Fixed the "Solar Sensor is broken" message that appeared in "Boktai - The Sun Is in Your Hand". Cleaned and formatted the code. Fixed a mistake where the RTC was not getting updated.

This commit is contained in:
skidau 2015-05-24 13:30:31 +00:00
parent fdb380cfef
commit 2ec24487c3
2 changed files with 277 additions and 229 deletions

View File

@ -11,25 +11,26 @@
enum RTCSTATE
{
IDLE = 0,
COMMAND,
DATA,
READDATA
IDLE = 0,
COMMAND,
DATA,
READDATA
};
typedef struct {
u8 byte0;
u8 byte1;
u8 byte2;
u8 command;
int dataLen;
int bits;
RTCSTATE state;
u8 data[12];
// reserved variables for future
u8 reserved[12];
bool reserved2;
u32 reserved3;
typedef struct
{
u8 byte0;
u8 select;
u8 enable;
u8 command;
int dataLen;
int bits;
RTCSTATE state;
u8 data[12];
// reserved variables for future
u8 reserved[12];
bool reserved2;
u32 reserved3;
} RTCCLOCKDATA;
struct tm gba_time;
@ -41,12 +42,12 @@ u32 countTicks = 0;
void rtcEnable(bool e)
{
rtcClockEnabled = e;
rtcClockEnabled = e;
}
bool rtcIsEnabled()
{
return rtcClockEnabled;
return rtcClockEnabled;
}
void rtcEnableRumble(bool e)
@ -56,248 +57,315 @@ void rtcEnableRumble(bool e)
u16 rtcRead(u32 address)
{
switch(address){
case 0x80000c8:
return rtcClockData.byte2;
break;
case 0x80000c6:
return rtcClockData.byte1;
break;
case 0x80000c4:
int res = 0;
switch (address)
{
case 0x80000c8:
return rtcClockData.enable;
break;
case 0x80000c6:
return rtcClockData.select;
break;
case 0x80000c4:
if (!(rtcClockData.enable & 1))
{
return 0;
}
// Boktai Solar Sensor
if (rtcClockData.byte1 == 7) {
if (rtcClockData.reserved[11] >= systemGetSensorDarkness()) {
rtcClockData.reserved[10] = 0;
rtcClockData.reserved[11] = 0;
return 8;
}
else {
return 0;
if (rtcClockData.select == 0x07)
{
if (rtcClockData.reserved[11] >= systemGetSensorDarkness())
{
res |= 8;
}
}
// WarioWare Twisted Tilt Sensor
else if (rtcClockData.byte1 == 0x0b) {
//sprintf(DebugStr, "Reading Twisted Sensor bit %d", rtcClockData.reserved[11]);
if (rtcClockData.select == 0x0b)
{
u16 v = systemGetSensorZ();
v = 0x6C0 + v;
return ((v >> rtcClockData.reserved[11]) & 1) << 2;
res |= ((v >> rtcClockData.reserved[11]) & 1) << 2;
}
// Real Time Clock
else if (rtcClockEnabled) {
//sprintf(DebugStr, "Reading RTC %02x, %02x, %02x", rtcClockData.byte0, rtcClockData.byte1, rtcClockData.byte2);
return rtcClockData.byte0;
}
break;
}
return READ16LE((&rom[address & 0x1FFFFFE]));
// Real Time Clock
if (rtcClockEnabled && (rtcClockData.select & 0x04))
{
res |= rtcClockData.byte0;
}
return res;
break;
}
return READ16LE((&rom[address & 0x1FFFFFE]));
}
static u8 toBCD(u8 value)
{
value = value % 100;
int l = value % 10;
int h = value / 10;
return h * 16 + l;
value = value % 100;
int l = value % 10;
int h = value / 10;
return h * 16 + l;
}
void SetGBATime()
{
time_t long_time;
time(&long_time); /* Get time as long integer. */
gba_time = *localtime(&long_time); /* Convert to local time. */
countTicks = 0;
}
void rtcUpdateTime(int ticks)
{
countTicks += ticks;
if (countTicks > TICKS_PER_SECOND)
{
countTicks -= TICKS_PER_SECOND;
gba_time.tm_sec++;
mktime(&gba_time);
}
}
bool rtcWrite(u32 address, u16 value)
{
if(address == 0x80000c8) {
rtcClockData.byte2 = (u8)value; // bit 0 = enable reading from 0x80000c4 c6 and c8
}
else if (address == 0x80000c6) {
rtcClockData.byte1 = (u8)value; // 0=read/1=write (for each of 4 low bits)
// rumble is off when not writing to that pin
if (rtcRumbleEnabled && !(value & 8)) systemCartridgeRumble(false);
}
else if (address == 0x80000c4) { // 4 bits of I/O Port Data (upper bits not used)
// WarioWare Twisted rumble
if (rtcRumbleEnabled && (rtcClockData.byte1 & 8)) {
systemCartridgeRumble(value & 8);
}
// Boktai solar sensor
if (rtcClockData.byte1 == 7) {
if (value & 2) {
// reset counter to 0
rtcClockData.reserved[11] = 0;
rtcClockData.reserved[10] = 0;
}
if ((value & 1) && (!(rtcClockData.reserved[10] & 1))) {
// increase counter, ready to do another read
if (rtcClockData.reserved[11]<255) rtcClockData.reserved[11]++;
}
rtcClockData.reserved[10] = value & rtcClockData.byte1;
}
// WarioWare Twisted rotation sensor
if (rtcClockData.byte1 == 0xb) {
if (value & 2) {
// clock goes high in preperation for reading a bit
rtcClockData.reserved[11]--;
}
if (value & 1) {
// start ADC conversion
rtcClockData.reserved[11] = 15;
}
rtcClockData.byte0 = value & rtcClockData.byte1;
// Real Time Clock
}
/**/
if (address == 0x80000c8)
{
rtcClockData.enable = (u8)value; // bit 0 = enable reading from 0x80000c4 c6 and c8
}
else if (address == 0x80000c6)
{
rtcClockData.select = (u8)value; // 0=read/1=write (for each of 4 low bits)
if(rtcClockData.byte2 & 1) {
if(rtcClockData.state == IDLE && rtcClockData.byte0 == 1 && value == 5) {
rtcClockData.state = COMMAND;
rtcClockData.bits = 0;
rtcClockData.command = 0;
} else if(!(rtcClockData.byte0 & 1) && (value & 1)) { // bit transfer
rtcClockData.byte0 = (u8)value;
switch(rtcClockData.state) {
case COMMAND:
rtcClockData.command |= ((value & 2) >> 1) << (7-rtcClockData.bits);
rtcClockData.bits++;
if(rtcClockData.bits == 8) {
rtcClockData.bits = 0;
switch(rtcClockData.command) {
case 0x60:
// not sure what this command does but it doesn't take parameters
// maybe it is a reset or stop
rtcClockData.state = IDLE;
rtcClockData.bits = 0;
break;
case 0x62:
// this sets the control state but not sure what those values are
rtcClockData.state = READDATA;
rtcClockData.dataLen = 1;
break;
case 0x63:
rtcClockData.dataLen = 1;
rtcClockData.data[0] = 0x40;
rtcClockData.state = DATA;
break;
case 0x64:
break;
case 0x65:
{
if (rtcEnabled)
SetGBATime();
rtcClockData.dataLen = 7;
rtcClockData.data[0] = toBCD(gba_time.tm_year);
rtcClockData.data[1] = toBCD(gba_time.tm_mon+1);
rtcClockData.data[2] = toBCD(gba_time.tm_mday);
rtcClockData.data[3] = toBCD(gba_time.tm_wday);
rtcClockData.data[4] = toBCD(gba_time.tm_hour);
rtcClockData.data[5] = toBCD(gba_time.tm_min);
rtcClockData.data[6] = toBCD(gba_time.tm_sec);
rtcClockData.state = DATA;
}
break;
case 0x67:
{
if (rtcEnabled)
SetGBATime();
rtcClockData.dataLen = 3;
rtcClockData.data[0] = toBCD(gba_time.tm_hour);
rtcClockData.data[1] = toBCD(gba_time.tm_min);
rtcClockData.data[2] = toBCD(gba_time.tm_sec);
rtcClockData.state = DATA;
}
break;
default:
systemMessage(0, N_("Unknown RTC command %02x"), rtcClockData.command);
rtcClockData.state = IDLE;
break;
}
}
break;
case DATA:
if(rtcClockData.byte1 & 2) {
} else {
rtcClockData.byte0 = (rtcClockData.byte0 & ~2) |
((rtcClockData.data[rtcClockData.bits >> 3] >>
(rtcClockData.bits & 7)) & 1)*2;
rtcClockData.bits++;
if(rtcClockData.bits == 8*rtcClockData.dataLen) {
rtcClockData.bits = 0;
rtcClockData.state = IDLE;
}
}
break;
case READDATA:
if(!(rtcClockData.byte1 & 2)) {
} else {
rtcClockData.data[rtcClockData.bits >> 3] =
(rtcClockData.data[rtcClockData.bits >> 3] >> 1) |
((value << 6) & 128);
rtcClockData.bits++;
if(rtcClockData.bits == 8*rtcClockData.dataLen) {
rtcClockData.bits = 0;
rtcClockData.state = IDLE;
}
}
break;
default:
break;
}
} else
rtcClockData.byte0 = (u8)value;
}
}
return true;
// rumble is off when not writing to that pin
if (rtcRumbleEnabled && !(value & 8)) systemCartridgeRumble(false);
}
else if (address == 0x80000c4) // 4 bits of I/O Port Data (upper bits not used)
{
// WarioWare Twisted rumble
if (rtcRumbleEnabled && (rtcClockData.select & 0x08))
{
systemCartridgeRumble(value & 8);
}
// Boktai solar sensor
if (rtcClockData.select == 0x07)
{
if (value & 2)
{
// reset counter to 0
rtcClockData.reserved[11] = 0;
}
if ((value & 1) && !(rtcClockData.reserved[10] & 1))
{
// increase counter, ready to do another read
if (rtcClockData.reserved[11] < 255)
{
rtcClockData.reserved[11]++;
}
else
{
rtcClockData.reserved[11] = 0;
}
}
rtcClockData.reserved[10] = value & rtcClockData.select;
}
// WarioWare Twisted rotation sensor
if (rtcClockData.select == 0x0b)
{
if (value & 2)
{
// clock goes high in preperation for reading a bit
rtcClockData.reserved[11]--;
}
if (value & 1)
{
// start ADC conversion
rtcClockData.reserved[11] = 15;
}
rtcClockData.byte0 = value & rtcClockData.select;
}
// Real Time Clock
if (rtcClockData.select & 4)
{
if (rtcClockData.state == IDLE && rtcClockData.byte0 == 1 && value == 5)
{
rtcClockData.state = COMMAND;
rtcClockData.bits = 0;
rtcClockData.command = 0;
}
else if (!(rtcClockData.byte0 & 1) && (value & 1)) // bit transfer
{
rtcClockData.byte0 = (u8)value;
switch (rtcClockData.state)
{
case COMMAND:
rtcClockData.command |= ((value & 2) >> 1) << (7 - rtcClockData.bits);
rtcClockData.bits++;
if (rtcClockData.bits == 8)
{
rtcClockData.bits = 0;
switch (rtcClockData.command)
{
case 0x60:
// not sure what this command does but it doesn't take parameters
// maybe it is a reset or stop
rtcClockData.state = IDLE;
rtcClockData.bits = 0;
break;
case 0x62:
// this sets the control state but not sure what those values are
rtcClockData.state = READDATA;
rtcClockData.dataLen = 1;
break;
case 0x63:
rtcClockData.dataLen = 1;
rtcClockData.data[0] = 0x40;
rtcClockData.state = DATA;
break;
case 0x64:
break;
case 0x65:
{
if (rtcEnabled)
SetGBATime();
rtcClockData.dataLen = 7;
rtcClockData.data[0] = toBCD(gba_time.tm_year);
rtcClockData.data[1] = toBCD(gba_time.tm_mon + 1);
rtcClockData.data[2] = toBCD(gba_time.tm_mday);
rtcClockData.data[3] = toBCD(gba_time.tm_wday);
rtcClockData.data[4] = toBCD(gba_time.tm_hour);
rtcClockData.data[5] = toBCD(gba_time.tm_min);
rtcClockData.data[6] = toBCD(gba_time.tm_sec);
rtcClockData.state = DATA;
}
break;
case 0x67:
{
if (rtcEnabled)
SetGBATime();
rtcClockData.dataLen = 3;
rtcClockData.data[0] = toBCD(gba_time.tm_hour);
rtcClockData.data[1] = toBCD(gba_time.tm_min);
rtcClockData.data[2] = toBCD(gba_time.tm_sec);
rtcClockData.state = DATA;
}
break;
default:
log(N_("Unknown RTC command %02x"), rtcClockData.command);
rtcClockData.state = IDLE;
break;
}
}
break;
case DATA:
if (rtcClockData.select & 2)
{
}
else if (rtcClockData.select & 4)
{
rtcClockData.byte0 = (rtcClockData.byte0 & ~2) |
((rtcClockData.data[rtcClockData.bits >> 3] >>
(rtcClockData.bits & 7)) & 1) * 2;
rtcClockData.bits++;
if (rtcClockData.bits == 8 * rtcClockData.dataLen)
{
rtcClockData.bits = 0;
rtcClockData.state = IDLE;
}
}
break;
case READDATA:
if (!(rtcClockData.select & 2))
{
}
else
{
rtcClockData.data[rtcClockData.bits >> 3] =
(rtcClockData.data[rtcClockData.bits >> 3] >> 1) |
((value << 6) & 128);
rtcClockData.bits++;
if (rtcClockData.bits == 8 * rtcClockData.dataLen)
{
rtcClockData.bits = 0;
rtcClockData.state = IDLE;
}
}
break;
default:
break;
}
}
else
rtcClockData.byte0 = (u8)value;
}
}
return true;
}
void rtcReset()
{
memset(&rtcClockData, 0, sizeof(rtcClockData));
rtcClockData.byte0 = 0;
rtcClockData.byte1 = 0;
rtcClockData.byte2 = 0;
rtcClockData.command = 0;
rtcClockData.dataLen = 0;
rtcClockData.bits = 0;
rtcClockData.state = IDLE;
rtcClockData.reserved[11] = 0;
SetGBATime();
memset(&rtcClockData, 0, sizeof(rtcClockData));
rtcClockData.byte0 = 0;
rtcClockData.select = 0;
rtcClockData.enable = 0;
rtcClockData.command = 0;
rtcClockData.dataLen = 0;
rtcClockData.bits = 0;
rtcClockData.state = IDLE;
rtcClockData.reserved[11] = 0;
SetGBATime();
}
#ifdef __LIBRETRO__
void rtcSaveGame(u8 *&data)
void rtcSaveGame(u8* &data)
{
utilWriteMem(data, &rtcClockData, sizeof(rtcClockData));
utilWriteMem(data, &rtcClockData, sizeof(rtcClockData));
}
void rtcReadGame(const u8 *&data)
void rtcReadGame(const u8* &data)
{
utilReadMem(&rtcClockData, data, sizeof(rtcClockData));
utilReadMem(&rtcClockData, data, sizeof(rtcClockData));
}
#else
void rtcSaveGame(gzFile gzFile)
{
utilGzWrite(gzFile, &rtcClockData, sizeof(rtcClockData));
utilGzWrite(gzFile, &rtcClockData, sizeof(rtcClockData));
}
void rtcReadGame(gzFile gzFile)
{
utilGzRead(gzFile, &rtcClockData, sizeof(rtcClockData));
utilGzRead(gzFile, &rtcClockData, sizeof(rtcClockData));
}
#endif

View File

@ -570,26 +570,6 @@ void systemUpdateSolarSensor()
break;
}
struct tm* newtime;
time_t long_time;
// regardless of the weather, there should be no sun at night time!
time(&long_time); // Get time as long integer.
newtime = localtime(&long_time); // Convert to local time.
if (newtime->tm_hour > 21 || newtime->tm_hour < 5)
{
sun = 0; // total darkness, 9pm - 5am
}
else if (newtime->tm_hour > 20 || newtime->tm_hour < 6)
{
sun /= 9; // almost total darkness 8pm-9pm, 5am-6am
}
else if (newtime->tm_hour > 18 || newtime->tm_hour < 7)
{
sun >>= 1;
}
sensorDarkness = 0xE8 - sun;
}