domain */
#include "7zCrc.h"
#include "CpuArch.h"
#define kCrcPoly 0xEDB88320
#ifdef MY_CPU_LE
#define CRC_NUM_TABLES 8
#ifdef MY_CPU_X86_OR_AMD64
#define CRC_NUM_TABLES 8
UInt32 MY_FAST_CALL CrcUpdateT8(UInt32 v, const void *data, size_t size, const UInt32 *table);
#elif defined(MY_CPU_LE)
#define CRC_NUM_TABLES 4
#else
#define CRC_NUM_TABLES 1
#define CRC_NUM_TABLES 5
#define CRC_UINT32_SWAP(v) ((v >> 24) | ((v >> 8) & 0xFF00) | ((v << 8) & 0xFF0000) | (v << 24))
UInt32 MY_FAST_CALL CrcUpdateT1_BeT4(UInt32 v, const void *data, size_t size, const UInt32 *table);
#endif
typedef UInt32(MY_FAST_CALL *CRC_FUNC)(UInt32 v, const void *data, size_t size,
const UInt32 *table);
#ifndef MY_CPU_BE
UInt32 MY_FAST_CALL CrcUpdateT4(UInt32 v, const void *data, size_t size, const UInt32 *table);
#endif
typedef UInt32 (MY_FAST_CALL *CRC_FUNC)(UInt32 v, const void *data, size_t size, const UInt32 *table);
static CRC_FUNC g_CrcUpdate;
UInt32 g_CrcTable[256 * CRC_NUM_TABLES];
#if CRC_NUM_TABLES == 1
#define CRC_UPDATE_BYTE_2(crc, b) (table[((crc) ^ (b)) & 0xFF] ^ ((crc) >> 8))
static UInt32 MY_FAST_CALL CrcUpdateT1(UInt32 v, const void *data, size_t size, const UInt32 *table)
{
const Byte *p = (const Byte *)data;
for (; size > 0; size--, p++)
v = CRC_UPDATE_BYTE_2(v, *p);
return v;
}
#else
UInt32 MY_FAST_CALL CrcUpdateT4(UInt32 v, const void *data, size_t size, const UInt32 *table);
UInt32 MY_FAST_CALL CrcUpdateT8(UInt32 v, const void *data, size_t size, const UInt32 *table);
#endif
UInt32 MY_FAST_CALL CrcUpdate(UInt32 v, const void *data, size_t size)
{
return g_CrcUpdate(v, data, size, g_CrcTable);
return g_CrcUpdate(v, data, size, g_CrcTable);
}
UInt32 MY_FAST_CALL CrcCalc(const void *data, size_t size)
{
return g_CrcUpdate(CRC_INIT_VAL, data, size, g_CrcTable) ^ CRC_INIT_VAL;
return g_CrcUpdate(CRC_INIT_VAL, data, size, g_CrcTable) ^ CRC_INIT_VAL;
}
void MY_FAST_CALL CrcGenerateTable()
{
UInt32 i;
for (i = 0; i < 256; i++) {
UInt32 r = i;
unsigned j;
for (j = 0; j < 8; j++)
r = (r >> 1) ^ (kCrcPoly & ~((r & 1) - 1));
g_CrcTable[i] = r;
}
#if CRC_NUM_TABLES == 1
g_CrcUpdate = CrcUpdateT1;
#else
for (; i < 256 * CRC_NUM_TABLES; i++) {
UInt32 r = g_CrcTable[i - 256];
g_CrcTable[i] = g_CrcTable[r & 0xFF] ^ (r >> 8);
}
g_CrcUpdate = CrcUpdateT4;
#ifdef MY_CPU_X86_OR_AMD64
if (!CPU_Is_InOrder())
g_CrcUpdate = CrcUpdateT8;
#endif
#endif
UInt32 i;
for (i = 0; i < 256; i++)
{
UInt32 r = i;
unsigned j;
for (j = 0; j < 8; j++)
r = (r >> 1) ^ (kCrcPoly & ~((r & 1) - 1));
g_CrcTable[i] = r;
}
for (; i < 256 * CRC_NUM_TABLES; i++)
{
UInt32 r = g_CrcTable[i - 256];
g_CrcTable[i] = g_CrcTable[r & 0xFF] ^ (r >> 8);
}
#ifdef MY_CPU_LE
g_CrcUpdate = CrcUpdateT4;
#if CRC_NUM_TABLES == 8
if (!CPU_Is_InOrder())
g_CrcUpdate = CrcUpdateT8;
#endif
#else
{
#ifndef MY_CPU_BE
UInt32 k = 1;
if (*(const Byte *)&k == 1)
g_CrcUpdate = CrcUpdateT4;
else
#endif
{
for (i = 256 * CRC_NUM_TABLES - 1; i >= 256; i--)
{
UInt32 x = g_CrcTable[i - 256];
g_CrcTable[i] = CRC_UINT32_SWAP(x);
}
g_CrcUpdate = CrcUpdateT1_BeT4;
}
}
#endif
}

View File

@ -1,30 +1,64 @@
/* 7zCrcOpt.c -- CRC32 calculation : optimized version
2009-11-23 : Igor Pavlov : Public domain */
/* 7zCrcOpt.c -- CRC32 calculation
2010-12-01 : Igor Pavlov : Public domain */
#include "CpuArch.h"
#ifdef MY_CPU_LE
#define CRC_UPDATE_BYTE_2(crc, b) (table[((crc) ^ (b)) & 0xFF] ^ ((crc) >> 8))
#ifndef MY_CPU_BE
UInt32 MY_FAST_CALL CrcUpdateT4(UInt32 v, const void *data, size_t size, const UInt32 *table)
{
const Byte *p = (const Byte *)data;
for (; size > 0 && ((unsigned)(ptrdiff_t)p & 3) != 0; size--, p++)
v = CRC_UPDATE_BYTE_2(v, *p);
for (; size >= 4; size -= 4, p += 4) {
v ^= *(const UInt32 *)p;
v = table[0x300 + (v & 0xFF)] ^ table[0x200 + ((v >> 8) & 0xFF)] ^
table[0x100 + ((v >> 16) & 0xFF)] ^ table[0x000 + ((v >> 24))];
}
for (; size > 0; size--, p++)
v = CRC_UPDATE_BYTE_2(v, *p);
return v;
const Byte *p = (const Byte *)data;
for (; size > 0 && ((unsigned)(ptrdiff_t)p & 3) != 0; size--, p++)
v = CRC_UPDATE_BYTE_2(v, *p);
for (; size >= 4; size -= 4, p += 4)
{
v ^= *(const UInt32 *)p;
v =
table[0x300 + (v & 0xFF)] ^
table[0x200 + ((v >> 8) & 0xFF)] ^
table[0x100 + ((v >> 16) & 0xFF)] ^
table[0x000 + ((v >> 24))];
}
for (; size > 0; size--, p++)
v = CRC_UPDATE_BYTE_2(v, *p);
return v;
}
UInt32 MY_FAST_CALL CrcUpdateT8(UInt32 v, const void *data, size_t size, const UInt32 *table)
{
return CrcUpdateT4(v, data, size, table);
return CrcUpdateT4(v, data, size, table);
}
#endif
#ifndef MY_CPU_LE
#define CRC_UINT32_SWAP(v) ((v >> 24) | ((v >> 8) & 0xFF00) | ((v << 8) & 0xFF0000) | (v << 24))
UInt32 MY_FAST_CALL CrcUpdateT1_BeT4(UInt32 v, const void *data, size_t size, const UInt32 *table)
{
const Byte *p = (const Byte *)data;
for (; size > 0 && ((unsigned)(ptrdiff_t)p & 3) != 0; size--, p++)
v = CRC_UPDATE_BYTE_2(v, *p);
v = CRC_UINT32_SWAP(v);
table += 0x100;
for (; size >= 4; size -= 4, p += 4)
{
v ^= *(const UInt32 *)p;
v =
table[0x000 + (v & 0xFF)] ^
table[0x100 + ((v >> 8) & 0xFF)] ^
table[0x200 + ((v >> 16) & 0xFF)] ^
table[0x300 + ((v >> 24))];
}
table -= 0x100;
v = CRC_UINT32_SWAP(v);
for (; size > 0; size--, p++)
v = CRC_UPDATE_BYTE_2(v, *p);
return v;
}
#endif

View File

@ -1,465 +1,470 @@
/* 7zDec.c -- Decoding from 7z folder
2010-11-02 : Igor Pavlov : Public domain */
#include <string.h>
#define _7ZIP_PPMD_SUPPPORT
#include "7z.h"
#include "Bcj2.h"
#include "Bra.h"
#include "CpuArch.h"
#include "Lzma2Dec.h"
#include "LzmaDec.h"
#ifdef _7ZIP_PPMD_SUPPPORT
#include "Ppmd7.h"
#endif
#define k_Copy 0
#define k_LZMA2 0x21
#define k_LZMA 0x30101
#define k_BCJ 0x03030103
#define k_PPC 0x03030205
#define k_ARM 0x03030501
#define k_ARMT 0x03030701
#define k_SPARC 0x03030805
#define k_BCJ2 0x0303011B
#ifdef _7ZIP_PPMD_SUPPPORT
#define k_PPMD 0x30401
typedef struct {
IByteIn p;
const Byte *cur;
const Byte *end;
const Byte *begin;
UInt64 processed;
Bool extra;
SRes res;
ILookInStream *inStream;
} CByteInToLook;
static Byte ReadByte(void *pp)
{
CByteInToLook *p = (CByteInToLook *)pp;
if (p->cur != p->end)
return *p->cur++;
if (p->res == SZ_OK) {
size_t size = p->cur - p->begin;
p->processed += size;
p->res = p->inStream->Skip(p->inStream, size);
size = (1 << 25);
p->res = p->inStream->Look(p->inStream, (const void **)&p->begin, &size);
p->cur = p->begin;
p->end = p->begin + size;
if (size != 0)
return *p->cur++;
;
}
p->extra = True;
return 0;
}
static SRes SzDecodePpmd(CSzCoderInfo *coder, UInt64 inSize, ILookInStream *inStream,
Byte *outBuffer, SizeT outSize, ISzAlloc *allocMain)
{
CPpmd7 ppmd;
CByteInToLook s;
SRes res = SZ_OK;
s.p.Read = ReadByte;
s.inStream = inStream;
s.begin = s.end = s.cur = NULL;
s.extra = False;
s.res = SZ_OK;
s.processed = 0;
if (coder->Props.size != 5)
return SZ_ERROR_UNSUPPORTED;
{
unsigned order = coder->Props.data[0];
UInt32 memSize = GetUi32(coder->Props.data + 1);
if (order < PPMD7_MIN_ORDER || order > PPMD7_MAX_ORDER ||
memSize < PPMD7_MIN_MEM_SIZE || memSize > PPMD7_MAX_MEM_SIZE)
return SZ_ERROR_UNSUPPORTED;
Ppmd7_Construct(&ppmd);
if (!Ppmd7_Alloc(&ppmd, memSize, allocMain))
return SZ_ERROR_MEM;
Ppmd7_Init(&ppmd, order);
}
{
CPpmd7z_RangeDec rc;
Ppmd7z_RangeDec_CreateVTable(&rc);
rc.Stream = &s.p;
if (!Ppmd7z_RangeDec_Init(&rc))
res = SZ_ERROR_DATA;
else if (s.extra)
res = (s.res != SZ_OK ? s.res : SZ_ERROR_DATA);
else {
SizeT i;
for (i = 0; i < outSize; i++) {
int sym = Ppmd7_DecodeSymbol(&ppmd, &rc.p);
if (s.extra || sym < 0)
break;
outBuffer[i] = (Byte)sym;
}
if (i != outSize)
res = (s.res != SZ_OK ? s.res : SZ_ERROR_DATA);
else if (s.processed + (s.cur - s.begin) != inSize ||
!Ppmd7z_RangeDec_IsFinishedOK(&rc))
res = SZ_ERROR_DATA;
}
}
Ppmd7_Free(&ppmd, allocMain);
return res;
}
#endif
static SRes SzDecodeLzma(CSzCoderInfo *coder, UInt64 inSize, ILookInStream *inStream,
Byte *outBuffer, SizeT outSize, ISzAlloc *allocMain)
{
CLzmaDec state;
SRes res = SZ_OK;
LzmaDec_Construct(&state);
RINOK(LzmaDec_AllocateProbs(&state,
coder->Props.data,
(unsigned)coder->Props.size,
allocMain));
state.dic = outBuffer;
state.dicBufSize = outSize;
LzmaDec_Init(&state);
for (;;) {
Byte *inBuf = NULL;
size_t lookahead = (1 << 18);
if (lookahead > inSize)
lookahead = (size_t)inSize;
res = inStream->Look((void *)inStream, (const void **)&inBuf, &lookahead);
if (res != SZ_OK)
break;
{
SizeT inProcessed = (SizeT)lookahead, dicPos = state.dicPos;
ELzmaStatus status;
res = LzmaDec_DecodeToDic(&state,
outSize,
inBuf,
&inProcessed,
LZMA_FINISH_END,
&status);
lookahead -= inProcessed;
inSize -= inProcessed;
if (res != SZ_OK)
break;
if (state.dicPos == state.dicBufSize ||
(inProcessed == 0 && dicPos == state.dicPos)) {
if (state.dicBufSize != outSize || lookahead != 0 ||
(status != LZMA_STATUS_FINISHED_WITH_MARK &&
status != LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK))
res = SZ_ERROR_DATA;
break;
}
res = inStream->Skip((void *)inStream, inProcessed);
if (res != SZ_OK)
break;
}
}
LzmaDec_FreeProbs(&state, allocMain);
return res;
}
static SRes SzDecodeLzma2(CSzCoderInfo *coder, UInt64 inSize, ILookInStream *inStream,
Byte *outBuffer, SizeT outSize, ISzAlloc *allocMain)
{
CLzma2Dec state;
SRes res = SZ_OK;
Lzma2Dec_Construct(&state);
if (coder->Props.size != 1)
return SZ_ERROR_DATA;
RINOK(Lzma2Dec_AllocateProbs(&state, coder->Props.data[0], allocMain));
state.decoder.dic = outBuffer;
state.decoder.dicBufSize = outSize;
Lzma2Dec_Init(&state);
for (;;) {
Byte *inBuf = NULL;
size_t lookahead = (1 << 18);
if (lookahead > inSize)
lookahead = (size_t)inSize;
res = inStream->Look((void *)inStream, (const void **)&inBuf, &lookahead);
if (res != SZ_OK)
break;
{
SizeT inProcessed = (SizeT)lookahead, dicPos = state.decoder.dicPos;
ELzmaStatus status;
res = Lzma2Dec_DecodeToDic(&state,
outSize,
inBuf,
&inProcessed,
LZMA_FINISH_END,
&status);
lookahead -= inProcessed;
inSize -= inProcessed;
if (res != SZ_OK)
break;
if (state.decoder.dicPos == state.decoder.dicBufSize ||
(inProcessed == 0 && dicPos == state.decoder.dicPos)) {
if (state.decoder.dicBufSize != outSize || lookahead != 0 ||
(status != LZMA_STATUS_FINISHED_WITH_MARK))
res = SZ_ERROR_DATA;
break;
}
res = inStream->Skip((void *)inStream, inProcessed);
if (res != SZ_OK)
break;
}
}
Lzma2Dec_FreeProbs(&state, allocMain);
return res;
}
static SRes SzDecodeCopy(UInt64 inSize, ILookInStream *inStream, Byte *outBuffer)
{
while (inSize > 0) {
void *inBuf;
size_t curSize = (1 << 18);
if (curSize > inSize)
curSize = (size_t)inSize;
RINOK(inStream->Look((void *)inStream, (const void **)&inBuf, &curSize));
if (curSize == 0)
return SZ_ERROR_INPUT_EOF;
memcpy(outBuffer, inBuf, curSize);
outBuffer += curSize;
inSize -= curSize;
RINOK(inStream->Skip((void *)inStream, curSize));
}
return SZ_OK;
}
static Bool IS_MAIN_METHOD(UInt32 m)
{
switch (m) {
case k_Copy:
case k_LZMA:
case k_LZMA2:
#ifdef _7ZIP_PPMD_SUPPPORT
case k_PPMD:
#endif
return True;
}
return False;
}
static Bool IS_SUPPORTED_CODER(const CSzCoderInfo *c)
{
return c->NumInStreams == 1 && c->NumOutStreams == 1 && c->MethodID <= (UInt32)0xFFFFFFFF &&
IS_MAIN_METHOD((UInt32)c->MethodID);
}
#define IS_BCJ2(c) ((c)->MethodID == k_BCJ2 && (c)->NumInStreams == 4 && (c)->NumOutStreams == 1)
static SRes CheckSupportedFolder(const CSzFolder *f)
{
if (f->NumCoders < 1 || f->NumCoders > 4)
return SZ_ERROR_UNSUPPORTED;
if (!IS_SUPPORTED_CODER(&f->Coders[0]))
return SZ_ERROR_UNSUPPORTED;
if (f->NumCoders == 1) {
if (f->NumPackStreams != 1 || f->PackStreams[0] != 0 || f->NumBindPairs != 0)
return SZ_ERROR_UNSUPPORTED;
return SZ_OK;
}
if (f->NumCoders == 2) {
CSzCoderInfo *c = &f->Coders[1];
if (c->MethodID > (UInt32)0xFFFFFFFF || c->NumInStreams != 1 ||
c->NumOutStreams != 1 || f->NumPackStreams != 1 || f->PackStreams[0] != 0 ||
f->NumBindPairs != 1 || f->BindPairs[0].InIndex != 1 ||
f->BindPairs[0].OutIndex != 0)
return SZ_ERROR_UNSUPPORTED;
switch ((UInt32)c->MethodID) {
case k_BCJ:
case k_ARM:
break;
default:
return SZ_ERROR_UNSUPPORTED;
}
return SZ_OK;
}
if (f->NumCoders == 4) {
if (!IS_SUPPORTED_CODER(&f->Coders[1]) || !IS_SUPPORTED_CODER(&f->Coders[2]) ||
!IS_BCJ2(&f->Coders[3]))
return SZ_ERROR_UNSUPPORTED;
if (f->NumPackStreams != 4 || f->PackStreams[0] != 2 || f->PackStreams[1] != 6 ||
f->PackStreams[2] != 1 || f->PackStreams[3] != 0 || f->NumBindPairs != 3 ||
f->BindPairs[0].InIndex != 5 || f->BindPairs[0].OutIndex != 0 ||
f->BindPairs[1].InIndex != 4 || f->BindPairs[1].OutIndex != 1 ||
f->BindPairs[2].InIndex != 3 || f->BindPairs[2].OutIndex != 2)
return SZ_ERROR_UNSUPPORTED;
return SZ_OK;
}
return SZ_ERROR_UNSUPPORTED;
}
static UInt64 GetSum(const UInt64 *values, UInt32 index)
{
UInt64 sum = 0;
UInt32 i;
for (i = 0; i < index; i++)
sum += values[i];
return sum;
}
#define CASE_BRA_CONV(isa) \
case k_##isa: \
isa##_Convert(outBuffer, outSize, 0, 0); \
break;
static SRes SzFolder_Decode2(const CSzFolder *folder, const UInt64 *packSizes,
ILookInStream *inStream, UInt64 startPos, Byte *outBuffer,
SizeT outSize, ISzAlloc *allocMain, Byte *tempBuf[])
{
UInt32 ci;
SizeT tempSizes[3] = { 0, 0, 0 };
SizeT tempSize3 = 0;
Byte *tempBuf3 = 0;
RINOK(CheckSupportedFolder(folder));
for (ci = 0; ci < folder->NumCoders; ci++) {
CSzCoderInfo *coder = &folder->Coders[ci];
if (IS_MAIN_METHOD((UInt32)coder->MethodID)) {
UInt32 si = 0;
UInt64 offset;
UInt64 inSize;
Byte *outBufCur = outBuffer;
SizeT outSizeCur = outSize;
if (folder->NumCoders == 4) {
UInt32 indices[] = { 3, 2, 0 };
UInt64 unpackSize = folder->UnpackSizes[ci];
si = indices[ci];
if (ci < 2) {
Byte *temp;
outSizeCur = (SizeT)unpackSize;
if (outSizeCur != unpackSize)
return SZ_ERROR_MEM;
temp = (Byte *)IAlloc_Alloc(allocMain, outSizeCur);
if (temp == 0 && outSizeCur != 0)
return SZ_ERROR_MEM;
outBufCur = tempBuf[1 - ci] = temp;
tempSizes[1 - ci] = outSizeCur;
} else if (ci == 2) {
if (unpackSize > outSize) /* check it */
return SZ_ERROR_PARAM;
tempBuf3 = outBufCur =
outBuffer + (outSize - (size_t)unpackSize);
tempSize3 = outSizeCur = (SizeT)unpackSize;
} else
return SZ_ERROR_UNSUPPORTED;
}
offset = GetSum(packSizes, si);
inSize = packSizes[si];
RINOK(LookInStream_SeekTo(inStream, startPos + offset));
if (coder->MethodID == k_Copy) {
if (inSize != outSizeCur) /* check it */
return SZ_ERROR_DATA;
RINOK(SzDecodeCopy(inSize, inStream, outBufCur));
} else if (coder->MethodID == k_LZMA) {
RINOK(SzDecodeLzma(coder,
inSize,
inStream,
outBufCur,
outSizeCur,
allocMain));
} else if (coder->MethodID == k_LZMA2) {
RINOK(SzDecodeLzma2(coder,
inSize,
inStream,
outBufCur,
outSizeCur,
allocMain));
} else {
#ifdef _7ZIP_PPMD_SUPPPORT
RINOK(SzDecodePpmd(coder,
inSize,
inStream,
outBufCur,
outSizeCur,
allocMain));
#else
return SZ_ERROR_UNSUPPORTED;
#endif
}
} else if (coder->MethodID == k_BCJ2) {
UInt64 offset = GetSum(packSizes, 1);
UInt64 s3Size = packSizes[1];
SRes res;
if (ci != 3)
return SZ_ERROR_UNSUPPORTED;
RINOK(LookInStream_SeekTo(inStream, startPos + offset));
tempSizes[2] = (SizeT)s3Size;
if (tempSizes[2] != s3Size)
return SZ_ERROR_MEM;
tempBuf[2] = (Byte *)IAlloc_Alloc(allocMain, tempSizes[2]);
if (tempBuf[2] == 0 && tempSizes[2] != 0)
return SZ_ERROR_MEM;
res = SzDecodeCopy(s3Size, inStream, tempBuf[2]);
RINOK(res)
res = Bcj2_Decode(tempBuf3,
tempSize3,
tempBuf[0],
tempSizes[0],
tempBuf[1],
tempSizes[1],
tempBuf[2],
tempSizes[2],
outBuffer,
outSize);
RINOK(res)
} else {
if (ci != 1)
return SZ_ERROR_UNSUPPORTED;
switch (coder->MethodID) {
case k_BCJ: {
UInt32 state;
x86_Convert_Init(state);
x86_Convert(outBuffer, outSize, 0, &state, 0);
break;
}
CASE_BRA_CONV(ARM)
default:
return SZ_ERROR_UNSUPPORTED;
}
}
}
return SZ_OK;
}
SRes SzFolder_Decode(const CSzFolder *folder, const UInt64 *packSizes, ILookInStream *inStream,
UInt64 startPos, Byte *outBuffer, size_t outSize, ISzAlloc *allocMain)
{
Byte *tempBuf[3] = { 0, 0, 0 };
int i;
SRes res = SzFolder_Decode2(folder,
packSizes,
inStream,
startPos,
outBuffer,
(SizeT)outSize,
allocMain,
tempBuf);
for (i = 0; i < 3; i++)
IAlloc_Free(allocMain, tempBuf[i]);
return res;
}
/* 7zDec.c -- Decoding from 7z folder
2010-11-02 : Igor Pavlov : Public domain */
#include <string.h>
/* #define _7ZIP_PPMD_SUPPPORT */
#include "7z.h"
#include "Bcj2.h"
#include "Bra.h"
#include "CpuArch.h"
#include "LzmaDec.h"
#include "Lzma2Dec.h"
#ifdef _7ZIP_PPMD_SUPPPORT
#include "Ppmd7.h"
#endif
#define k_Copy 0
#define k_LZMA2 0x21
#define k_LZMA 0x30101
#define k_BCJ 0x03030103
#define k_PPC 0x03030205
#define k_ARM 0x03030501
#define k_ARMT 0x03030701
#define k_SPARC 0x03030805
#define k_BCJ2 0x0303011B
#ifdef _7ZIP_PPMD_SUPPPORT
#define k_PPMD 0x30401
typedef struct
{
IByteIn p;
const Byte *cur;
const Byte *end;
const Byte *begin;
UInt64 processed;
Bool extra;
SRes res;
ILookInStream *inStream;
} CByteInToLook;
static Byte ReadByte(void *pp)
{
CByteInToLook *p = (CByteInToLook *)pp;
if (p->cur != p->end)
return *p->cur++;
if (p->res == SZ_OK)
{
size_t size = p->cur - p->begin;
p->processed += size;
p->res = p->inStream->Skip(p->inStream, size);
size = (1 << 25);
p->res = p->inStream->Look(p->inStream, (const void **)&p->begin, &size);
p->cur = p->begin;
p->end = p->begin + size;
if (size != 0)
return *p->cur++;;
}
p->extra = True;
return 0;
}
static SRes SzDecodePpmd(CSzCoderInfo *coder, UInt64 inSize, ILookInStream *inStream,
Byte *outBuffer, SizeT outSize, ISzAlloc *allocMain)
{
CPpmd7 ppmd;
CByteInToLook s;
SRes res = SZ_OK;
s.p.Read = ReadByte;
s.inStream = inStream;
s.begin = s.end = s.cur = NULL;
s.extra = False;
s.res = SZ_OK;
s.processed = 0;
if (coder->Props.size != 5)
return SZ_ERROR_UNSUPPORTED;
{
unsigned order = coder->Props.data[0];
UInt32 memSize = GetUi32(coder->Props.data + 1);
if (order < PPMD7_MIN_ORDER ||
order > PPMD7_MAX_ORDER ||
memSize < PPMD7_MIN_MEM_SIZE ||
memSize > PPMD7_MAX_MEM_SIZE)
return SZ_ERROR_UNSUPPORTED;
Ppmd7_Construct(&ppmd);
if (!Ppmd7_Alloc(&ppmd, memSize, allocMain))
return SZ_ERROR_MEM;
Ppmd7_Init(&ppmd, order);
}
{
CPpmd7z_RangeDec rc;
Ppmd7z_RangeDec_CreateVTable(&rc);
rc.Stream = &s.p;
if (!Ppmd7z_RangeDec_Init(&rc))
res = SZ_ERROR_DATA;
else if (s.extra)
res = (s.res != SZ_OK ? s.res : SZ_ERROR_DATA);
else
{
SizeT i;
for (i = 0; i < outSize; i++)
{
int sym = Ppmd7_DecodeSymbol(&ppmd, &rc.p);
if (s.extra || sym < 0)
break;
outBuffer[i] = (Byte)sym;
}
if (i != outSize)
res = (s.res != SZ_OK ? s.res : SZ_ERROR_DATA);
else if (s.processed + (s.cur - s.begin) != inSize || !Ppmd7z_RangeDec_IsFinishedOK(&rc))
res = SZ_ERROR_DATA;
}
}
Ppmd7_Free(&ppmd, allocMain);
return res;
}
#endif
static SRes SzDecodeLzma(CSzCoderInfo *coder, UInt64 inSize, ILookInStream *inStream,
Byte *outBuffer, SizeT outSize, ISzAlloc *allocMain)
{
CLzmaDec state;
SRes res = SZ_OK;
LzmaDec_Construct(&state);
RINOK(LzmaDec_AllocateProbs(&state, coder->Props.data, (unsigned)coder->Props.size, allocMain));
state.dic = outBuffer;
state.dicBufSize = outSize;
LzmaDec_Init(&state);
for (;;)
{
Byte *inBuf = NULL;
size_t lookahead = (1 << 18);
if (lookahead > inSize)
lookahead = (size_t)inSize;
res = inStream->Look((void *)inStream, (const void **)&inBuf, &lookahead);
if (res != SZ_OK)
break;
{
SizeT inProcessed = (SizeT)lookahead, dicPos = state.dicPos;
ELzmaStatus status;
res = LzmaDec_DecodeToDic(&state, outSize, inBuf, &inProcessed, LZMA_FINISH_END, &status);
lookahead -= inProcessed;
inSize -= inProcessed;
if (res != SZ_OK)
break;
if (state.dicPos == state.dicBufSize || (inProcessed == 0 && dicPos == state.dicPos))
{
if (state.dicBufSize != outSize || lookahead != 0 ||
(status != LZMA_STATUS_FINISHED_WITH_MARK &&
status != LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK))
res = SZ_ERROR_DATA;
break;
}
res = inStream->Skip((void *)inStream, inProcessed);
if (res != SZ_OK)
break;
}
}
LzmaDec_FreeProbs(&state, allocMain);
return res;
}
static SRes SzDecodeLzma2(CSzCoderInfo *coder, UInt64 inSize, ILookInStream *inStream,
Byte *outBuffer, SizeT outSize, ISzAlloc *allocMain)
{
CLzma2Dec state;
SRes res = SZ_OK;
Lzma2Dec_Construct(&state);
if (coder->Props.size != 1)
return SZ_ERROR_DATA;
RINOK(Lzma2Dec_AllocateProbs(&state, coder->Props.data[0], allocMain));
state.decoder.dic = outBuffer;
state.decoder.dicBufSize = outSize;
Lzma2Dec_Init(&state);
for (;;)
{
Byte *inBuf = NULL;
size_t lookahead = (1 << 18);
if (lookahead > inSize)
lookahead = (size_t)inSize;
res = inStream->Look((void *)inStream, (const void **)&inBuf, &lookahead);
if (res != SZ_OK)
break;
{
SizeT inProcessed = (SizeT)lookahead, dicPos = state.decoder.dicPos;
ELzmaStatus status;
res = Lzma2Dec_DecodeToDic(&state, outSize, inBuf, &inProcessed, LZMA_FINISH_END, &status);
lookahead -= inProcessed;
inSize -= inProcessed;
if (res != SZ_OK)
break;
if (state.decoder.dicPos == state.decoder.dicBufSize || (inProcessed == 0 && dicPos == state.decoder.dicPos))
{
if (state.decoder.dicBufSize != outSize || lookahead != 0 ||
(status != LZMA_STATUS_FINISHED_WITH_MARK))
res = SZ_ERROR_DATA;
break;
}
res = inStream->Skip((void *)inStream, inProcessed);
if (res != SZ_OK)
break;
}
}
Lzma2Dec_FreeProbs(&state, allocMain);
return res;
}
static SRes SzDecodeCopy(UInt64 inSize, ILookInStream *inStream, Byte *outBuffer)
{
while (inSize > 0)
{
void *inBuf;
size_t curSize = (1 << 18);
if (curSize > inSize)
curSize = (size_t)inSize;
RINOK(inStream->Look((void *)inStream, (const void **)&inBuf, &curSize));
if (curSize == 0)
return SZ_ERROR_INPUT_EOF;
memcpy(outBuffer, inBuf, curSize);
outBuffer += curSize;
inSize -= curSize;
RINOK(inStream->Skip((void *)inStream, curSize));
}
return SZ_OK;
}
static Bool IS_MAIN_METHOD(UInt32 m)
{
switch(m)
{
case k_Copy:
case k_LZMA:
case k_LZMA2:
#ifdef _7ZIP_PPMD_SUPPPORT
case k_PPMD:
#endif
return True;
}
return False;
}
static Bool IS_SUPPORTED_CODER(const CSzCoderInfo *c)
{
return
c->NumInStreams == 1 &&
c->NumOutStreams == 1 &&
c->MethodID <= (UInt32)0xFFFFFFFF &&
IS_MAIN_METHOD((UInt32)c->MethodID);
}
#define IS_BCJ2(c) ((c)->MethodID == k_BCJ2 && (c)->NumInStreams == 4 && (c)->NumOutStreams == 1)
static SRes CheckSupportedFolder(const CSzFolder *f)
{
if (f->NumCoders < 1 || f->NumCoders > 4)
return SZ_ERROR_UNSUPPORTED;
if (!IS_SUPPORTED_CODER(&f->Coders[0]))
return SZ_ERROR_UNSUPPORTED;
if (f->NumCoders == 1)
{
if (f->NumPackStreams != 1 || f->PackStreams[0] != 0 || f->NumBindPairs != 0)
return SZ_ERROR_UNSUPPORTED;
return SZ_OK;
}
if (f->NumCoders == 2)
{
CSzCoderInfo *c = &f->Coders[1];
if (c->MethodID > (UInt32)0xFFFFFFFF ||
c->NumInStreams != 1 ||
c->NumOutStreams != 1 ||
f->NumPackStreams != 1 ||
f->PackStreams[0] != 0 ||
f->NumBindPairs != 1 ||
f->BindPairs[0].InIndex != 1 ||
f->BindPairs[0].OutIndex != 0)
return SZ_ERROR_UNSUPPORTED;
switch ((UInt32)c->MethodID)
{
case k_BCJ:
case k_ARM:
break;
default:
return SZ_ERROR_UNSUPPORTED;
}
return SZ_OK;
}
if (f->NumCoders == 4)
{
if (!IS_SUPPORTED_CODER(&f->Coders[1]) ||
!IS_SUPPORTED_CODER(&f->Coders[2]) ||
!IS_BCJ2(&f->Coders[3]))
return SZ_ERROR_UNSUPPORTED;
if (f->NumPackStreams != 4 ||
f->PackStreams[0] != 2 ||
f->PackStreams[1] != 6 ||
f->PackStreams[2] != 1 ||
f->PackStreams[3] != 0 ||
f->NumBindPairs != 3 ||
f->BindPairs[0].InIndex != 5 || f->BindPairs[0].OutIndex != 0 ||
f->BindPairs[1].InIndex != 4 || f->BindPairs[1].OutIndex != 1 ||
f->BindPairs[2].InIndex != 3 || f->BindPairs[2].OutIndex != 2)
return SZ_ERROR_UNSUPPORTED;
return SZ_OK;
}
return SZ_ERROR_UNSUPPORTED;
}
static UInt64 GetSum(const UInt64 *values, UInt32 index)
{
UInt64 sum = 0;
UInt32 i;
for (i = 0; i < index; i++)
sum += values[i];
return sum;
}
#define CASE_BRA_CONV(isa) case k_ ## isa: isa ## _Convert(outBuffer, outSize, 0, 0); break;
static SRes SzFolder_Decode2(const CSzFolder *folder, const UInt64 *packSizes,
ILookInStream *inStream, UInt64 startPos,
Byte *outBuffer, SizeT outSize, ISzAlloc *allocMain,
Byte *tempBuf[])
{
UInt32 ci;
SizeT tempSizes[3] = { 0, 0, 0};
SizeT tempSize3 = 0;
Byte *tempBuf3 = 0;
RINOK(CheckSupportedFolder(folder));
for (ci = 0; ci < folder->NumCoders; ci++)
{
CSzCoderInfo *coder = &folder->Coders[ci];
if (IS_MAIN_METHOD((UInt32)coder->MethodID))
{
UInt32 si = 0;
UInt64 offset;
UInt64 inSize;
Byte *outBufCur = outBuffer;
SizeT outSizeCur = outSize;
if (folder->NumCoders == 4)
{
UInt32 indices[] = { 3, 2, 0 };
UInt64 unpackSize = folder->UnpackSizes[ci];
si = indices[ci];
if (ci < 2)
{
Byte *temp;
outSizeCur = (SizeT)unpackSize;
if (outSizeCur != unpackSize)
return SZ_ERROR_MEM;
temp = (Byte *)IAlloc_Alloc(allocMain, outSizeCur);
if (temp == 0 && outSizeCur != 0)
return SZ_ERROR_MEM;
outBufCur = tempBuf[1 - ci] = temp;
tempSizes[1 - ci] = outSizeCur;
}
else if (ci == 2)
{
if (unpackSize > outSize) /* check it */
return SZ_ERROR_PARAM;
tempBuf3 = outBufCur = outBuffer + (outSize - (size_t)unpackSize);
tempSize3 = outSizeCur = (SizeT)unpackSize;
}
else
return SZ_ERROR_UNSUPPORTED;
}
offset = GetSum(packSizes, si);
inSize = packSizes[si];
RINOK(LookInStream_SeekTo(inStream, startPos + offset));
if (coder->MethodID == k_Copy)
{
if (inSize != outSizeCur) /* check it */
return SZ_ERROR_DATA;
RINOK(SzDecodeCopy(inSize, inStream, outBufCur));
}
else if (coder->MethodID == k_LZMA)
{
RINOK(SzDecodeLzma(coder, inSize, inStream, outBufCur, outSizeCur, allocMain));
}
else if (coder->MethodID == k_LZMA2)
{
RINOK(SzDecodeLzma2(coder, inSize, inStream, outBufCur, outSizeCur, allocMain));
}
else
{
#ifdef _7ZIP_PPMD_SUPPPORT
RINOK(SzDecodePpmd(coder, inSize, inStream, outBufCur, outSizeCur, allocMain));
#else
return SZ_ERROR_UNSUPPORTED;
#endif
}
}
else if (coder->MethodID == k_BCJ2)
{
UInt64 offset = GetSum(packSizes, 1);
UInt64 s3Size = packSizes[1];
SRes res;
if (ci != 3)
return SZ_ERROR_UNSUPPORTED;
RINOK(LookInStream_SeekTo(inStream, startPos + offset));
tempSizes[2] = (SizeT)s3Size;
if (tempSizes[2] != s3Size)
return SZ_ERROR_MEM;
tempBuf[2] = (Byte *)IAlloc_Alloc(allocMain, tempSizes[2]);
if (tempBuf[2] == 0 && tempSizes[2] != 0)
return SZ_ERROR_MEM;
res = SzDecodeCopy(s3Size, inStream, tempBuf[2]);
RINOK(res)
res = Bcj2_Decode(
tempBuf3, tempSize3,
tempBuf[0], tempSizes[0],
tempBuf[1], tempSizes[1],
tempBuf[2], tempSizes[2],
outBuffer, outSize);
RINOK(res)
}
else
{
if (ci != 1)
return SZ_ERROR_UNSUPPORTED;
switch(coder->MethodID)
{
case k_BCJ:
{
UInt32 state;
x86_Convert_Init(state);
x86_Convert(outBuffer, outSize, 0, &state, 0);
break;
}
CASE_BRA_CONV(ARM)
default:
return SZ_ERROR_UNSUPPORTED;
}
}
}
return SZ_OK;
}
SRes SzFolder_Decode(const CSzFolder *folder, const UInt64 *packSizes,
ILookInStream *inStream, UInt64 startPos,
Byte *outBuffer, size_t outSize, ISzAlloc *allocMain)
{
Byte *tempBuf[3] = { 0, 0, 0};
int i;
SRes res = SzFolder_Decode2(folder, packSizes, inStream, startPos,
outBuffer, (SizeT)outSize, allocMain, tempBuf);
for (i = 0; i < 3; i++)
IAlloc_Free(allocMain, tempBuf[i]);
return res;
}

File diff suppressed because it is too large Load Diff

View File

@ -7,157 +7,163 @@
SRes SeqInStream_Read2(ISeqInStream *stream, void *buf, size_t size, SRes errorType)
{
while (size != 0) {
size_t processed = size;
RINOK(stream->Read(stream, buf, &processed));
if (processed == 0)
return errorType;
buf = (void *)((Byte *)buf + processed);
size -= processed;
}
return SZ_OK;
while (size != 0)
{
size_t processed = size;
RINOK(stream->Read(stream, buf, &processed));
if (processed == 0)
return errorType;
buf = (void *)((Byte *)buf + processed);
size -= processed;
}
return SZ_OK;
}
SRes SeqInStream_Read(ISeqInStream *stream, void *buf, size_t size)
{
return SeqInStream_Read2(stream, buf, size, SZ_ERROR_INPUT_EOF);
return SeqInStream_Read2(stream, buf, size, SZ_ERROR_INPUT_EOF);
}
SRes SeqInStream_ReadByte(ISeqInStream *stream, Byte *buf)
{
size_t processed = 1;
RINOK(stream->Read(stream, buf, &processed));
return (processed == 1) ? SZ_OK : SZ_ERROR_INPUT_EOF;
size_t processed = 1;
RINOK(stream->Read(stream, buf, &processed));
return (processed == 1) ? SZ_OK : SZ_ERROR_INPUT_EOF;
}
SRes LookInStream_SeekTo(ILookInStream *stream, UInt64 offset)
{
Int64 t = offset;
return stream->Seek(stream, &t, SZ_SEEK_SET);
Int64 t = offset;
return stream->Seek(stream, &t, SZ_SEEK_SET);
}
SRes LookInStream_LookRead(ILookInStream *stream, void *buf, size_t *size)
{
const void *lookBuf;
if (*size == 0)
return SZ_OK;
RINOK(stream->Look(stream, &lookBuf, size));
memcpy(buf, lookBuf, *size);
return stream->Skip(stream, *size);
const void *lookBuf;
if (*size == 0)
return SZ_OK;
RINOK(stream->Look(stream, &lookBuf, size));
memcpy(buf, lookBuf, *size);
return stream->Skip(stream, *size);
}
SRes LookInStream_Read2(ILookInStream *stream, void *buf, size_t size, SRes errorType)
{
while (size != 0) {
size_t processed = size;
RINOK(stream->Read(stream, buf, &processed));
if (processed == 0)
return errorType;
buf = (void *)((Byte *)buf + processed);
size -= processed;
}
return SZ_OK;
while (size != 0)
{
size_t processed = size;
RINOK(stream->Read(stream, buf, &processed));
if (processed == 0)
return errorType;
buf = (void *)((Byte *)buf + processed);
size -= processed;
}
return SZ_OK;
}
SRes LookInStream_Read(ILookInStream *stream, void *buf, size_t size)
{
return LookInStream_Read2(stream, buf, size, SZ_ERROR_INPUT_EOF);
return LookInStream_Read2(stream, buf, size, SZ_ERROR_INPUT_EOF);
}
static SRes LookToRead_Look_Lookahead(void *pp, const void **buf, size_t *size)
{
SRes res = SZ_OK;
CLookToRead *p = (CLookToRead *)pp;
size_t size2 = p->size - p->pos;
if (size2 == 0 && *size > 0) {
p->pos = 0;
size2 = LookToRead_BUF_SIZE;
res = p->realStream->Read(p->realStream, p->buf, &size2);
p->size = size2;
}
if (size2 < *size)
*size = size2;
*buf = p->buf + p->pos;
return res;
SRes res = SZ_OK;
CLookToRead *p = (CLookToRead *)pp;
size_t size2 = p->size - p->pos;
if (size2 == 0 && *size > 0)
{
p->pos = 0;
size2 = LookToRead_BUF_SIZE;
res = p->realStream->Read(p->realStream, p->buf, &size2);
p->size = size2;
}
if (size2 < *size)
*size = size2;
*buf = p->buf + p->pos;
return res;
}
static SRes LookToRead_Look_Exact(void *pp, const void **buf, size_t *size)
{
SRes res = SZ_OK;
CLookToRead *p = (CLookToRead *)pp;
size_t size2 = p->size - p->pos;
if (size2 == 0 && *size > 0) {
p->pos = 0;
if (*size > LookToRead_BUF_SIZE)
*size = LookToRead_BUF_SIZE;
res = p->realStream->Read(p->realStream, p->buf, size);
size2 = p->size = *size;
}
if (size2 < *size)
*size = size2;
*buf = p->buf + p->pos;
return res;
SRes res = SZ_OK;
CLookToRead *p = (CLookToRead *)pp;
size_t size2 = p->size - p->pos;
if (size2 == 0 && *size > 0)
{
p->pos = 0;
if (*size > LookToRead_BUF_SIZE)
*size = LookToRead_BUF_SIZE;
res = p->realStream->Read(p->realStream, p->buf, size);
size2 = p->size = *size;
}
if (size2 < *size)
*size = size2;
*buf = p->buf + p->pos;
return res;
}
static SRes LookToRead_Skip(void *pp, size_t offset)
{
CLookToRead *p = (CLookToRead *)pp;
p->pos += offset;
return SZ_OK;
CLookToRead *p = (CLookToRead *)pp;
p->pos += offset;
return SZ_OK;
}
static SRes LookToRead_Read(void *pp, void *buf, size_t *size)
{
CLookToRead *p = (CLookToRead *)pp;
size_t rem = p->size - p->pos;
if (rem == 0)
return p->realStream->Read(p->realStream, buf, size);
if (rem > *size)
rem = *size;
memcpy(buf, p->buf + p->pos, rem);
p->pos += rem;
*size = rem;
return SZ_OK;
CLookToRead *p = (CLookToRead *)pp;
size_t rem = p->size - p->pos;
if (rem == 0)
return p->realStream->Read(p->realStream, buf, size);
if (rem > *size)
rem = *size;
memcpy(buf, p->buf + p->pos, rem);
p->pos += rem;
*size = rem;
return SZ_OK;
}
static SRes LookToRead_Seek(void *pp, Int64 *pos, ESzSeek origin)
{
CLookToRead *p = (CLookToRead *)pp;
p->pos = p->size = 0;
return p->realStream->Seek(p->realStream, pos, origin);
CLookToRead *p = (CLookToRead *)pp;
p->pos = p->size = 0;
return p->realStream->Seek(p->realStream, pos, origin);
}
void LookToRead_CreateVTable(CLookToRead *p, int lookahead)
{
p->s.Look = lookahead ? LookToRead_Look_Lookahead : LookToRead_Look_Exact;
p->s.Skip = LookToRead_Skip;
p->s.Read = LookToRead_Read;
p->s.Seek = LookToRead_Seek;
p->s.Look = lookahead ?
LookToRead_Look_Lookahead :
LookToRead_Look_Exact;
p->s.Skip = LookToRead_Skip;
p->s.Read = LookToRead_Read;
p->s.Seek = LookToRead_Seek;
}
void LookToRead_Init(CLookToRead *p)
{
p->pos = p->size = 0;
p->pos = p->size = 0;
}
static SRes SecToLook_Read(void *pp, void *buf, size_t *size)
{
CSecToLook *p = (CSecToLook *)pp;
return LookInStream_LookRead(p->realStream, buf, size);
CSecToLook *p = (CSecToLook *)pp;
return LookInStream_LookRead(p->realStream, buf, size);
}
void SecToLook_CreateVTable(CSecToLook *p)
{
p->s.Read = SecToLook_Read;
p->s.Read = SecToLook_Read;
}
static SRes SecToRead_Read(void *pp, void *buf, size_t *size)
{
CSecToRead *p = (CSecToRead *)pp;
return p->realStream->Read(p->realStream, buf, size);
CSecToRead *p = (CSecToRead *)pp;
return p->realStream->Read(p->realStream, buf, size);
}
void SecToRead_CreateVTable(CSecToRead *p)
{
p->s.Read = SecToRead_Read;
p->s.Read = SecToRead_Read;
}

View File

@ -9,7 +9,7 @@
#define CProb UInt16
#endif
#define IsJcc(b0, b1) ((b0) == 0x0F && ((b1)&0xF0) == 0x80)
#define IsJcc(b0, b1) ((b0) == 0x0F && ((b1) & 0xF0) == 0x80)
#define IsJ(b0, b1) ((b1 & 0xFE) == 0xE8 || IsJcc(b0, b1))
#define kNumTopBits 24
@ -20,132 +20,113 @@
#define kNumMoveBits 5
#define RC_READ_BYTE (*buffer++)
#define RC_TEST \
{ \
if (buffer == bufferLim) \
return SZ_ERROR_DATA; \
}
#define RC_INIT2 \
code = 0; \
range = 0xFFFFFFFF; \
{ \
int i; \
for (i = 0; i < 5; i++) { \
RC_TEST; \
code = (code << 8) | RC_READ_BYTE; \
} \
}
#define RC_TEST { if (buffer == bufferLim) return SZ_ERROR_DATA; }
#define RC_INIT2 code = 0; range = 0xFFFFFFFF; \
{ int i; for (i = 0; i < 5; i++) { RC_TEST; code = (code << 8) | RC_READ_BYTE; }}
#define NORMALIZE \
if (range < kTopValue) { \
RC_TEST; \
range <<= 8; \
code = (code << 8) | RC_READ_BYTE; \
}
#define NORMALIZE if (range < kTopValue) { RC_TEST; range <<= 8; code = (code << 8) | RC_READ_BYTE; }
#define IF_BIT_0(p) \
ttt = *(p); \
bound = (range >> kNumBitModelTotalBits) * ttt; \
if (code < bound)
#define UPDATE_0(p) \
range = bound; \
*(p) = (CProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits)); \
NORMALIZE;
#define UPDATE_1(p) \
range -= bound; \
code -= bound; \
*(p) = (CProb)(ttt - (ttt >> kNumMoveBits)); \
NORMALIZE;
#define IF_BIT_0(p) ttt = *(p); bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
#define UPDATE_0(p) range = bound; *(p) = (CProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits)); NORMALIZE;
#define UPDATE_1(p) range -= bound; code -= bound; *(p) = (CProb)(ttt - (ttt >> kNumMoveBits)); NORMALIZE;
int Bcj2_Decode(const Byte *buf0, SizeT size0, const Byte *buf1, SizeT size1, const Byte *buf2,
SizeT size2, const Byte *buf3, SizeT size3, Byte *outBuf, SizeT outSize)
int Bcj2_Decode(
const Byte *buf0, SizeT size0,
const Byte *buf1, SizeT size1,
const Byte *buf2, SizeT size2,
const Byte *buf3, SizeT size3,
Byte *outBuf, SizeT outSize)
{
CProb p[256 + 2];
SizeT inPos = 0, outPos = 0;
CProb p[256 + 2];
SizeT inPos = 0, outPos = 0;
const Byte *buffer, *bufferLim;
UInt32 range, code;
Byte prevByte = 0;
const Byte *buffer, *bufferLim;
UInt32 range, code;
Byte prevByte = 0;
unsigned int i;
for (i = 0; i < sizeof(p) / sizeof(p[0]); i++)
p[i] = kBitModelTotal >> 1;
unsigned int i;
for (i = 0; i < sizeof(p) / sizeof(p[0]); i++)
p[i] = kBitModelTotal >> 1;
buffer = buf3;
bufferLim = buffer + size3;
RC_INIT2
buffer = buf3;
bufferLim = buffer + size3;
RC_INIT2
if (outSize == 0)
return SZ_OK;
if (outSize == 0)
return SZ_OK;
for (;;) {
Byte b;
CProb *prob;
UInt32 bound;
UInt32 ttt;
for (;;)
{
Byte b;
CProb *prob;
UInt32 bound;
UInt32 ttt;
SizeT limit = size0 - inPos;
if (outSize - outPos < limit)
limit = outSize - outPos;
while (limit != 0) {
Byte b = buf0[inPos];
outBuf[outPos++] = b;
if (IsJ(prevByte, b))
break;
inPos++;
prevByte = b;
limit--;
}
SizeT limit = size0 - inPos;
if (outSize - outPos < limit)
limit = outSize - outPos;
while (limit != 0)
{
Byte b = buf0[inPos];
outBuf[outPos++] = b;
if (IsJ(prevByte, b))
break;
inPos++;
prevByte = b;
limit--;
}
if (limit == 0 || outPos == outSize)
break;
if (limit == 0 || outPos == outSize)
break;
b = buf0[inPos++];
b = buf0[inPos++];
if (b == 0xE8)
prob = p + prevByte;
else if (b == 0xE9)
prob = p + 256;
else
prob = p + 257;
if (b == 0xE8)
prob = p + prevByte;
else if (b == 0xE9)
prob = p + 256;
else
prob = p + 257;
IF_BIT_0(prob)
{
UPDATE_0(prob)
prevByte = b;
}
else
{
UInt32 dest;
const Byte *v;
UPDATE_1(prob)
if (b == 0xE8) {
v = buf1;
if (size1 < 4)
return SZ_ERROR_DATA;
buf1 += 4;
size1 -= 4;
} else {
v = buf2;
if (size2 < 4)
return SZ_ERROR_DATA;
buf2 += 4;
size2 -= 4;
}
dest = (((UInt32)v[0] << 24) | ((UInt32)v[1] << 16) | ((UInt32)v[2] << 8) |
((UInt32)v[3])) -
((UInt32)outPos + 4);
outBuf[outPos++] = (Byte)dest;
if (outPos == outSize)
break;
outBuf[outPos++] = (Byte)(dest >> 8);
if (outPos == outSize)
break;
outBuf[outPos++] = (Byte)(dest >> 16);
if (outPos == outSize)
break;
outBuf[outPos++] = prevByte = (Byte)(dest >> 24);
}
}
return (outPos == outSize) ? SZ_OK : SZ_ERROR_DATA;
IF_BIT_0(prob)
{
UPDATE_0(prob)
prevByte = b;
}
else
{
UInt32 dest;
const Byte *v;
UPDATE_1(prob)
if (b == 0xE8)
{
v = buf1;
if (size1 < 4)
return SZ_ERROR_DATA;
buf1 += 4;
size1 -= 4;
}
else
{
v = buf2;
if (size2 < 4)
return SZ_ERROR_DATA;
buf2 += 4;
size2 -= 4;
}
dest = (((UInt32)v[0] << 24) | ((UInt32)v[1] << 16) |
((UInt32)v[2] << 8) | ((UInt32)v[3])) - ((UInt32)outPos + 4);
outBuf[outPos++] = (Byte)dest;
if (outPos == outSize)
break;
outBuf[outPos++] = (Byte)(dest >> 8);
if (outPos == outSize)
break;
outBuf[outPos++] = (Byte)(dest >> 16);
if (outPos == outSize)
break;
outBuf[outPos++] = prevByte = (Byte)(dest >> 24);
}
}
return (outPos == outSize) ? SZ_OK : SZ_ERROR_DATA;
}

View File

@ -24,8 +24,12 @@ Returns:
SZ_ERROR_DATA - Data error
*/
int Bcj2_Decode(const Byte *buf0, SizeT size0, const Byte *buf1, SizeT size1, const Byte *buf2,
SizeT size2, const Byte *buf3, SizeT size3, Byte *outBuf, SizeT outSize);
int Bcj2_Decode(
const Byte *buf0, SizeT size0,
const Byte *buf1, SizeT size1,
const Byte *buf2, SizeT size2,
const Byte *buf3, SizeT size3,
Byte *outBuf, SizeT outSize);
#ifdef __cplusplus
}

View File

@ -5,116 +5,129 @@
SizeT ARM_Convert(Byte *data, SizeT size, UInt32 ip, int encoding)
{
SizeT i;
if (size < 4)
return 0;
size -= 4;
ip += 8;
for (i = 0; i <= size; i += 4) {
if (data[i + 3] == 0xEB) {
UInt32 dest;
UInt32 src = ((UInt32)data[i + 2] << 16) | ((UInt32)data[i + 1] << 8) |
(data[i + 0]);
src <<= 2;
if (encoding)
dest = ip + (UInt32)i + src;
else
dest = src - (ip + (UInt32)i);
dest >>= 2;
data[i + 2] = (Byte)(dest >> 16);
data[i + 1] = (Byte)(dest >> 8);
data[i + 0] = (Byte)dest;
}
}
return i;
SizeT i;
if (size < 4)
return 0;
size -= 4;
ip += 8;
for (i = 0; i <= size; i += 4)
{
if (data[i + 3] == 0xEB)
{
UInt32 dest;
UInt32 src = ((UInt32)data[i + 2] << 16) | ((UInt32)data[i + 1] << 8) | (data[i + 0]);
src <<= 2;
if (encoding)
dest = ip + (UInt32)i + src;
else
dest = src - (ip + (UInt32)i);
dest >>= 2;
data[i + 2] = (Byte)(dest >> 16);
data[i + 1] = (Byte)(dest >> 8);
data[i + 0] = (Byte)dest;
}
}
return i;
}
SizeT ARMT_Convert(Byte *data, SizeT size, UInt32 ip, int encoding)
{
SizeT i;
if (size < 4)
return 0;
size -= 4;
ip += 4;
for (i = 0; i <= size; i += 2) {
if ((data[i + 1] & 0xF8) == 0xF0 && (data[i + 3] & 0xF8) == 0xF8) {
UInt32 dest;
UInt32 src = (((UInt32)data[i + 1] & 0x7) << 19) |
((UInt32)data[i + 0] << 11) |
(((UInt32)data[i + 3] & 0x7) << 8) | (data[i + 2]);
src <<= 1;
if (encoding)
dest = ip + (UInt32)i + src;
else
dest = src - (ip + (UInt32)i);
dest >>= 1;
data[i + 1] = (Byte)(0xF0 | ((dest >> 19) & 0x7));
data[i + 0] = (Byte)(dest >> 11);
data[i + 3] = (Byte)(0xF8 | ((dest >> 8) & 0x7));
data[i + 2] = (Byte)dest;
i += 2;
}
}
return i;
SizeT i;
if (size < 4)
return 0;
size -= 4;
ip += 4;
for (i = 0; i <= size; i += 2)
{
if ((data[i + 1] & 0xF8) == 0xF0 &&
(data[i + 3] & 0xF8) == 0xF8)
{
UInt32 dest;
UInt32 src =
(((UInt32)data[i + 1] & 0x7) << 19) |
((UInt32)data[i + 0] << 11) |
(((UInt32)data[i + 3] & 0x7) << 8) |
(data[i + 2]);
src <<= 1;
if (encoding)
dest = ip + (UInt32)i + src;
else
dest = src - (ip + (UInt32)i);
dest >>= 1;
data[i + 1] = (Byte)(0xF0 | ((dest >> 19) & 0x7));
data[i + 0] = (Byte)(dest >> 11);
data[i + 3] = (Byte)(0xF8 | ((dest >> 8) & 0x7));
data[i + 2] = (Byte)dest;
i += 2;
}
}
return i;
}
SizeT PPC_Convert(Byte *data, SizeT size, UInt32 ip, int encoding)
{
SizeT i;
if (size < 4)
return 0;
size -= 4;
for (i = 0; i <= size; i += 4) {
if ((data[i] >> 2) == 0x12 && (data[i + 3] & 3) == 1) {
UInt32 src = ((UInt32)(data[i + 0] & 3) << 24) |
((UInt32)data[i + 1] << 16) | ((UInt32)data[i + 2] << 8) |
((UInt32)data[i + 3] & (~3));
UInt32 dest;
if (encoding)
dest = ip + (UInt32)i + src;
else
dest = src - (ip + (UInt32)i);
data[i + 0] = (Byte)(0x48 | ((dest >> 24) & 0x3));
data[i + 1] = (Byte)(dest >> 16);
data[i + 2] = (Byte)(dest >> 8);
data[i + 3] &= 0x3;
data[i + 3] |= dest;
}
}
return i;
SizeT i;
if (size < 4)
return 0;
size -= 4;
for (i = 0; i <= size; i += 4)
{
if ((data[i] >> 2) == 0x12 && (data[i + 3] & 3) == 1)
{
UInt32 src = ((UInt32)(data[i + 0] & 3) << 24) |
((UInt32)data[i + 1] << 16) |
((UInt32)data[i + 2] << 8) |
((UInt32)data[i + 3] & (~3));
UInt32 dest;
if (encoding)
dest = ip + (UInt32)i + src;
else
dest = src - (ip + (UInt32)i);
data[i + 0] = (Byte)(0x48 | ((dest >> 24) & 0x3));
data[i + 1] = (Byte)(dest >> 16);
data[i + 2] = (Byte)(dest >> 8);
data[i + 3] &= 0x3;
data[i + 3] |= dest;
}
}
return i;
}
SizeT SPARC_Convert(Byte *data, SizeT size, UInt32 ip, int encoding)
{
UInt32 i;
if (size < 4)
return 0;
size -= 4;
for (i = 0; i <= size; i += 4) {
if ((data[i] == 0x40 && (data[i + 1] & 0xC0) == 0x00) ||
(data[i] == 0x7F && (data[i + 1] & 0xC0) == 0xC0)) {
UInt32 src = ((UInt32)data[i + 0] << 24) | ((UInt32)data[i + 1] << 16) |
((UInt32)data[i + 2] << 8) | ((UInt32)data[i + 3]);
UInt32 dest;
UInt32 i;
if (size < 4)
return 0;
size -= 4;
for (i = 0; i <= size; i += 4)
{
if ((data[i] == 0x40 && (data[i + 1] & 0xC0) == 0x00) ||
(data[i] == 0x7F && (data[i + 1] & 0xC0) == 0xC0))
{
UInt32 src =
((UInt32)data[i + 0] << 24) |
((UInt32)data[i + 1] << 16) |
((UInt32)data[i + 2] << 8) |
((UInt32)data[i + 3]);
UInt32 dest;
src <<= 2;
if (encoding)
dest = ip + i + src;
else
dest = src - (ip + i);
dest >>= 2;
dest = (((0 - ((dest >> 22) & 1)) << 22) & 0x3FFFFFFF) | (dest & 0x3FFFFF) | 0x40000000;
src <<= 2;
if (encoding)
dest = ip + i + src;
else
dest = src - (ip + i);
dest >>= 2;
dest = (((0 - ((dest >> 22) & 1)) << 22) & 0x3FFFFFFF) | (dest & 0x3FFFFF) |
0x40000000;
data[i + 0] = (Byte)(dest >> 24);
data[i + 1] = (Byte)(dest >> 16);
data[i + 2] = (Byte)(dest >> 8);
data[i + 3] = (Byte)dest;
}
}
return i;
data[i + 0] = (Byte)(dest >> 24);
data[i + 1] = (Byte)(dest >> 16);
data[i + 2] = (Byte)(dest >> 8);
data[i + 3] = (Byte)dest;
}
}
return i;
}

View File

@ -13,23 +13,23 @@ extern "C" {
/*
These functions convert relative addresses to absolute addresses
in CALL instructions to increase the compression ratio.
In:
data - data buffer
size - size of data
ip - current virtual Instruction Pinter (IP) value
state - state variable for x86 converter
encoding - 0 (for decoding), 1 (for encoding)
Out:
state - state variable for x86 converter
Returns:
The number of processed bytes. If you call these functions with multiple calls,
you must start next call with first byte after block of processed bytes.
Type Endian Alignment LookAhead
x86 little 1 4
ARMT little 2 2
ARM little 4 0
@ -53,10 +53,7 @@ in CALL instructions to increase the compression ratio.
}
*/
#define x86_Convert_Init(state) \
{ \
state = 0; \
}
#define x86_Convert_Init(state) { state = 0; }
SizeT x86_Convert(Byte *data, SizeT size, UInt32 ip, UInt32 *state, int encoding);
SizeT ARM_Convert(Byte *data, SizeT size, UInt32 ip, int encoding);
SizeT ARMT_Convert(Byte *data, SizeT size, UInt32 ip, int encoding);

View File

@ -5,74 +5,81 @@
#define Test86MSByte(b) ((b) == 0 || (b) == 0xFF)
const Byte kMaskToAllowedStatus[8] = { 1, 1, 1, 0, 1, 0, 0, 0 };
const Byte kMaskToBitNumber[8] = { 0, 1, 2, 2, 3, 3, 3, 3 };
const Byte kMaskToAllowedStatus[8] = {1, 1, 1, 0, 1, 0, 0, 0};
const Byte kMaskToBitNumber[8] = {0, 1, 2, 2, 3, 3, 3, 3};
SizeT x86_Convert(Byte *data, SizeT size, UInt32 ip, UInt32 *state, int encoding)
{
SizeT bufferPos = 0, prevPosT;
UInt32 prevMask = *state & 0x7;
if (size < 5)
return 0;
ip += 5;
prevPosT = (SizeT)0 - 1;
SizeT bufferPos = 0, prevPosT;
UInt32 prevMask = *state & 0x7;
if (size < 5)
return 0;
ip += 5;
prevPosT = (SizeT)0 - 1;
for (;;) {
Byte *p = data + bufferPos;
Byte *limit = data + size - 4;
for (; p < limit; p++)
if ((*p & 0xFE) == 0xE8)
break;
bufferPos = (SizeT)(p - data);
if (p >= limit)
break;
prevPosT = bufferPos - prevPosT;
if (prevPosT > 3)
prevMask = 0;
else {
prevMask = (prevMask << ((int)prevPosT - 1)) & 0x7;
if (prevMask != 0) {
Byte b = p[4 - kMaskToBitNumber[prevMask]];
if (!kMaskToAllowedStatus[prevMask] || Test86MSByte(b)) {
prevPosT = bufferPos;
prevMask = ((prevMask << 1) & 0x7) | 1;
bufferPos++;
continue;
}
}
}
prevPosT = bufferPos;
if (Test86MSByte(p[4])) {
UInt32 src = ((UInt32)p[4] << 24) | ((UInt32)p[3] << 16) |
((UInt32)p[2] << 8) | ((UInt32)p[1]);
UInt32 dest;
for (;;) {
Byte b;
int index;
if (encoding)
dest = (ip + (UInt32)bufferPos) + src;
else
dest = src - (ip + (UInt32)bufferPos);
if (prevMask == 0)
break;
index = kMaskToBitNumber[prevMask] * 8;
b = (Byte)(dest >> (24 - index));
if (!Test86MSByte(b))
break;
src = dest ^ ((1 << (32 - index)) - 1);
}
p[4] = (Byte)(~(((dest >> 24) & 1) - 1));
p[3] = (Byte)(dest >> 16);
p[2] = (Byte)(dest >> 8);
p[1] = (Byte)dest;
bufferPos += 5;
} else {
prevMask = ((prevMask << 1) & 0x7) | 1;
bufferPos++;
}
for (;;)
{
Byte *p = data + bufferPos;
Byte *limit = data + size - 4;
for (; p < limit; p++)
if ((*p & 0xFE) == 0xE8)
break;
bufferPos = (SizeT)(p - data);
if (p >= limit)
break;
prevPosT = bufferPos - prevPosT;
if (prevPosT > 3)
prevMask = 0;
else
{
prevMask = (prevMask << ((int)prevPosT - 1)) & 0x7;
if (prevMask != 0)
{
Byte b = p[4 - kMaskToBitNumber[prevMask]];
if (!kMaskToAllowedStatus[prevMask] || Test86MSByte(b))
{
prevPosT = bufferPos;
prevMask = ((prevMask << 1) & 0x7) | 1;
bufferPos++;
continue;
}
prevPosT = bufferPos - prevPosT;
*state = ((prevPosT > 3) ? 0 : ((prevMask << ((int)prevPosT - 1)) & 0x7));
return bufferPos;
}
}
prevPosT = bufferPos;
if (Test86MSByte(p[4]))
{
UInt32 src = ((UInt32)p[4] << 24) | ((UInt32)p[3] << 16) | ((UInt32)p[2] << 8) | ((UInt32)p[1]);
UInt32 dest;
for (;;)
{
Byte b;
int index;
if (encoding)
dest = (ip + (UInt32)bufferPos) + src;
else
dest = src - (ip + (UInt32)bufferPos);
if (prevMask == 0)
break;
index = kMaskToBitNumber[prevMask] * 8;
b = (Byte)(dest >> (24 - index));
if (!Test86MSByte(b))
break;
src = dest ^ ((1 << (32 - index)) - 1);
}
p[4] = (Byte)(~(((dest >> 24) & 1) - 1));
p[3] = (Byte)(dest >> 16);
p[2] = (Byte)(dest >> 8);
p[1] = (Byte)dest;
bufferPos += 5;
}
else
{
prevMask = ((prevMask << 1) & 0x7) | 1;
bufferPos++;
}
}
prevPosT = bufferPos - prevPosT;
*state = ((prevPosT > 3) ? 0 : ((prevMask << ((int)prevPosT - 1)) & 0x7));
return bufferPos;
}

View File

@ -12,157 +12,157 @@
#if defined(USE_ASM) && !defined(MY_CPU_AMD64)
static UInt32 CheckFlag(UInt32 flag)
{
#ifdef _MSC_VER
__asm pushfd;
__asm pop EAX;
__asm mov EDX, EAX;
__asm xor EAX, flag;
__asm push EAX;
__asm popfd;
__asm pushfd;
__asm pop EAX;
__asm xor EAX, EDX;
__asm push EDX;
__asm popfd;
__asm and flag, EAX;
#else
__asm__ __volatile__(
"pushf\n\t"
"pop %%EAX\n\t"
"movl %%EAX,%%EDX\n\t"
"xorl %0,%%EAX\n\t"
"push %%EAX\n\t"
"popf\n\t"
"pushf\n\t"
"pop %%EAX\n\t"
"xorl %%EDX,%%EAX\n\t"
"push %%EDX\n\t"
"popf\n\t"
"andl %%EAX, %0\n\t"
: "=c"(flag)
: "c"(flag));
#endif
return flag;
#ifdef _MSC_VER
__asm pushfd;
__asm pop EAX;
__asm mov EDX, EAX;
__asm xor EAX, flag;
__asm push EAX;
__asm popfd;
__asm pushfd;
__asm pop EAX;
__asm xor EAX, EDX;
__asm push EDX;
__asm popfd;
__asm and flag, EAX;
#else
__asm__ __volatile__ (
"pushf\n\t"
"pop %%EAX\n\t"
"movl %%EAX,%%EDX\n\t"
"xorl %0,%%EAX\n\t"
"push %%EAX\n\t"
"popf\n\t"
"pushf\n\t"
"pop %%EAX\n\t"
"xorl %%EDX,%%EAX\n\t"
"push %%EDX\n\t"
"popf\n\t"
"andl %%EAX, %0\n\t":
"=c" (flag) : "c" (flag));
#endif
return flag;
}
#define CHECK_CPUID_IS_SUPPORTED \
if (CheckFlag(1 << 18) == 0 || CheckFlag(1 << 21) == 0) \
return False;
#define CHECK_CPUID_IS_SUPPORTED if (CheckFlag(1 << 18) == 0 || CheckFlag(1 << 21) == 0) return False;
#else
#define CHECK_CPUID_IS_SUPPORTED
#endif
static void MyCPUID(UInt32 function, UInt32 *a, UInt32 *b, UInt32 *c, UInt32 *d)
{
#ifdef USE_ASM
#ifdef USE_ASM
#ifdef _MSC_VER
#ifdef _MSC_VER
UInt32 a2, b2, c2, d2;
__asm xor EBX, EBX;
__asm xor ECX, ECX;
__asm xor EDX, EDX;
__asm mov EAX, function;
__asm cpuid;
__asm mov a2, EAX;
__asm mov b2, EBX;
__asm mov c2, ECX;
__asm mov d2, EDX;
UInt32 a2, b2, c2, d2;
__asm xor EBX, EBX;
__asm xor ECX, ECX;
__asm xor EDX, EDX;
__asm mov EAX, function;
__asm cpuid;
__asm mov a2, EAX;
__asm mov b2, EBX;
__asm mov c2, ECX;
__asm mov d2, EDX;
*a = a2;
*b = b2;
*c = c2;
*d = d2;
*a = a2;
*b = b2;
*c = c2;
*d = d2;
#else
#else
// Mac cross-compile compiler:
// can't find register in class 'BREG' while reloading 'asm'
// so use class 'r' register var binding
register _b asm("%bx");
__asm__ __volatile__("cpuid" : "=a"(*a), "=r"(_b), "=c"(*c), "=d"(*d) : "0"(function));
*b = _b;
__asm__ __volatile__ (
"cpuid"
: "=a" (*a) ,
"=b" (*b) ,
"=c" (*c) ,
"=d" (*d)
: "0" (function)) ;
#endif
#endif
#else
#else
int CPUInfo[4];
__cpuid(CPUInfo, function);
*a = CPUInfo[0];
*b = CPUInfo[1];
*c = CPUInfo[2];
*d = CPUInfo[3];
int CPUInfo[4];
__cpuid(CPUInfo, function);
*a = CPUInfo[0];
*b = CPUInfo[1];
*c = CPUInfo[2];
*d = CPUInfo[3];
#endif
#endif
}
Bool x86cpuid_CheckAndRead(Cx86cpuid *p)
{
CHECK_CPUID_IS_SUPPORTED
MyCPUID(0, &p->maxFunc, &p->vendor[0], &p->vendor[2], &p->vendor[1]);
MyCPUID(1, &p->ver, &p->b, &p->c, &p->d);
return True;
CHECK_CPUID_IS_SUPPORTED
MyCPUID(0, &p->maxFunc, &p->vendor[0], &p->vendor[2], &p->vendor[1]);
MyCPUID(1, &p->ver, &p->b, &p->c, &p->d);
return True;
}
static UInt32 kVendors[][3] = { { 0x756E6547, 0x49656E69, 0x6C65746E },
{ 0x68747541, 0x69746E65, 0x444D4163 },
{ 0x746E6543, 0x48727561, 0x736C7561 } };
static UInt32 kVendors[][3] =
{
{ 0x756E6547, 0x49656E69, 0x6C65746E},
{ 0x68747541, 0x69746E65, 0x444D4163},
{ 0x746E6543, 0x48727561, 0x736C7561}
};
int x86cpuid_GetFirm(const Cx86cpuid *p)
{
unsigned i;
for (i = 0; i < sizeof(kVendors) / sizeof(kVendors[i]); i++) {
const UInt32 *v = kVendors[i];
if (v[0] == p->vendor[0] && v[1] == p->vendor[1] && v[2] == p->vendor[2])
return (int)i;
}
return -1;
unsigned i;
for (i = 0; i < sizeof(kVendors) / sizeof(kVendors[i]); i++)
{
const UInt32 *v = kVendors[i];
if (v[0] == p->vendor[0] &&
v[1] == p->vendor[1] &&
v[2] == p->vendor[2])
return (int)i;
}
return -1;
}
Bool CPU_Is_InOrder()
{
Cx86cpuid p;
int firm;
UInt32 family, model;
if (!x86cpuid_CheckAndRead(&p))
return True;
family = x86cpuid_GetFamily(&p);
model = x86cpuid_GetModel(&p);
firm = x86cpuid_GetFirm(&p);
switch (firm) {
case CPU_FIRM_INTEL:
return (family < 6 || (family == 6 && model == 0x100C));
case CPU_FIRM_AMD:
return (family < 5 || (family == 5 && (model < 6 || model == 0xA)));
case CPU_FIRM_VIA:
return (family < 6 || (family == 6 && model < 0xF));
}
return True;
Cx86cpuid p;
int firm;
UInt32 family, model;
if (!x86cpuid_CheckAndRead(&p))
return True;
family = x86cpuid_GetFamily(&p);
model = x86cpuid_GetModel(&p);
firm = x86cpuid_GetFirm(&p);
switch (firm)
{
case CPU_FIRM_INTEL: return (family < 6 || (family == 6 && model == 0x100C));
case CPU_FIRM_AMD: return (family < 5 || (family == 5 && (model < 6 || model == 0xA)));
case CPU_FIRM_VIA: return (family < 6 || (family == 6 && model < 0xF));
}
return True;
}
#if !defined(MY_CPU_AMD64) && defined(_WIN32)
static Bool CPU_Sys_Is_SSE_Supported()
{
OSVERSIONINFO vi;
vi.dwOSVersionInfoSize = sizeof(vi);
if (!GetVersionEx(&vi))
return False;
return (vi.dwMajorVersion >= 5);
OSVERSIONINFO vi;
vi.dwOSVersionInfoSize = sizeof(vi);
if (!GetVersionEx(&vi))
return False;
return (vi.dwMajorVersion >= 5);
}
#define CHECK_SYS_SSE_SUPPORT \
if (!CPU_Sys_Is_SSE_Supported()) \
return False;
#define CHECK_SYS_SSE_SUPPORT if (!CPU_Sys_Is_SSE_Supported()) return False;
#else
#define CHECK_SYS_SSE_SUPPORT
#endif
Bool CPU_Is_Aes_Supported()
{
Cx86cpuid p;
CHECK_SYS_SSE_SUPPORT
if (!x86cpuid_CheckAndRead(&p))
return False;
return (p.c >> 25) & 1;
Cx86cpuid p;
CHECK_SYS_SSE_SUPPORT
if (!x86cpuid_CheckAndRead(&p))
return False;
return (p.c >> 25) & 1;
}
#endif

View File

@ -1,5 +1,5 @@
/* CpuArch.h -- CPU specific code
2010-10-26: Igor Pavlov : Public domain */
2010-12-01: Igor Pavlov : Public domain */
#ifndef __CPU_ARCH_H
#define __CPU_ARCH_H
@ -10,8 +10,7 @@ EXTERN_C_BEGIN
/*
MY_CPU_LE means that CPU is LITTLE ENDIAN.
If MY_CPU_LE is not defined, we don't know about that property of platform (it can be LITTLE
ENDIAN).
If MY_CPU_LE is not defined, we don't know about that property of platform (it can be LITTLE ENDIAN).
MY_CPU_LE_UNALIGN means that CPU is LITTLE ENDIAN and CPU supports unaligned memory accesses.
If MY_CPU_LE_UNALIGN is not defined, we don't know about these properties of platform.
@ -49,12 +48,11 @@ If MY_CPU_LE_UNALIGN is not defined, we don't know about these properties of pla
#define MY_CPU_LE_UNALIGN
#endif
#if defined(MY_CPU_X86_OR_AMD64) || defined(MY_CPU_ARM_LE) || defined(MY_CPU_IA64_LE) || \
defined(__ARMEL__) || defined(__MIPSEL__) || defined(__LITTLE_ENDIAN__)
#if defined(MY_CPU_X86_OR_AMD64) || defined(MY_CPU_ARM_LE) || defined(MY_CPU_IA64_LE) || defined(__ARMEL__) || defined(__MIPSEL__) || defined(__LITTLE_ENDIAN__)
#define MY_CPU_LE
#endif
#if defined(__BIG_ENDIAN__)
#if defined(__BIG_ENDIAN__) || defined(__m68k__) || defined(__ARMEB__) || defined(__MIPSEB__)
#define MY_CPU_BE
#endif
@ -75,34 +73,27 @@ Stop_Compiling_Bad_Endian
#define GetUi16(p) (((const Byte *)(p))[0] | ((UInt16)((const Byte *)(p))[1] << 8))
#define GetUi32(p) \
(((const Byte *)(p))[0] | ((UInt32)((const Byte *)(p))[1] << 8) | \
((UInt32)((const Byte *)(p))[2] << 16) | ((UInt32)((const Byte *)(p))[3] << 24))
#define GetUi32(p) ( \
((const Byte *)(p))[0] | \
((UInt32)((const Byte *)(p))[1] << 8) | \
((UInt32)((const Byte *)(p))[2] << 16) | \
((UInt32)((const Byte *)(p))[3] << 24))
#define GetUi64(p) (GetUi32(p) | ((UInt64)GetUi32(((const Byte *)(p)) + 4) << 32))
#define SetUi16(p, d) \
{ \
UInt32 _x_ = (d); \
((Byte *)(p))[0] = (Byte)_x_; \
((Byte *)(p))[1] = (Byte)(_x_ >> 8); \
}
#define SetUi16(p, d) { UInt32 _x_ = (d); \
((Byte *)(p))[0] = (Byte)_x_; \
((Byte *)(p))[1] = (Byte)(_x_ >> 8); }
#define SetUi32(p, d) \
{ \
UInt32 _x_ = (d); \
((Byte *)(p))[0] = (Byte)_x_; \
((Byte *)(p))[1] = (Byte)(_x_ >> 8); \
((Byte *)(p))[2] = (Byte)(_x_ >> 16); \
((Byte *)(p))[3] = (Byte)(_x_ >> 24); \
}
#define SetUi32(p, d) { UInt32 _x_ = (d); \
((Byte *)(p))[0] = (Byte)_x_; \
((Byte *)(p))[1] = (Byte)(_x_ >> 8); \
((Byte *)(p))[2] = (Byte)(_x_ >> 16); \
((Byte *)(p))[3] = (Byte)(_x_ >> 24); }
#define SetUi64(p, d) \
{ \
UInt64 _x64_ = (d); \
SetUi32(p, (UInt32)_x64_); \
SetUi32(((Byte *)(p)) + 4, (UInt32)(_x64_ >> 32)); \
}
#define SetUi64(p, d) { UInt64 _x64_ = (d); \
SetUi32(p, (UInt32)_x64_); \
SetUi32(((Byte *)(p)) + 4, (UInt32)(_x64_ >> 32)); }
#endif
@ -115,9 +106,11 @@ Stop_Compiling_Bad_Endian
#else
#define GetBe32(p) \
(((UInt32)((const Byte *)(p))[0] << 24) | ((UInt32)((const Byte *)(p))[1] << 16) | \
((UInt32)((const Byte *)(p))[2] << 8) | ((const Byte *)(p))[3])
#define GetBe32(p) ( \
((UInt32)((const Byte *)(p))[0] << 24) | \
((UInt32)((const Byte *)(p))[1] << 16) | \
((UInt32)((const Byte *)(p))[2] << 8) | \
((const Byte *)(p))[3] )
#define GetBe64(p) (((UInt64)GetBe32(p) << 32) | GetBe32(((const Byte *)(p)) + 4))
@ -125,18 +118,25 @@ Stop_Compiling_Bad_Endian
#define GetBe16(p) (((UInt16)((const Byte *)(p))[0] << 8) | ((const Byte *)(p))[1])
#ifdef MY_CPU_X86_OR_AMD64
typedef struct {
UInt32 maxFunc;
UInt32 vendor[3];
UInt32 ver;
UInt32 b;
UInt32 c;
UInt32 d;
typedef struct
{
UInt32 maxFunc;
UInt32 vendor[3];
UInt32 ver;
UInt32 b;
UInt32 c;
UInt32 d;
} Cx86cpuid;
enum { CPU_FIRM_INTEL, CPU_FIRM_AMD, CPU_FIRM_VIA };
enum
{
CPU_FIRM_INTEL,
CPU_FIRM_AMD,
CPU_FIRM_VIA
};
Bool x86cpuid_CheckAndRead(Cx86cpuid *p);
int x86cpuid_GetFirm(const Cx86cpuid *p);

View File

@ -1,5 +1,5 @@
/* Lzma2Dec.c -- LZMA2 Decoder
2009-05-03 : Igor Pavlov : Public domain */
2010-12-15 : Igor Pavlov : Public domain */
/* #define SHOW_DEBUG_INFO */
@ -36,7 +36,7 @@
#define LZMA2_IS_THERE_PROP(mode) ((mode) >= 2)
#define LZMA2_LCLP_MAX 4
#define LZMA2_DIC_SIZE_FROM_PROP(p) (((UInt32)2 | ((p)&1)) << ((p) / 2 + 11))
#define LZMA2_DIC_SIZE_FROM_PROP(p) (((UInt32)2 | ((p) & 1)) << ((p) / 2 + 11))
#ifdef SHOW_DEBUG_INFO
#define PRF(x) x
@ -44,301 +44,307 @@
#define PRF(x)
#endif
typedef enum {
LZMA2_STATE_CONTROL,
LZMA2_STATE_UNPACK0,
LZMA2_STATE_UNPACK1,
LZMA2_STATE_PACK0,
LZMA2_STATE_PACK1,
LZMA2_STATE_PROP,
LZMA2_STATE_DATA,
LZMA2_STATE_DATA_CONT,
LZMA2_STATE_FINISHED,
LZMA2_STATE_ERROR
typedef enum
{
LZMA2_STATE_CONTROL,
LZMA2_STATE_UNPACK0,
LZMA2_STATE_UNPACK1,
LZMA2_STATE_PACK0,
LZMA2_STATE_PACK1,
LZMA2_STATE_PROP,
LZMA2_STATE_DATA,
LZMA2_STATE_DATA_CONT,
LZMA2_STATE_FINISHED,
LZMA2_STATE_ERROR
} ELzma2State;
static SRes Lzma2Dec_GetOldProps(Byte prop, Byte *props)
{
UInt32 dicSize;
if (prop > 40)
return SZ_ERROR_UNSUPPORTED;
dicSize = (prop == 40) ? 0xFFFFFFFF : LZMA2_DIC_SIZE_FROM_PROP(prop);
props[0] = (Byte)LZMA2_LCLP_MAX;
props[1] = (Byte)(dicSize);
props[2] = (Byte)(dicSize >> 8);
props[3] = (Byte)(dicSize >> 16);
props[4] = (Byte)(dicSize >> 24);
return SZ_OK;
UInt32 dicSize;
if (prop > 40)
return SZ_ERROR_UNSUPPORTED;
dicSize = (prop == 40) ? 0xFFFFFFFF : LZMA2_DIC_SIZE_FROM_PROP(prop);
props[0] = (Byte)LZMA2_LCLP_MAX;
props[1] = (Byte)(dicSize);
props[2] = (Byte)(dicSize >> 8);
props[3] = (Byte)(dicSize >> 16);
props[4] = (Byte)(dicSize >> 24);
return SZ_OK;
}
SRes Lzma2Dec_AllocateProbs(CLzma2Dec *p, Byte prop, ISzAlloc *alloc)
{
Byte props[LZMA_PROPS_SIZE];
RINOK(Lzma2Dec_GetOldProps(prop, props));
return LzmaDec_AllocateProbs(&p->decoder, props, LZMA_PROPS_SIZE, alloc);
Byte props[LZMA_PROPS_SIZE];
RINOK(Lzma2Dec_GetOldProps(prop, props));
return LzmaDec_AllocateProbs(&p->decoder, props, LZMA_PROPS_SIZE, alloc);
}
SRes Lzma2Dec_Allocate(CLzma2Dec *p, Byte prop, ISzAlloc *alloc)
{
Byte props[LZMA_PROPS_SIZE];
RINOK(Lzma2Dec_GetOldProps(prop, props));
return LzmaDec_Allocate(&p->decoder, props, LZMA_PROPS_SIZE, alloc);
Byte props[LZMA_PROPS_SIZE];
RINOK(Lzma2Dec_GetOldProps(prop, props));
return LzmaDec_Allocate(&p->decoder, props, LZMA_PROPS_SIZE, alloc);
}
void Lzma2Dec_Init(CLzma2Dec *p)
{
p->state = LZMA2_STATE_CONTROL;
p->needInitDic = True;
p->needInitState = True;
p->needInitProp = True;
LzmaDec_Init(&p->decoder);
p->state = LZMA2_STATE_CONTROL;
p->needInitDic = True;
p->needInitState = True;
p->needInitProp = True;
LzmaDec_Init(&p->decoder);
}
static ELzma2State Lzma2Dec_UpdateState(CLzma2Dec *p, Byte b)
{
switch (p->state) {
case LZMA2_STATE_CONTROL:
p->control = b;
PRF(printf("\n %4X ", p->decoder.dicPos));
PRF(printf(" %2X", b));
if (p->control == 0)
return LZMA2_STATE_FINISHED;
if (LZMA2_IS_UNCOMPRESSED_STATE(p)) {
if ((p->control & 0x7F) > 2)
return LZMA2_STATE_ERROR;
p->unpackSize = 0;
} else
p->unpackSize = (UInt32)(p->control & 0x1F) << 16;
return LZMA2_STATE_UNPACK0;
switch(p->state)
{
case LZMA2_STATE_CONTROL:
p->control = b;
PRF(printf("\n %4X ", p->decoder.dicPos));
PRF(printf(" %2X", b));
if (p->control == 0)
return LZMA2_STATE_FINISHED;
if (LZMA2_IS_UNCOMPRESSED_STATE(p))
{
if ((p->control & 0x7F) > 2)
return LZMA2_STATE_ERROR;
p->unpackSize = 0;
}
else
p->unpackSize = (UInt32)(p->control & 0x1F) << 16;
return LZMA2_STATE_UNPACK0;
case LZMA2_STATE_UNPACK0:
p->unpackSize |= (UInt32)b << 8;
return LZMA2_STATE_UNPACK1;
case LZMA2_STATE_UNPACK1:
p->unpackSize |= (UInt32)b;
p->unpackSize++;
PRF(printf(" %8d", p->unpackSize));
return (LZMA2_IS_UNCOMPRESSED_STATE(p)) ? LZMA2_STATE_DATA : LZMA2_STATE_PACK0;
case LZMA2_STATE_PACK0:
p->packSize = (UInt32)b << 8;
return LZMA2_STATE_PACK1;
case LZMA2_STATE_UNPACK0:
p->unpackSize |= (UInt32)b << 8;
return LZMA2_STATE_UNPACK1;
case LZMA2_STATE_PACK1:
p->packSize |= (UInt32)b;
p->packSize++;
PRF(printf(" %8d", p->packSize));
return LZMA2_IS_THERE_PROP(LZMA2_GET_LZMA_MODE(p)) ? LZMA2_STATE_PROP:
(p->needInitProp ? LZMA2_STATE_ERROR : LZMA2_STATE_DATA);
case LZMA2_STATE_UNPACK1:
p->unpackSize |= (UInt32)b;
p->unpackSize++;
PRF(printf(" %8d", p->unpackSize));
return (LZMA2_IS_UNCOMPRESSED_STATE(p)) ? LZMA2_STATE_DATA : LZMA2_STATE_PACK0;
case LZMA2_STATE_PACK0:
p->packSize = (UInt32)b << 8;
return LZMA2_STATE_PACK1;
case LZMA2_STATE_PACK1:
p->packSize |= (UInt32)b;
p->packSize++;
PRF(printf(" %8d", p->packSize));
return LZMA2_IS_THERE_PROP(LZMA2_GET_LZMA_MODE(p))
? LZMA2_STATE_PROP
: (p->needInitProp ? LZMA2_STATE_ERROR : LZMA2_STATE_DATA);
case LZMA2_STATE_PROP: {
int lc, lp;
if (b >= (9 * 5 * 5))
return LZMA2_STATE_ERROR;
lc = b % 9;
b /= 9;
p->decoder.prop.pb = b / 5;
lp = b % 5;
if (lc + lp > LZMA2_LCLP_MAX)
return LZMA2_STATE_ERROR;
p->decoder.prop.lc = lc;
p->decoder.prop.lp = lp;
p->needInitProp = False;
return LZMA2_STATE_DATA;
}
}
case LZMA2_STATE_PROP:
{
int lc, lp;
if (b >= (9 * 5 * 5))
return LZMA2_STATE_ERROR;
lc = b % 9;
b /= 9;
p->decoder.prop.pb = b / 5;
lp = b % 5;
if (lc + lp > LZMA2_LCLP_MAX)
return LZMA2_STATE_ERROR;
p->decoder.prop.lc = lc;
p->decoder.prop.lp = lp;
p->needInitProp = False;
return LZMA2_STATE_DATA;
}
}
return LZMA2_STATE_ERROR;
}
static void LzmaDec_UpdateWithUncompressed(CLzmaDec *p, const Byte *src, SizeT size)
{
memcpy(p->dic + p->dicPos, src, size);
p->dicPos += size;
if (p->checkDicSize == 0 && p->prop.dicSize - p->processedPos <= size)
p->checkDicSize = p->prop.dicSize;
p->processedPos += (UInt32)size;
memcpy(p->dic + p->dicPos, src, size);
p->dicPos += size;
if (p->checkDicSize == 0 && p->prop.dicSize - p->processedPos <= size)
p->checkDicSize = p->prop.dicSize;
p->processedPos += (UInt32)size;
}
void LzmaDec_InitDicAndState(CLzmaDec *p, Bool initDic, Bool initState);
SRes Lzma2Dec_DecodeToDic(CLzma2Dec *p, SizeT dicLimit, const Byte *src, SizeT *srcLen,
ELzmaFinishMode finishMode, ELzmaStatus *status)
SRes Lzma2Dec_DecodeToDic(CLzma2Dec *p, SizeT dicLimit,
const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
{
SizeT inSize = *srcLen;
*srcLen = 0;
*status = LZMA_STATUS_NOT_SPECIFIED;
SizeT inSize = *srcLen;
*srcLen = 0;
*status = LZMA_STATUS_NOT_SPECIFIED;
while (p->state != LZMA2_STATE_FINISHED) {
SizeT dicPos = p->decoder.dicPos;
if (p->state == LZMA2_STATE_ERROR)
return SZ_ERROR_DATA;
if (dicPos == dicLimit && finishMode == LZMA_FINISH_ANY) {
*status = LZMA_STATUS_NOT_FINISHED;
return SZ_OK;
}
if (p->state != LZMA2_STATE_DATA && p->state != LZMA2_STATE_DATA_CONT) {
if (*srcLen == inSize) {
*status = LZMA_STATUS_NEEDS_MORE_INPUT;
return SZ_OK;
}
(*srcLen)++;
p->state = Lzma2Dec_UpdateState(p, *src++);
continue;
}
{
SizeT destSizeCur = dicLimit - dicPos;
SizeT srcSizeCur = inSize - *srcLen;
ELzmaFinishMode curFinishMode = LZMA_FINISH_ANY;
if (p->unpackSize <= destSizeCur) {
destSizeCur = (SizeT)p->unpackSize;
curFinishMode = LZMA_FINISH_END;
}
if (LZMA2_IS_UNCOMPRESSED_STATE(p)) {
if (*srcLen == inSize) {
*status = LZMA_STATUS_NEEDS_MORE_INPUT;
return SZ_OK;
}
if (p->state == LZMA2_STATE_DATA) {
Bool initDic = (p->control == LZMA2_CONTROL_COPY_RESET_DIC);
if (initDic)
p->needInitProp = p->needInitState = True;
else if (p->needInitDic)
return SZ_ERROR_DATA;
p->needInitDic = False;
LzmaDec_InitDicAndState(&p->decoder, initDic, False);
}
if (srcSizeCur > destSizeCur)
srcSizeCur = destSizeCur;
if (srcSizeCur == 0)
return SZ_ERROR_DATA;
LzmaDec_UpdateWithUncompressed(&p->decoder, src, srcSizeCur);
src += srcSizeCur;
*srcLen += srcSizeCur;
p->unpackSize -= (UInt32)srcSizeCur;
p->state = (p->unpackSize == 0) ? LZMA2_STATE_CONTROL
: LZMA2_STATE_DATA_CONT;
} else {
SizeT outSizeProcessed;
SRes res;
if (p->state == LZMA2_STATE_DATA) {
int mode = LZMA2_GET_LZMA_MODE(p);
Bool initDic = (mode == 3);
Bool initState = (mode > 0);
if ((!initDic && p->needInitDic) ||
(!initState && p->needInitState))
return SZ_ERROR_DATA;
LzmaDec_InitDicAndState(&p->decoder, initDic, initState);
p->needInitDic = False;
p->needInitState = False;
p->state = LZMA2_STATE_DATA_CONT;
}
if (srcSizeCur > p->packSize)
srcSizeCur = (SizeT)p->packSize;
res = LzmaDec_DecodeToDic(&p->decoder,
dicPos + destSizeCur,
src,
&srcSizeCur,
curFinishMode,
status);
src += srcSizeCur;
*srcLen += srcSizeCur;
p->packSize -= (UInt32)srcSizeCur;
outSizeProcessed = p->decoder.dicPos - dicPos;
p->unpackSize -= (UInt32)outSizeProcessed;
RINOK(res);
if (*status == LZMA_STATUS_NEEDS_MORE_INPUT)
return res;
if (srcSizeCur == 0 && outSizeProcessed == 0) {
if (*status != LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK ||
p->unpackSize != 0 || p->packSize != 0)
return SZ_ERROR_DATA;
p->state = LZMA2_STATE_CONTROL;
}
if (*status == LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK)
*status = LZMA_STATUS_NOT_FINISHED;
}
}
}
*status = LZMA_STATUS_FINISHED_WITH_MARK;
while (p->state != LZMA2_STATE_FINISHED)
{
SizeT dicPos = p->decoder.dicPos;
if (p->state == LZMA2_STATE_ERROR)
return SZ_ERROR_DATA;
if (dicPos == dicLimit && finishMode == LZMA_FINISH_ANY)
{
*status = LZMA_STATUS_NOT_FINISHED;
return SZ_OK;
}
if (p->state != LZMA2_STATE_DATA && p->state != LZMA2_STATE_DATA_CONT)
{
if (*srcLen == inSize)
{
*status = LZMA_STATUS_NEEDS_MORE_INPUT;
return SZ_OK;
}
}
(*srcLen)++;
p->state = Lzma2Dec_UpdateState(p, *src++);
continue;
}
{
SizeT destSizeCur = dicLimit - dicPos;
SizeT srcSizeCur = inSize - *srcLen;
ELzmaFinishMode curFinishMode = LZMA_FINISH_ANY;
if (p->unpackSize <= destSizeCur)
{
destSizeCur = (SizeT)p->unpackSize;
curFinishMode = LZMA_FINISH_END;
}
SRes Lzma2Dec_DecodeToBuf(CLzma2Dec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
ELzmaFinishMode finishMode, ELzmaStatus *status)
{
SizeT outSize = *destLen, inSize = *srcLen;
*srcLen = *destLen = 0;
for (;;) {
SizeT srcSizeCur = inSize, outSizeCur, dicPos;
ELzmaFinishMode curFinishMode;
SRes res;
if (p->decoder.dicPos == p->decoder.dicBufSize)
p->decoder.dicPos = 0;
dicPos = p->decoder.dicPos;
if (outSize > p->decoder.dicBufSize - dicPos) {
outSizeCur = p->decoder.dicBufSize;
curFinishMode = LZMA_FINISH_ANY;
} else {
outSizeCur = dicPos + outSize;
curFinishMode = finishMode;
}
res = Lzma2Dec_DecodeToDic(p, outSizeCur, src, &srcSizeCur, curFinishMode, status);
src += srcSizeCur;
inSize -= srcSizeCur;
*srcLen += srcSizeCur;
outSizeCur = p->decoder.dicPos - dicPos;
memcpy(dest, p->decoder.dic + dicPos, outSizeCur);
dest += outSizeCur;
outSize -= outSizeCur;
*destLen += outSizeCur;
if (res != 0)
return res;
if (outSizeCur == 0 || outSize == 0)
return SZ_OK;
if (LZMA2_IS_UNCOMPRESSED_STATE(p))
{
if (*srcLen == inSize)
{
*status = LZMA_STATUS_NEEDS_MORE_INPUT;
return SZ_OK;
}
}
SRes Lzma2Decode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, Byte prop,
ELzmaFinishMode finishMode, ELzmaStatus *status, ISzAlloc *alloc)
{
CLzma2Dec decoder;
if (p->state == LZMA2_STATE_DATA)
{
Bool initDic = (p->control == LZMA2_CONTROL_COPY_RESET_DIC);
if (initDic)
p->needInitProp = p->needInitState = True;
else if (p->needInitDic)
return SZ_ERROR_DATA;
p->needInitDic = False;
LzmaDec_InitDicAndState(&p->decoder, initDic, False);
}
if (srcSizeCur > destSizeCur)
srcSizeCur = destSizeCur;
if (srcSizeCur == 0)
return SZ_ERROR_DATA;
LzmaDec_UpdateWithUncompressed(&p->decoder, src, srcSizeCur);
src += srcSizeCur;
*srcLen += srcSizeCur;
p->unpackSize -= (UInt32)srcSizeCur;
p->state = (p->unpackSize == 0) ? LZMA2_STATE_CONTROL : LZMA2_STATE_DATA_CONT;
}
else
{
SizeT outSizeProcessed;
SRes res;
SizeT outSize = *destLen, inSize = *srcLen;
Byte props[LZMA_PROPS_SIZE];
Lzma2Dec_Construct(&decoder);
if (p->state == LZMA2_STATE_DATA)
{
int mode = LZMA2_GET_LZMA_MODE(p);
Bool initDic = (mode == 3);
Bool initState = (mode > 0);
if ((!initDic && p->needInitDic) || (!initState && p->needInitState))
return SZ_ERROR_DATA;
LzmaDec_InitDicAndState(&p->decoder, initDic, initState);
p->needInitDic = False;
p->needInitState = False;
p->state = LZMA2_STATE_DATA_CONT;
}
if (srcSizeCur > p->packSize)
srcSizeCur = (SizeT)p->packSize;
res = LzmaDec_DecodeToDic(&p->decoder, dicPos + destSizeCur, src, &srcSizeCur, curFinishMode, status);
src += srcSizeCur;
*srcLen += srcSizeCur;
p->packSize -= (UInt32)srcSizeCur;
*destLen = *srcLen = 0;
*status = LZMA_STATUS_NOT_SPECIFIED;
decoder.decoder.dic = dest;
decoder.decoder.dicBufSize = outSize;
outSizeProcessed = p->decoder.dicPos - dicPos;
p->unpackSize -= (UInt32)outSizeProcessed;
RINOK(Lzma2Dec_GetOldProps(prop, props));
RINOK(LzmaDec_AllocateProbs(&decoder.decoder, props, LZMA_PROPS_SIZE, alloc));
RINOK(res);
if (*status == LZMA_STATUS_NEEDS_MORE_INPUT)
return res;
*srcLen = inSize;
res = Lzma2Dec_DecodeToDic(&decoder, outSize, src, srcLen, finishMode, status);
*destLen = decoder.decoder.dicPos;
if (res == SZ_OK && *status == LZMA_STATUS_NEEDS_MORE_INPUT)
res = SZ_ERROR_INPUT_EOF;
LzmaDec_FreeProbs(&decoder.decoder, alloc);
return res;
if (srcSizeCur == 0 && outSizeProcessed == 0)
{
if (*status != LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK ||
p->unpackSize != 0 || p->packSize != 0)
return SZ_ERROR_DATA;
p->state = LZMA2_STATE_CONTROL;
}
if (*status == LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK)
*status = LZMA_STATUS_NOT_FINISHED;
}
}
}
*status = LZMA_STATUS_FINISHED_WITH_MARK;
return SZ_OK;
}
SRes Lzma2Dec_DecodeToBuf(CLzma2Dec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
{
SizeT outSize = *destLen, inSize = *srcLen;
*srcLen = *destLen = 0;
for (;;)
{
SizeT srcSizeCur = inSize, outSizeCur, dicPos;
ELzmaFinishMode curFinishMode;
SRes res;
if (p->decoder.dicPos == p->decoder.dicBufSize)
p->decoder.dicPos = 0;
dicPos = p->decoder.dicPos;
if (outSize > p->decoder.dicBufSize - dicPos)
{
outSizeCur = p->decoder.dicBufSize;
curFinishMode = LZMA_FINISH_ANY;
}
else
{
outSizeCur = dicPos + outSize;
curFinishMode = finishMode;
}
res = Lzma2Dec_DecodeToDic(p, outSizeCur, src, &srcSizeCur, curFinishMode, status);
src += srcSizeCur;
inSize -= srcSizeCur;
*srcLen += srcSizeCur;
outSizeCur = p->decoder.dicPos - dicPos;
memcpy(dest, p->decoder.dic + dicPos, outSizeCur);
dest += outSizeCur;
outSize -= outSizeCur;
*destLen += outSizeCur;
if (res != 0)
return res;
if (outSizeCur == 0 || outSize == 0)
return SZ_OK;
}
}
SRes Lzma2Decode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
Byte prop, ELzmaFinishMode finishMode, ELzmaStatus *status, ISzAlloc *alloc)
{
CLzma2Dec p;
SRes res;
SizeT outSize = *destLen, inSize = *srcLen;
*destLen = *srcLen = 0;
*status = LZMA_STATUS_NOT_SPECIFIED;
Lzma2Dec_Construct(&p);
RINOK(Lzma2Dec_AllocateProbs(&p, prop, alloc));
p.decoder.dic = dest;
p.decoder.dicBufSize = outSize;
Lzma2Dec_Init(&p);
*srcLen = inSize;
res = Lzma2Dec_DecodeToDic(&p, outSize, src, srcLen, finishMode, status);
*destLen = p.decoder.dicPos;
if (res == SZ_OK && *status == LZMA_STATUS_NEEDS_MORE_INPUT)
res = SZ_ERROR_INPUT_EOF;
Lzma2Dec_FreeProbs(&p, alloc);
return res;
}

View File

@ -12,15 +12,16 @@ extern "C" {
/* ---------- State Interface ---------- */
typedef struct {
CLzmaDec decoder;
UInt32 packSize;
UInt32 unpackSize;
int state;
Byte control;
Bool needInitDic;
Bool needInitState;
Bool needInitProp;
typedef struct
{
CLzmaDec decoder;
UInt32 packSize;
UInt32 unpackSize;
int state;
Byte control;
Bool needInitDic;
Bool needInitState;
Bool needInitProp;
} CLzma2Dec;
#define Lzma2Dec_Construct(p) LzmaDec_Construct(&(p)->decoder)
@ -31,6 +32,7 @@ SRes Lzma2Dec_AllocateProbs(CLzma2Dec *p, Byte prop, ISzAlloc *alloc);
SRes Lzma2Dec_Allocate(CLzma2Dec *p, Byte prop, ISzAlloc *alloc);
void Lzma2Dec_Init(CLzma2Dec *p);
/*
finishMode:
It has meaning only if the decoding reaches output limit (*destLen or dicLimit).
@ -46,11 +48,12 @@ Returns:
SZ_ERROR_DATA - Data error
*/
SRes Lzma2Dec_DecodeToDic(CLzma2Dec *p, SizeT dicLimit, const Byte *src, SizeT *srcLen,
ELzmaFinishMode finishMode, ELzmaStatus *status);
SRes Lzma2Dec_DecodeToDic(CLzma2Dec *p, SizeT dicLimit,
const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status);
SRes Lzma2Dec_DecodeToBuf(CLzma2Dec *p, Byte *dest, SizeT *destLen,
const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status);
SRes Lzma2Dec_DecodeToBuf(CLzma2Dec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
ELzmaFinishMode finishMode, ELzmaStatus *status);
/* ---------- One Call Interface ---------- */
@ -71,8 +74,8 @@ Returns:
SZ_ERROR_INPUT_EOF - It needs more bytes in input buffer (src).
*/
SRes Lzma2Decode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, Byte prop,
ELzmaFinishMode finishMode, ELzmaStatus *status, ISzAlloc *alloc);
SRes Lzma2Decode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
Byte prop, ELzmaFinishMode finishMode, ELzmaStatus *status, ISzAlloc *alloc);
#ifdef __cplusplus
}

File diff suppressed because it is too large Load Diff

View File

@ -20,13 +20,15 @@ extern "C" {
#define CLzmaProb UInt16
#endif
/* ---------- LZMA Properties ---------- */
#define LZMA_PROPS_SIZE 5
typedef struct _CLzmaProps {
unsigned lc, lp, pb;
UInt32 dicSize;
typedef struct _CLzmaProps
{
unsigned lc, lp, pb;
UInt32 dicSize;
} CLzmaProps;
/* LzmaProps_Decode - decodes properties
@ -37,6 +39,7 @@ Returns:
SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size);
/* ---------- LZMA Decoder state ---------- */
/* LZMA_REQUIRED_INPUT_MAX = number of required input bytes for worst case.
@ -44,31 +47,28 @@ SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size);
#define LZMA_REQUIRED_INPUT_MAX 20
typedef struct {
CLzmaProps prop;
CLzmaProb *probs;
Byte *dic;
const Byte *buf;
UInt32 range, code;
SizeT dicPos;
SizeT dicBufSize;
UInt32 processedPos;
UInt32 checkDicSize;
unsigned state;
UInt32 reps[4];
unsigned remainLen;
int needFlush;
int needInitState;
UInt32 numProbs;
unsigned tempBufSize;
Byte tempBuf[LZMA_REQUIRED_INPUT_MAX];
typedef struct
{
CLzmaProps prop;
CLzmaProb *probs;
Byte *dic;
const Byte *buf;
UInt32 range, code;
SizeT dicPos;
SizeT dicBufSize;
UInt32 processedPos;
UInt32 checkDicSize;
unsigned state;
UInt32 reps[4];
unsigned remainLen;
int needFlush;
int needInitState;
UInt32 numProbs;
unsigned tempBufSize;
Byte tempBuf[LZMA_REQUIRED_INPUT_MAX];
} CLzmaDec;
#define LzmaDec_Construct(p) \
{ \
(p)->dic = 0; \
(p)->probs = 0; \
}
#define LzmaDec_Construct(p) { (p)->dic = 0; (p)->probs = 0; }
void LzmaDec_Init(CLzmaDec *p);
@ -76,9 +76,10 @@ void LzmaDec_Init(CLzmaDec *p);
0) Stream with end mark. That end mark adds about 6 bytes to compressed size.
1) Stream without end mark. You must know exact uncompressed size to decompress such stream. */
typedef enum {
LZMA_FINISH_ANY, /* finish at any point */
LZMA_FINISH_END /* block must be finished at the end */
typedef enum
{
LZMA_FINISH_ANY, /* finish at any point */
LZMA_FINISH_END /* block must be finished at the end */
} ELzmaFinishMode;
/* ELzmaFinishMode has meaning only if the decoding reaches output limit !!!
@ -96,17 +97,18 @@ typedef enum {
3) Check that output(srcLen) = compressedSize, if you know real compressedSize.
You must use correct finish mode in that case. */
typedef enum {
LZMA_STATUS_NOT_SPECIFIED, /* use main error code instead */
LZMA_STATUS_FINISHED_WITH_MARK, /* stream was finished with end mark. */
LZMA_STATUS_NOT_FINISHED, /* stream was not finished */
LZMA_STATUS_NEEDS_MORE_INPUT, /* you must provide more input bytes */
LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK /* there is probability that stream was finished
without end mark */
typedef enum
{
LZMA_STATUS_NOT_SPECIFIED, /* use main error code instead */
LZMA_STATUS_FINISHED_WITH_MARK, /* stream was finished with end mark. */
LZMA_STATUS_NOT_FINISHED, /* stream was not finished */
LZMA_STATUS_NEEDS_MORE_INPUT, /* you must provide more input bytes */
LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK /* there is probability that stream was finished without end mark */
} ELzmaStatus;
/* ELzmaStatus is used only as output value for function call */
/* ---------- Interfaces ---------- */
/* There are 3 levels of interfaces:
@ -116,6 +118,7 @@ typedef enum {
You can select any of these interfaces, but don't mix functions from different
groups for same object. */
/* There are two variants to allocate state for Dictionary Interface:
1) LzmaDec_Allocate / LzmaDec_Free
2) LzmaDec_AllocateProbs / LzmaDec_FreeProbs
@ -127,7 +130,7 @@ LzmaDec_Allocate* can return:
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_UNSUPPORTED - Unsupported properties
*/
SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc);
void LzmaDec_FreeProbs(CLzmaDec *p, ISzAlloc *alloc);
@ -156,7 +159,7 @@ void LzmaDec_Free(CLzmaDec *state, ISzAlloc *alloc);
*/
/* LzmaDec_DecodeToDic
The decoding to internal dictionary buffer (CLzmaDec::dic).
You must manually update CLzmaDec::dicPos, if it reaches CLzmaDec::dicBufSize !!!
@ -175,8 +178,9 @@ Returns:
SZ_ERROR_DATA - Data error
*/
SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit, const Byte *src, SizeT *srcLen,
ELzmaFinishMode finishMode, ELzmaStatus *status);
SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit,
const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status);
/* ---------- Buffer Interface ---------- */
@ -191,8 +195,9 @@ finishMode:
LZMA_FINISH_END - Stream must be finished after (*destLen).
*/
SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
ELzmaFinishMode finishMode, ELzmaStatus *status);
SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen,
const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status);
/* ---------- One Call Interface ---------- */
@ -215,9 +220,9 @@ Returns:
SZ_ERROR_INPUT_EOF - It needs more bytes in input buffer (src).
*/
SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, const Byte *propData,
unsigned propSize, ELzmaFinishMode finishMode, ELzmaStatus *status,
ISzAlloc *alloc);
SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
ELzmaStatus *status, ISzAlloc *alloc);
#ifdef __cplusplus
}

View File

@ -1,87 +1,86 @@
/* Ppmd.h -- PPMD codec common code
2010-03-12 : Igor Pavlov : Public domain
This code is based on PPMd var.H (2001): Dmitry Shkarin : Public domain */
#ifndef __PPMD_H
#define __PPMD_H
#include "CpuArch.h"
#include "Types.h"
EXTERN_C_BEGIN
#ifdef MY_CPU_32BIT
#define PPMD_32BIT
#endif
#define PPMD_INT_BITS 7
#define PPMD_PERIOD_BITS 7
#define PPMD_BIN_SCALE (1 << (PPMD_INT_BITS + PPMD_PERIOD_BITS))
#define PPMD_GET_MEAN_SPEC(summ, shift, round) (((summ) + (1 << ((shift) - (round)))) >> (shift))
#define PPMD_GET_MEAN(summ) PPMD_GET_MEAN_SPEC((summ), PPMD_PERIOD_BITS, 2)
#define PPMD_UPDATE_PROB_0(prob) ((prob) + (1 << PPMD_INT_BITS) - PPMD_GET_MEAN(prob))
#define PPMD_UPDATE_PROB_1(prob) ((prob)-PPMD_GET_MEAN(prob))
#define PPMD_N1 4
#define PPMD_N2 4
#define PPMD_N3 4
#define PPMD_N4 ((128 + 3 - 1 * PPMD_N1 - 2 * PPMD_N2 - 3 * PPMD_N3) / 4)
#define PPMD_NUM_INDEXES (PPMD_N1 + PPMD_N2 + PPMD_N3 + PPMD_N4)
/* SEE-contexts for PPM-contexts with masked symbols */
typedef struct {
UInt16 Summ; /* Freq */
Byte Shift; /* Speed of Freq change; low Shift is for fast change */
Byte Count; /* Count to next change of Shift */
} CPpmd_See;
#define Ppmd_See_Update(p) \
if ((p)->Shift < PPMD_PERIOD_BITS && --(p)->Count == 0) { \
(p)->Summ <<= 1; \
(p)->Count = (Byte)(3 << (p)->Shift++); \
}
typedef struct {
Byte Symbol;
Byte Freq;
UInt16 SuccessorLow;
UInt16 SuccessorHigh;
} CPpmd_State;
typedef
#ifdef PPMD_32BIT
CPpmd_State *
#else
UInt32
#endif
CPpmd_State_Ref;
typedef
#ifdef PPMD_32BIT
void *
#else
UInt32
#endif
CPpmd_Void_Ref;
typedef
#ifdef PPMD_32BIT
Byte *
#else
UInt32
#endif
CPpmd_Byte_Ref;
#define PPMD_SetAllBitsIn256Bytes(p) \
{ \
unsigned i; \
for (i = 0; i < 256 / sizeof(p[0]); i += 8) { \
p[i + 7] = p[i + 6] = p[i + 5] = p[i + 4] = p[i + 3] = p[i + 2] = \
p[i + 1] = p[i + 0] = ~(size_t)0; \
} \
}
EXTERN_C_END
#endif
/* Ppmd.h -- PPMD codec common code
2011-01-27 : Igor Pavlov : Public domain
This code is based on PPMd var.H (2001): Dmitry Shkarin : Public domain */
#ifndef __PPMD_H
#define __PPMD_H
#include "Types.h"
#include "CpuArch.h"
EXTERN_C_BEGIN
#ifdef MY_CPU_32BIT
#define PPMD_32BIT
#endif
#define PPMD_INT_BITS 7
#define PPMD_PERIOD_BITS 7
#define PPMD_BIN_SCALE (1 << (PPMD_INT_BITS + PPMD_PERIOD_BITS))
#define PPMD_GET_MEAN_SPEC(summ, shift, round) (((summ) + (1 << ((shift) - (round)))) >> (shift))
#define PPMD_GET_MEAN(summ) PPMD_GET_MEAN_SPEC((summ), PPMD_PERIOD_BITS, 2)
#define PPMD_UPDATE_PROB_0(prob) ((prob) + (1 << PPMD_INT_BITS) - PPMD_GET_MEAN(prob))
#define PPMD_UPDATE_PROB_1(prob) ((prob) - PPMD_GET_MEAN(prob))
#define PPMD_N1 4
#define PPMD_N2 4
#define PPMD_N3 4
#define PPMD_N4 ((128 + 3 - 1 * PPMD_N1 - 2 * PPMD_N2 - 3 * PPMD_N3) / 4)
#define PPMD_NUM_INDEXES (PPMD_N1 + PPMD_N2 + PPMD_N3 + PPMD_N4)
#pragma pack(push, 1)
/* Most compilers works OK here even without #pragma pack(push, 1), but some GCC compilers need it. */
/* SEE-contexts for PPM-contexts with masked symbols */
typedef struct
{
UInt16 Summ; /* Freq */
Byte Shift; /* Speed of Freq change; low Shift is for fast change */
Byte Count; /* Count to next change of Shift */
} CPpmd_See;
#define Ppmd_See_Update(p) if ((p)->Shift < PPMD_PERIOD_BITS && --(p)->Count == 0) \
{ (p)->Summ <<= 1; (p)->Count = (Byte)(3 << (p)->Shift++); }
typedef struct
{
Byte Symbol;
Byte Freq;
UInt16 SuccessorLow;
UInt16 SuccessorHigh;
} CPpmd_State;
#pragma pack(pop)
typedef
#ifdef PPMD_32BIT
CPpmd_State *
#else
UInt32
#endif
CPpmd_State_Ref;
typedef
#ifdef PPMD_32BIT
void *
#else
UInt32
#endif
CPpmd_Void_Ref;
typedef
#ifdef PPMD_32BIT
Byte *
#else
UInt32
#endif
CPpmd_Byte_Ref;
#define PPMD_SetAllBitsIn256Bytes(p) \
{ unsigned i; for (i = 0; i < 256 / sizeof(p[0]); i += 8) { \
p[i+7] = p[i+6] = p[i+5] = p[i+4] = p[i+3] = p[i+2] = p[i+1] = p[i+0] = ~(size_t)0; }}
EXTERN_C_END
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,133 +1,140 @@
/* Ppmd7.h -- PPMdH compression codec
2010-03-12 : Igor Pavlov : Public domain
This code is based on PPMd var.H (2001): Dmitry Shkarin : Public domain */
/* This code supports virtual RangeDecoder and includes the implementation
of RangeCoder from 7z, instead of RangeCoder from original PPMd var.H.
If you need the compatibility with original PPMd var.H, you can use external RangeDecoder */
#ifndef __PPMD7_H
#define __PPMD7_H
#include "Ppmd.h"
EXTERN_C_BEGIN
#define PPMD7_MIN_ORDER 2
#define PPMD7_MAX_ORDER 64
#define PPMD7_MIN_MEM_SIZE (1 << 11)
#define PPMD7_MAX_MEM_SIZE (0xFFFFFFFF - 12 * 3)
struct CPpmd7_Context_;
typedef
#ifdef PPMD_32BIT
struct CPpmd7_Context_ *
#else
UInt32
#endif
CPpmd7_Context_Ref;
typedef struct CPpmd7_Context_ {
UInt16 NumStats;
UInt16 SummFreq;
CPpmd_State_Ref Stats;
CPpmd7_Context_Ref Suffix;
} CPpmd7_Context;
#define Ppmd7Context_OneState(p) ((CPpmd_State *)&(p)->SummFreq)
typedef struct {
CPpmd7_Context *MinContext, *MaxContext;
CPpmd_State *FoundState;
unsigned OrderFall, InitEsc, PrevSuccess, MaxOrder, HiBitsFlag;
Int32 RunLength, InitRL; /* must be 32-bit at least */
UInt32 Size;
UInt32 GlueCount;
Byte *Base, *LoUnit, *HiUnit, *Text, *UnitsStart;
UInt32 AlignOffset;
Byte Indx2Units[PPMD_NUM_INDEXES];
Byte Units2Indx[128];
CPpmd_Void_Ref FreeList[PPMD_NUM_INDEXES];
Byte NS2Indx[256], NS2BSIndx[256], HB2Flag[256];
CPpmd_See DummySee, See[25][16];
UInt16 BinSumm[128][64];
} CPpmd7;
void Ppmd7_Construct(CPpmd7 *p);
Bool Ppmd7_Alloc(CPpmd7 *p, UInt32 size, ISzAlloc *alloc);
void Ppmd7_Free(CPpmd7 *p, ISzAlloc *alloc);
void Ppmd7_Init(CPpmd7 *p, unsigned maxOrder);
#define Ppmd7_WasAllocated(p) ((p)->Base != NULL)
/* ---------- Internal Functions ---------- */
extern const Byte PPMD7_kExpEscape[16];
#ifdef PPMD_32BIT
#define Ppmd7_GetPtr(p, ptr) (ptr)
#define Ppmd7_GetContext(p, ptr) (ptr)
#define Ppmd7_GetStats(p, ctx) ((ctx)->Stats)
#else
#define Ppmd7_GetPtr(p, offs) ((void *)((p)->Base + (offs)))
#define Ppmd7_GetContext(p, offs) ((CPpmd7_Context *)Ppmd7_GetPtr((p), (offs)))
#define Ppmd7_GetStats(p, ctx) ((CPpmd_State *)Ppmd7_GetPtr((p), ((ctx)->Stats)))
#endif
void Ppmd7_Update1(CPpmd7 *p);
void Ppmd7_Update1_0(CPpmd7 *p);
void Ppmd7_Update2(CPpmd7 *p);
void Ppmd7_UpdateBin(CPpmd7 *p);
#define Ppmd7_GetBinSumm(p) \
&p->BinSumm[Ppmd7Context_OneState(p->MinContext)->Freq - 1] \
[p->PrevSuccess + \
p->NS2BSIndx[Ppmd7_GetContext(p, p->MinContext->Suffix)->NumStats - 1] + \
(p->HiBitsFlag = p->HB2Flag[p->FoundState->Symbol]) + \
2 * p->HB2Flag[Ppmd7Context_OneState(p->MinContext)->Symbol] + \
((p->RunLength >> 26) & 0x20)]
CPpmd_See *Ppmd7_MakeEscFreq(CPpmd7 *p, unsigned numMasked, UInt32 *scale);
/* ---------- Decode ---------- */
typedef struct {
UInt32 (*GetThreshold)(void *p, UInt32 total);
void (*Decode)(void *p, UInt32 start, UInt32 size);
UInt32 (*DecodeBit)(void *p, UInt32 size0);
} IPpmd7_RangeDec;
typedef struct {
IPpmd7_RangeDec p;
UInt32 Range;
UInt32 Code;
IByteIn *Stream;
} CPpmd7z_RangeDec;
void Ppmd7z_RangeDec_CreateVTable(CPpmd7z_RangeDec *p);
Bool Ppmd7z_RangeDec_Init(CPpmd7z_RangeDec *p);
#define Ppmd7z_RangeDec_IsFinishedOK(p) ((p)->Code == 0)
int Ppmd7_DecodeSymbol(CPpmd7 *p, IPpmd7_RangeDec *rc);
/* ---------- Encode ---------- */
typedef struct {
UInt64 Low;
UInt32 Range;
Byte Cache;
UInt64 CacheSize;
IByteOut *Stream;
} CPpmd7z_RangeEnc;
void Ppmd7z_RangeEnc_Init(CPpmd7z_RangeEnc *p);
void Ppmd7z_RangeEnc_FlushData(CPpmd7z_RangeEnc *p);
void Ppmd7_EncodeSymbol(CPpmd7 *p, CPpmd7z_RangeEnc *rc, int symbol);
EXTERN_C_END
#endif
/* Ppmd7.h -- PPMdH compression codec
2010-03-12 : Igor Pavlov : Public domain
This code is based on PPMd var.H (2001): Dmitry Shkarin : Public domain */
/* This code supports virtual RangeDecoder and includes the implementation
of RangeCoder from 7z, instead of RangeCoder from original PPMd var.H.
If you need the compatibility with original PPMd var.H, you can use external RangeDecoder */
#ifndef __PPMD7_H
#define __PPMD7_H
#include "Ppmd.h"
EXTERN_C_BEGIN
#define PPMD7_MIN_ORDER 2
#define PPMD7_MAX_ORDER 64
#define PPMD7_MIN_MEM_SIZE (1 << 11)
#define PPMD7_MAX_MEM_SIZE (0xFFFFFFFF - 12 * 3)
struct CPpmd7_Context_;
typedef
#ifdef PPMD_32BIT
struct CPpmd7_Context_ *
#else
UInt32
#endif
CPpmd7_Context_Ref;
typedef struct CPpmd7_Context_
{
UInt16 NumStats;
UInt16 SummFreq;
CPpmd_State_Ref Stats;
CPpmd7_Context_Ref Suffix;
} CPpmd7_Context;
#define Ppmd7Context_OneState(p) ((CPpmd_State *)&(p)->SummFreq)
typedef struct
{
CPpmd7_Context *MinContext, *MaxContext;
CPpmd_State *FoundState;
unsigned OrderFall, InitEsc, PrevSuccess, MaxOrder, HiBitsFlag;
Int32 RunLength, InitRL; /* must be 32-bit at least */
UInt32 Size;
UInt32 GlueCount;
Byte *Base, *LoUnit, *HiUnit, *Text, *UnitsStart;
UInt32 AlignOffset;
Byte Indx2Units[PPMD_NUM_INDEXES];
Byte Units2Indx[128];
CPpmd_Void_Ref FreeList[PPMD_NUM_INDEXES];
Byte NS2Indx[256], NS2BSIndx[256], HB2Flag[256];
CPpmd_See DummySee, See[25][16];
UInt16 BinSumm[128][64];
} CPpmd7;
void Ppmd7_Construct(CPpmd7 *p);
Bool Ppmd7_Alloc(CPpmd7 *p, UInt32 size, ISzAlloc *alloc);
void Ppmd7_Free(CPpmd7 *p, ISzAlloc *alloc);
void Ppmd7_Init(CPpmd7 *p, unsigned maxOrder);
#define Ppmd7_WasAllocated(p) ((p)->Base != NULL)
/* ---------- Internal Functions ---------- */
extern const Byte PPMD7_kExpEscape[16];
#ifdef PPMD_32BIT
#define Ppmd7_GetPtr(p, ptr) (ptr)
#define Ppmd7_GetContext(p, ptr) (ptr)
#define Ppmd7_GetStats(p, ctx) ((ctx)->Stats)
#else
#define Ppmd7_GetPtr(p, offs) ((void *)((p)->Base + (offs)))
#define Ppmd7_GetContext(p, offs) ((CPpmd7_Context *)Ppmd7_GetPtr((p), (offs)))
#define Ppmd7_GetStats(p, ctx) ((CPpmd_State *)Ppmd7_GetPtr((p), ((ctx)->Stats)))
#endif
void Ppmd7_Update1(CPpmd7 *p);
void Ppmd7_Update1_0(CPpmd7 *p);
void Ppmd7_Update2(CPpmd7 *p);
void Ppmd7_UpdateBin(CPpmd7 *p);
#define Ppmd7_GetBinSumm(p) \
&p->BinSumm[Ppmd7Context_OneState(p->MinContext)->Freq - 1][p->PrevSuccess + \
p->NS2BSIndx[Ppmd7_GetContext(p, p->MinContext->Suffix)->NumStats - 1] + \
(p->HiBitsFlag = p->HB2Flag[p->FoundState->Symbol]) + \
2 * p->HB2Flag[Ppmd7Context_OneState(p->MinContext)->Symbol] + \
((p->RunLength >> 26) & 0x20)]
CPpmd_See *Ppmd7_MakeEscFreq(CPpmd7 *p, unsigned numMasked, UInt32 *scale);
/* ---------- Decode ---------- */
typedef struct
{
UInt32 (*GetThreshold)(void *p, UInt32 total);
void (*Decode)(void *p, UInt32 start, UInt32 size);
UInt32 (*DecodeBit)(void *p, UInt32 size0);
} IPpmd7_RangeDec;
typedef struct
{
IPpmd7_RangeDec p;
UInt32 Range;
UInt32 Code;
IByteIn *Stream;
} CPpmd7z_RangeDec;
void Ppmd7z_RangeDec_CreateVTable(CPpmd7z_RangeDec *p);
Bool Ppmd7z_RangeDec_Init(CPpmd7z_RangeDec *p);
#define Ppmd7z_RangeDec_IsFinishedOK(p) ((p)->Code == 0)
int Ppmd7_DecodeSymbol(CPpmd7 *p, IPpmd7_RangeDec *rc);
/* ---------- Encode ---------- */
typedef struct
{
UInt64 Low;
UInt32 Range;
Byte Cache;
UInt64 CacheSize;
IByteOut *Stream;
} CPpmd7z_RangeEnc;
void Ppmd7z_RangeEnc_Init(CPpmd7z_RangeEnc *p);
void Ppmd7z_RangeEnc_FlushData(CPpmd7z_RangeEnc *p);
void Ppmd7_EncodeSymbol(CPpmd7 *p, CPpmd7z_RangeEnc *rc, int symbol);
EXTERN_C_END
#endif

View File

@ -1,172 +1,187 @@
/* Ppmd7Dec.c -- PPMdH Decoder
2010-03-12 : Igor Pavlov : Public domain
This code is based on PPMd var.H (2001): Dmitry Shkarin : Public domain */
#include "Ppmd7.h"
#define kTopValue (1 << 24)
Bool Ppmd7z_RangeDec_Init(CPpmd7z_RangeDec *p)
{
unsigned i;
p->Code = 0;
p->Range = 0xFFFFFFFF;
if (p->Stream->Read((void *)p->Stream) != 0)
return False;
for (i = 0; i < 4; i++)
p->Code = (p->Code << 8) | p->Stream->Read((void *)p->Stream);
return (p->Code < 0xFFFFFFFF);
}
static UInt32 Range_GetThreshold(void *pp, UInt32 total)
{
CPpmd7z_RangeDec *p = (CPpmd7z_RangeDec *)pp;
return (p->Code) / (p->Range /= total);
}
static void Range_Normalize(CPpmd7z_RangeDec *p)
{
if (p->Range < kTopValue) {
p->Code = (p->Code << 8) | p->Stream->Read((void *)p->Stream);
p->Range <<= 8;
if (p->Range < kTopValue) {
p->Code = (p->Code << 8) | p->Stream->Read((void *)p->Stream);
p->Range <<= 8;
}
}
}
static void Range_Decode(void *pp, UInt32 start, UInt32 size)
{
CPpmd7z_RangeDec *p = (CPpmd7z_RangeDec *)pp;
p->Code -= start * p->Range;
p->Range *= size;
Range_Normalize(p);
}
static UInt32 Range_DecodeBit(void *pp, UInt32 size0)
{
CPpmd7z_RangeDec *p = (CPpmd7z_RangeDec *)pp;
UInt32 newBound = (p->Range >> 14) * size0;
UInt32 symbol;
if (p->Code < newBound) {
symbol = 0;
p->Range = newBound;
} else {
symbol = 1;
p->Code -= newBound;
p->Range -= newBound;
}
Range_Normalize(p);
return symbol;
}
void Ppmd7z_RangeDec_CreateVTable(CPpmd7z_RangeDec *p)
{
p->p.GetThreshold = Range_GetThreshold;
p->p.Decode = Range_Decode;
p->p.DecodeBit = Range_DecodeBit;
}
#define MASK(sym) ((signed char *)charMask)[sym]
int Ppmd7_DecodeSymbol(CPpmd7 *p, IPpmd7_RangeDec *rc)
{
size_t charMask[256 / sizeof(size_t)];
if (p->MinContext->NumStats != 1) {
CPpmd_State *s = Ppmd7_GetStats(p, p->MinContext);
unsigned i;
UInt32 count, hiCnt;
if ((count = rc->GetThreshold(rc, p->MinContext->SummFreq)) < (hiCnt = s->Freq)) {
Byte symbol;
rc->Decode(rc, 0, s->Freq);
p->FoundState = s;
symbol = s->Symbol;
Ppmd7_Update1_0(p);
return symbol;
}
p->PrevSuccess = 0;
i = p->MinContext->NumStats - 1;
do {
if ((hiCnt += (++s)->Freq) > count) {
Byte symbol;
rc->Decode(rc, hiCnt - s->Freq, s->Freq);
p->FoundState = s;
symbol = s->Symbol;
Ppmd7_Update1(p);
return symbol;
}
} while (--i);
if (count >= p->MinContext->SummFreq)
return -2;
p->HiBitsFlag = p->HB2Flag[p->FoundState->Symbol];
rc->Decode(rc, hiCnt, p->MinContext->SummFreq - hiCnt);
PPMD_SetAllBitsIn256Bytes(charMask);
MASK(s->Symbol) = 0;
i = p->MinContext->NumStats - 1;
do {
MASK((--s)->Symbol) = 0;
} while (--i);
} else {
UInt16 *prob = Ppmd7_GetBinSumm(p);
if (rc->DecodeBit(rc, *prob) == 0) {
Byte symbol;
*prob = (UInt16)PPMD_UPDATE_PROB_0(*prob);
symbol = (p->FoundState = Ppmd7Context_OneState(p->MinContext))->Symbol;
Ppmd7_UpdateBin(p);
return symbol;
}
*prob = (UInt16)PPMD_UPDATE_PROB_1(*prob);
p->InitEsc = PPMD7_kExpEscape[*prob >> 10];
PPMD_SetAllBitsIn256Bytes(charMask);
MASK(Ppmd7Context_OneState(p->MinContext)->Symbol) = 0;
p->PrevSuccess = 0;
}
for (;;) {
CPpmd_State *ps[256], *s;
UInt32 freqSum, count, hiCnt;
CPpmd_See *see;
unsigned i, num, numMasked = p->MinContext->NumStats;
do {
p->OrderFall++;
if (!p->MinContext->Suffix)
return -1;
p->MinContext = Ppmd7_GetContext(p, p->MinContext->Suffix);
} while (p->MinContext->NumStats == numMasked);
hiCnt = 0;
s = Ppmd7_GetStats(p, p->MinContext);
i = 0;
num = p->MinContext->NumStats - numMasked;
do {
int k = (int)(MASK(s->Symbol));
hiCnt += (s->Freq & k);
ps[i] = s++;
i -= k;
} while (i != num);
see = Ppmd7_MakeEscFreq(p, numMasked, &freqSum);
freqSum += hiCnt;
count = rc->GetThreshold(rc, freqSum);
if (count < hiCnt) {
Byte symbol;
CPpmd_State **pps = ps;
for (hiCnt = 0; (hiCnt += (*pps)->Freq) <= count; pps++)
;
s = *pps;
rc->Decode(rc, hiCnt - s->Freq, s->Freq);
Ppmd_See_Update(see);
p->FoundState = s;
symbol = s->Symbol;
Ppmd7_Update2(p);
return symbol;
}
if (count >= freqSum)
return -2;
rc->Decode(rc, hiCnt, freqSum - hiCnt);
see->Summ = (UInt16)(see->Summ + freqSum);
do {
MASK(ps[--i]->Symbol) = 0;
} while (i != 0);
}
}
/* Ppmd7Dec.c -- PPMdH Decoder
2010-03-12 : Igor Pavlov : Public domain
This code is based on PPMd var.H (2001): Dmitry Shkarin : Public domain */
#include "Ppmd7.h"
#define kTopValue (1 << 24)
Bool Ppmd7z_RangeDec_Init(CPpmd7z_RangeDec *p)
{
unsigned i;
p->Code = 0;
p->Range = 0xFFFFFFFF;
if (p->Stream->Read((void *)p->Stream) != 0)
return False;
for (i = 0; i < 4; i++)
p->Code = (p->Code << 8) | p->Stream->Read((void *)p->Stream);
return (p->Code < 0xFFFFFFFF);
}
static UInt32 Range_GetThreshold(void *pp, UInt32 total)
{
CPpmd7z_RangeDec *p = (CPpmd7z_RangeDec *)pp;
return (p->Code) / (p->Range /= total);
}
static void Range_Normalize(CPpmd7z_RangeDec *p)
{
if (p->Range < kTopValue)
{
p->Code = (p->Code << 8) | p->Stream->Read((void *)p->Stream);
p->Range <<= 8;
if (p->Range < kTopValue)
{
p->Code = (p->Code << 8) | p->Stream->Read((void *)p->Stream);
p->Range <<= 8;
}
}
}
static void Range_Decode(void *pp, UInt32 start, UInt32 size)
{
CPpmd7z_RangeDec *p = (CPpmd7z_RangeDec *)pp;
p->Code -= start * p->Range;
p->Range *= size;
Range_Normalize(p);
}
static UInt32 Range_DecodeBit(void *pp, UInt32 size0)
{
CPpmd7z_RangeDec *p = (CPpmd7z_RangeDec *)pp;
UInt32 newBound = (p->Range >> 14) * size0;
UInt32 symbol;
if (p->Code < newBound)
{
symbol = 0;
p->Range = newBound;
}
else
{
symbol = 1;
p->Code -= newBound;
p->Range -= newBound;
}
Range_Normalize(p);
return symbol;
}
void Ppmd7z_RangeDec_CreateVTable(CPpmd7z_RangeDec *p)
{
p->p.GetThreshold = Range_GetThreshold;
p->p.Decode = Range_Decode;
p->p.DecodeBit = Range_DecodeBit;
}
#define MASK(sym) ((signed char *)charMask)[sym]
int Ppmd7_DecodeSymbol(CPpmd7 *p, IPpmd7_RangeDec *rc)
{
size_t charMask[256 / sizeof(size_t)];
if (p->MinContext->NumStats != 1)
{
CPpmd_State *s = Ppmd7_GetStats(p, p->MinContext);
unsigned i;
UInt32 count, hiCnt;
if ((count = rc->GetThreshold(rc, p->MinContext->SummFreq)) < (hiCnt = s->Freq))
{
Byte symbol;
rc->Decode(rc, 0, s->Freq);
p->FoundState = s;
symbol = s->Symbol;
Ppmd7_Update1_0(p);
return symbol;
}
p->PrevSuccess = 0;
i = p->MinContext->NumStats - 1;
do
{
if ((hiCnt += (++s)->Freq) > count)
{
Byte symbol;
rc->Decode(rc, hiCnt - s->Freq, s->Freq);
p->FoundState = s;
symbol = s->Symbol;
Ppmd7_Update1(p);
return symbol;
}
}
while (--i);
if (count >= p->MinContext->SummFreq)
return -2;
p->HiBitsFlag = p->HB2Flag[p->FoundState->Symbol];
rc->Decode(rc, hiCnt, p->MinContext->SummFreq - hiCnt);
PPMD_SetAllBitsIn256Bytes(charMask);
MASK(s->Symbol) = 0;
i = p->MinContext->NumStats - 1;
do { MASK((--s)->Symbol) = 0; } while (--i);
}
else
{
UInt16 *prob = Ppmd7_GetBinSumm(p);
if (rc->DecodeBit(rc, *prob) == 0)
{
Byte symbol;
*prob = (UInt16)PPMD_UPDATE_PROB_0(*prob);
symbol = (p->FoundState = Ppmd7Context_OneState(p->MinContext))->Symbol;
Ppmd7_UpdateBin(p);
return symbol;
}
*prob = (UInt16)PPMD_UPDATE_PROB_1(*prob);
p->InitEsc = PPMD7_kExpEscape[*prob >> 10];
PPMD_SetAllBitsIn256Bytes(charMask);
MASK(Ppmd7Context_OneState(p->MinContext)->Symbol) = 0;
p->PrevSuccess = 0;
}
for (;;)
{
CPpmd_State *ps[256], *s;
UInt32 freqSum, count, hiCnt;
CPpmd_See *see;
unsigned i, num, numMasked = p->MinContext->NumStats;
do
{
p->OrderFall++;
if (!p->MinContext->Suffix)
return -1;
p->MinContext = Ppmd7_GetContext(p, p->MinContext->Suffix);
}
while (p->MinContext->NumStats == numMasked);
hiCnt = 0;
s = Ppmd7_GetStats(p, p->MinContext);
i = 0;
num = p->MinContext->NumStats - numMasked;
do
{
int k = (int)(MASK(s->Symbol));
hiCnt += (s->Freq & k);
ps[i] = s++;
i -= k;
}
while (i != num);
see = Ppmd7_MakeEscFreq(p, numMasked, &freqSum);
freqSum += hiCnt;
count = rc->GetThreshold(rc, freqSum);
if (count < hiCnt)
{
Byte symbol;
CPpmd_State **pps = ps;
for (hiCnt = 0; (hiCnt += (*pps)->Freq) <= count; pps++);
s = *pps;
rc->Decode(rc, hiCnt - s->Freq, s->Freq);
Ppmd_See_Update(see);
p->FoundState = s;
symbol = s->Symbol;
Ppmd7_Update2(p);
return symbol;
}
if (count >= freqSum)
return -2;
rc->Decode(rc, hiCnt, freqSum - hiCnt);
see->Summ = (UInt16)(see->Summ + freqSum);
do { MASK(ps[--i]->Symbol) = 0; } while (i != 0);
}
}

View File

@ -49,12 +49,7 @@ typedef int WRes;
#endif
#ifndef RINOK
#define RINOK(x) \
{ \
int __result__ = (x); \
if (__result__ != 0) \
return __result__; \
}
#define RINOK(x) { int __result__ = (x); if (__result__ != 0) return __result__; }
#endif
typedef unsigned char Byte;
@ -86,7 +81,7 @@ typedef unsigned __int64 UInt64;
#else
typedef long long int Int64;
typedef unsigned long long int UInt64;
#define UINT64_CONST(n) n##ULL
#define UINT64_CONST(n) n ## ULL
#endif
#endif
@ -101,6 +96,7 @@ typedef int Bool;
#define True 1
#define False 0
#ifdef _WIN32
#define MY_STD_CALL __stdcall
#else
@ -125,20 +121,24 @@ typedef int Bool;
#endif
/* The following interfaces use first parameter as pointer to structure */
typedef struct {
Byte (*Read)(void *p); /* reads one byte, returns 0 in case of EOF or error */
typedef struct
{
Byte (*Read)(void *p); /* reads one byte, returns 0 in case of EOF or error */
} IByteIn;
typedef struct {
void (*Write)(void *p, Byte b);
typedef struct
{
void (*Write)(void *p, Byte b);
} IByteOut;
typedef struct {
SRes (*Read)(void *p, void *buf, size_t *size);
/* if (input(*size) != 0 && output(*size) == 0) means end_of_stream.
(output(*size) < input(*size)) is allowed */
typedef struct
{
SRes (*Read)(void *p, void *buf, size_t *size);
/* if (input(*size) != 0 && output(*size) == 0) means end_of_stream.
(output(*size) < input(*size)) is allowed */
} ISeqInStream;
/* it can return SZ_ERROR_INPUT_EOF */
@ -146,30 +146,38 @@ SRes SeqInStream_Read(ISeqInStream *stream, void *buf, size_t size);
SRes SeqInStream_Read2(ISeqInStream *stream, void *buf, size_t size, SRes errorType);
SRes SeqInStream_ReadByte(ISeqInStream *stream, Byte *buf);
typedef struct {
size_t (*Write)(void *p, const void *buf, size_t size);
/* Returns: result - the number of actually written bytes.
(result < size) means error */
typedef struct
{
size_t (*Write)(void *p, const void *buf, size_t size);
/* Returns: result - the number of actually written bytes.
(result < size) means error */
} ISeqOutStream;
typedef enum { SZ_SEEK_SET = 0, SZ_SEEK_CUR = 1, SZ_SEEK_END = 2 } ESzSeek;
typedef enum
{
SZ_SEEK_SET = 0,
SZ_SEEK_CUR = 1,
SZ_SEEK_END = 2
} ESzSeek;
typedef struct {
SRes (*Read)(void *p, void *buf, size_t *size); /* same as ISeqInStream::Read */
SRes (*Seek)(void *p, Int64 *pos, ESzSeek origin);
typedef struct
{
SRes (*Read)(void *p, void *buf, size_t *size); /* same as ISeqInStream::Read */
SRes (*Seek)(void *p, Int64 *pos, ESzSeek origin);
} ISeekInStream;
typedef struct {
SRes (*Look)(void *p, const void **buf, size_t *size);
/* if (input(*size) != 0 && output(*size) == 0) means end_of_stream.
(output(*size) > input(*size)) is not allowed
(output(*size) < input(*size)) is allowed */
SRes (*Skip)(void *p, size_t offset);
/* offset must be <= output(*size) of Look */
typedef struct
{
SRes (*Look)(void *p, const void **buf, size_t *size);
/* if (input(*size) != 0 && output(*size) == 0) means end_of_stream.
(output(*size) > input(*size)) is not allowed
(output(*size) < input(*size)) is allowed */
SRes (*Skip)(void *p, size_t offset);
/* offset must be <= output(*size) of Look */
SRes (*Read)(void *p, void *buf, size_t *size);
/* reads directly (without buffer). It's same as ISeqInStream::Read */
SRes (*Seek)(void *p, Int64 *pos, ESzSeek origin);
SRes (*Read)(void *p, void *buf, size_t *size);
/* reads directly (without buffer). It's same as ISeqInStream::Read */
SRes (*Seek)(void *p, Int64 *pos, ESzSeek origin);
} ILookInStream;
SRes LookInStream_LookRead(ILookInStream *stream, void *buf, size_t *size);
@ -181,40 +189,45 @@ SRes LookInStream_Read(ILookInStream *stream, void *buf, size_t size);
#define LookToRead_BUF_SIZE (1 << 14)
typedef struct {
ILookInStream s;
ISeekInStream *realStream;
size_t pos;
size_t size;
Byte buf[LookToRead_BUF_SIZE];
typedef struct
{
ILookInStream s;
ISeekInStream *realStream;
size_t pos;
size_t size;
Byte buf[LookToRead_BUF_SIZE];
} CLookToRead;
void LookToRead_CreateVTable(CLookToRead *p, int lookahead);
void LookToRead_Init(CLookToRead *p);
typedef struct {
ISeqInStream s;
ILookInStream *realStream;
typedef struct
{
ISeqInStream s;
ILookInStream *realStream;
} CSecToLook;
void SecToLook_CreateVTable(CSecToLook *p);
typedef struct {
ISeqInStream s;
ILookInStream *realStream;
typedef struct
{
ISeqInStream s;
ILookInStream *realStream;
} CSecToRead;
void SecToRead_CreateVTable(CSecToRead *p);
typedef struct {
SRes (*Progress)(void *p, UInt64 inSize, UInt64 outSize);
/* Returns: result. (result != SZ_OK) means break.
Value (UInt64)(Int64)-1 for size means unknown value. */
typedef struct
{
SRes (*Progress)(void *p, UInt64 inSize, UInt64 outSize);
/* Returns: result. (result != SZ_OK) means break.
Value (UInt64)(Int64)-1 for size means unknown value. */
} ICompressProgress;
typedef struct {
void *(*Alloc)(void *p, size_t size);
void (*Free)(void *p, void *address); /* address can be 0 */
typedef struct
{
void *(*Alloc)(void *p, size_t size);
void (*Free)(void *p, void *address); /* address can be 0 */
} ISzAlloc;
#define IAlloc_Alloc(p, size) (p)->Alloc((p), size)

View File

@ -1,4 +1,4 @@
LZMA SDK 9.20
LZMA SDK 9.22
-------------
LZMA SDK provides the documentation, samples, header files, libraries,
@ -24,6 +24,12 @@ Some code in LZMA SDK is based on public domain code from another developers:
1) PPMd var.H (2001): Dmitry Shkarin
2) SHA-256: Wei Dai (Crypto++ library)
You can copy, modify, distribute and perform LZMA SDK code, even for commercial purposes,
all without asking permission.
LZMA SDK code is compatible with open source licenses, for example, you can
include it to GNU GPL or GNU LGPL code.
LZMA SDK Contents
-----------------